- vDSO build improvements including support for building with BSD.
- Cleanup to the AMU support code and initialisation rework to support
cpufreq drivers built as modules.
- Removal of synthetic frame record from exception stack when entering
the kernel from EL0.
- Add support for the TRNG firmware call introduced by Arm spec
DEN0098.
- Cleanup and refactoring across the board.
- Avoid calling arch_get_random_seed_long() from
add_interrupt_randomness()
- Perf and PMU updates including support for Cortex-A78 and the v8.3
SPE extensions.
- Significant steps along the road to leaving the MMU enabled during
kexec relocation.
- Faultaround changes to initialise prefaulted PTEs as 'old' when
hardware access-flag updates are supported, which drastically
improves vmscan performance.
- CPU errata updates for Cortex-A76 (#1463225) and Cortex-A55
(#1024718)
- Preparatory work for yielding the vector unit at a finer granularity
in the crypto code, which in turn will one day allow us to defer
softirq processing when it is in use.
- Support for overriding CPU ID register fields on the command-line.
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmAmwZcQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNLA1B/0XMwWUhmJ4ZPK4sr28YWHNGLuCFHDgkMKU
dEmS806OF9d0J7fTczGsKdS4IKtXWko67Z0UGiPIStwfm0itSW2Zgbo9KZeDPqPI
fH0s23nQKxUMyNW7b9p4cTV3YuGVMZSBoMug2jU2DEDpSqeGBk09NPi6inERBCz/
qZxcqXTKxXbtOY56eJmq09UlFZiwfONubzuCrrUH7LU8ZBSInM/6Q4us/oVm4zYI
Pnv996mtL4UxRqq/KoU9+cQ1zsI01kt9/coHwfCYvSpZEVAnTWtfECsJ690tr3mF
TSKQLvOzxbDtU+HcbkNVKW0A38EIO1xXr8yXW9SJx6BJBkyb24xo
=IwMb
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
- vDSO build improvements including support for building with BSD.
- Cleanup to the AMU support code and initialisation rework to support
cpufreq drivers built as modules.
- Removal of synthetic frame record from exception stack when entering
the kernel from EL0.
- Add support for the TRNG firmware call introduced by Arm spec
DEN0098.
- Cleanup and refactoring across the board.
- Avoid calling arch_get_random_seed_long() from
add_interrupt_randomness()
- Perf and PMU updates including support for Cortex-A78 and the v8.3
SPE extensions.
- Significant steps along the road to leaving the MMU enabled during
kexec relocation.
- Faultaround changes to initialise prefaulted PTEs as 'old' when
hardware access-flag updates are supported, which drastically
improves vmscan performance.
- CPU errata updates for Cortex-A76 (#1463225) and Cortex-A55
(#1024718)
- Preparatory work for yielding the vector unit at a finer granularity
in the crypto code, which in turn will one day allow us to defer
softirq processing when it is in use.
- Support for overriding CPU ID register fields on the command-line.
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (85 commits)
drivers/perf: Replace spin_lock_irqsave to spin_lock
mm: filemap: Fix microblaze build failure with 'mmu_defconfig'
arm64: Make CPU_BIG_ENDIAN depend on ld.bfd or ld.lld 13.0.0+
arm64: cpufeatures: Allow disabling of Pointer Auth from the command-line
arm64: Defer enabling pointer authentication on boot core
arm64: cpufeatures: Allow disabling of BTI from the command-line
arm64: Move "nokaslr" over to the early cpufeature infrastructure
KVM: arm64: Document HVC_VHE_RESTART stub hypercall
arm64: Make kvm-arm.mode={nvhe, protected} an alias of id_aa64mmfr1.vh=0
arm64: Add an aliasing facility for the idreg override
arm64: Honor VHE being disabled from the command-line
arm64: Allow ID_AA64MMFR1_EL1.VH to be overridden from the command line
arm64: cpufeature: Add an early command-line cpufeature override facility
arm64: Extract early FDT mapping from kaslr_early_init()
arm64: cpufeature: Use IDreg override in __read_sysreg_by_encoding()
arm64: cpufeature: Add global feature override facility
arm64: Move SCTLR_EL1 initialisation to EL-agnostic code
arm64: Simplify init_el2_state to be non-VHE only
arm64: Move VHE-specific SPE setup to mutate_to_vhe()
arm64: Drop early setting of MDSCR_EL2.TPMS
...
- Documentation updates.
- Miscellaneous fixes.
- kfree_rcu() updates: Addition of mem_dump_obj() to provide allocator return
addresses to more easily locate bugs. This has a couple of RCU-related commits,
but is mostly MM. Was pulled in with akpm's agreement.
- Per-callback-batch tracking of numbers of callbacks,
which enables better debugging information and smarter
reactions to large numbers of callbacks.
- The first round of changes to allow CPUs to be runtime switched from and to
callback-offloaded state.
- CONFIG_PREEMPT_RT-related changes.
- RCU CPU stall warning updates.
- Addition of polling grace-period APIs for SRCU.
- Torture-test and torture-test scripting updates, including a "torture everything"
script that runs rcutorture, locktorture, scftorture, rcuscale, and refscale.
Plus does an allmodconfig build.
- nolibc fixes for the torture tests
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmAs9lgRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1j/axAAsqIvarDD6OLmgcOPCyWSvfG6LsIFgqI9
CY0JdQBtvFBTvE8Q2No5ktbLVmuYsBh0dGeFkv4HQZJyRlr7mjstVMNN4SeBDVIS
/+zZO1wlwzaXfKQopLctTK1O/UzFqIN2sqyzA3nLzGGj8DqgxXJyreJ10feK5XM+
6ttZPd1qm4hqtpA22ZEODbct5OFqZuvnK8VNqBb2YHabA1rasUXbIEJPBpsuv/W2
l9W5AGP4erdOFm3nHJxiCpvLJtgHy4njvw0HJp5f99Abj6OVeAzw5kFjvRB3n1Qd
ayKyTw8T/1mfmkjvYkGsMAqhEmqwXcryFX0dR/14/XPdXyjPhZlbkz+MfRKrn4NT
LBJPX+MlX9lVFWBNR9HMe2o/083+gorlwZt9wtyt0OBBGGgudYo4uKNdbyy6tB3Y
Gb98P2vtVSO24EsQce6M+ppHN4TgVBd6id82MQxNuFw+PQJdBiCY0JJfNQApbAry
cIKOchSSR2SkJHlAevNVaKAeiTnkAXd1jDBKtCnvCqOUyvtnhE3rQCqwS5xT2Cno
oQydpudwBKT7uO/GUyS0ESErjHuy9zhExNSYD0ydxlBCrGbzrrgPg57ntXHA1die
mtFyvc2tfT/AshWRNYiuCG+eaUG3qK7n7jN7Vc6/K5DR4GMb5tOhL9wPx2ljCRGu
Z8WDg0pJGz4=
=31yj
-----END PGP SIGNATURE-----
Merge tag 'core-rcu-2021-02-17' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU updates from Ingo Molnar:
"These are the latest RCU updates for v5.12:
- Documentation updates.
- Miscellaneous fixes.
- kfree_rcu() updates: Addition of mem_dump_obj() to provide
allocator return addresses to more easily locate bugs. This has a
couple of RCU-related commits, but is mostly MM. Was pulled in with
akpm's agreement.
- Per-callback-batch tracking of numbers of callbacks, which enables
better debugging information and smarter reactions to large numbers
of callbacks.
- The first round of changes to allow CPUs to be runtime switched
from and to callback-offloaded state.
- CONFIG_PREEMPT_RT-related changes.
- RCU CPU stall warning updates.
- Addition of polling grace-period APIs for SRCU.
- Torture-test and torture-test scripting updates, including a
"torture everything" script that runs rcutorture, locktorture,
scftorture, rcuscale, and refscale. Plus does an allmodconfig
build.
- nolibc fixes for the torture tests"
* tag 'core-rcu-2021-02-17' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (130 commits)
percpu_ref: Dump mem_dump_obj() info upon reference-count underflow
rcu: Make call_rcu() print mem_dump_obj() info for double-freed callback
mm: Make mem_obj_dump() vmalloc() dumps include start and length
mm: Make mem_dump_obj() handle vmalloc() memory
mm: Make mem_dump_obj() handle NULL and zero-sized pointers
mm: Add mem_dump_obj() to print source of memory block
tools/rcutorture: Fix position of -lgcc in mkinitrd.sh
tools/nolibc: Fix position of -lgcc in the documented example
tools/nolibc: Emit detailed error for missing alternate syscall number definitions
tools/nolibc: Remove incorrect definitions of __ARCH_WANT_*
tools/nolibc: Get timeval, timespec and timezone from linux/time.h
tools/nolibc: Implement poll() based on ppoll()
tools/nolibc: Implement fork() based on clone()
tools/nolibc: Make getpgrp() fall back to getpgid(0)
tools/nolibc: Make dup2() rely on dup3() when available
tools/nolibc: Add the definition for dup()
rcutorture: Add rcutree.use_softirq=0 to RUDE01 and TASKS01
torture: Maintain torture-specific set of CPUs-online books
torture: Clean up after torture-test CPU hotplugging
rcutorture: Make object_debug also double call_rcu() heap object
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmAtmIwQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgplzLEAC5O+3rBM8QuiJdo39Yppmuw4hDJ6hOKynP
EJQLKQQi0VfXgU+MprGvcbpFYmNbgICvUICQkEzJuk++kPCu/BJtJz0yErQeLgS+
RdXiPV6enbF7iRML5TVRTr1q/z7sJMXcIIJ8Pz/rU/JNfGYExVd0WfnEY9mp1jOt
Bl9V+qyTazdP+Ma4+uEPatSayqcdi1rxB5I+7v/sLiOvKZZWkaRZjUZ/mxAjUfvK
dBOOPjMygEo3tCLkIyyA6lpLvr1r+SUZhLuebRLEKa3To3TW6RtoG0qwpKmI2iKw
ylLeVLB60nM9RUxjflVOfBsHxz1bDg5Ve86y5nCjQd4Jo8x1c4DnecyGE5/Tu8Rg
rgbsfD6nFWzhDCvcZT0XrfQ4ZAjIL2IfT+ypQiQ6UlRd3hvIKRmzWMkjuH2svr0u
ey9Kq+lYerI4cM0F3W73gzUKdIQOuCzBCYxQuSQQomscBa7FCInyU192dAI9Aj6l
Yd06mgKu6qCx6zLv6JfpBqaBHZMwyGE4dmZgPQFuuwO+b4N+Ck3Jm5fzEzw/xIxQ
wdo/DlsAl60BXentB6FByGBJaCjVdSymRqN/xNCAbFKCjmr6TLBuXPfg1gYYO7xC
VOcVjWe8iN3wWHZab3t2mxMKH9B9B/KKzIhu6TNHSmgtQ5paZPRCBx995pDyRw26
WC22RGC2MA==
=os1E
-----END PGP SIGNATURE-----
Merge tag 'for-5.12/block-2021-02-17' of git://git.kernel.dk/linux-block
Pull core block updates from Jens Axboe:
"Another nice round of removing more code than what is added, mostly
due to Christoph's relentless pursuit of tech debt removal/cleanups.
This pull request contains:
- Two series of BFQ improvements (Paolo, Jan, Jia)
- Block iov_iter improvements (Pavel)
- bsg error path fix (Pan)
- blk-mq scheduler improvements (Jan)
- -EBUSY discard fix (Jan)
- bvec allocation improvements (Ming, Christoph)
- bio allocation and init improvements (Christoph)
- Store bdev pointer in bio instead of gendisk + partno (Christoph)
- Block trace point cleanups (Christoph)
- hard read-only vs read-only split (Christoph)
- Block based swap cleanups (Christoph)
- Zoned write granularity support (Damien)
- Various fixes/tweaks (Chunguang, Guoqing, Lei, Lukas, Huhai)"
* tag 'for-5.12/block-2021-02-17' of git://git.kernel.dk/linux-block: (104 commits)
mm: simplify swapdev_block
sd_zbc: clear zone resources for non-zoned case
block: introduce blk_queue_clear_zone_settings()
zonefs: use zone write granularity as block size
block: introduce zone_write_granularity limit
block: use blk_queue_set_zoned in add_partition()
nullb: use blk_queue_set_zoned() to setup zoned devices
nvme: cleanup zone information initialization
block: document zone_append_max_bytes attribute
block: use bi_max_vecs to find the bvec pool
md/raid10: remove dead code in reshape_request
block: mark the bio as cloned in bio_iov_bvec_set
block: set BIO_NO_PAGE_REF in bio_iov_bvec_set
block: remove a layer of indentation in bio_iov_iter_get_pages
block: turn the nr_iovecs argument to bio_alloc* into an unsigned short
block: remove the 1 and 4 vec bvec_slabs entries
block: streamline bvec_alloc
block: factor out a bvec_alloc_gfp helper
block: move struct biovec_slab to bio.c
block: reuse BIO_INLINE_VECS for integrity bvecs
...
Pull RCU updates from Paul E. McKenney:
- Documentation updates.
- Miscellaneous fixes.
- kfree_rcu() updates: Addition of mem_dump_obj() to provide allocator return
addresses to more easily locate bugs. This has a couple of RCU-related commits,
but is mostly MM. Was pulled in with akpm's agreement.
- Per-callback-batch tracking of numbers of callbacks,
which enables better debugging information and smarter
reactions to large numbers of callbacks.
- The first round of changes to allow CPUs to be runtime switched from and to
callback-offloaded state.
- CONFIG_PREEMPT_RT-related changes.
- RCU CPU stall warning updates.
- Addition of polling grace-period APIs for SRCU.
- Torture-test and torture-test scripting updates, including a "torture everything"
script that runs rcutorture, locktorture, scftorture, rcuscale, and refscale.
Plus does an allmodconfig build.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When creating a new kmem cache, SLUB determines how large the slab pages
will based on number of inputs, including the number of CPUs in the
system. Larger slab pages mean that more objects can be allocated/free
from per-cpu slabs before accessing shared structures, but also
potentially more memory can be wasted due to low slab usage and
fragmentation. The rough idea of using number of CPUs is that larger
systems will be more likely to benefit from reduced contention, and also
should have enough memory to spare.
Number of CPUs used to be determined as nr_cpu_ids, which is number of
possible cpus, but on some systems many will never be onlined, thus
commit 045ab8c948 ("mm/slub: let number of online CPUs determine the
slub page order") changed it to nr_online_cpus(). However, for kmem
caches created early before CPUs are onlined, this may lead to
permamently low slab page sizes.
Vincent reports a regression [1] of hackbench on arm64 systems:
"I'm facing significant performances regression on a large arm64
server system (224 CPUs). Regressions is also present on small arm64
system (8 CPUs) but in a far smaller order of magnitude
On 224 CPUs system : 9 iterations of hackbench -l 16000 -g 16
v5.11-rc4 : 9.135sec (+/- 0.45%)
v5.11-rc4 + revert this patch: 3.173sec (+/- 0.48%)
v5.10: 3.136sec (+/- 0.40%)"
Mel reports a regression [2] of hackbench on x86_64, with lockstat suggesting
page allocator contention:
"i.e. the patch incurs a 7% to 32% performance penalty. This bisected
cleanly yesterday when I was looking for the regression and then
found the thread.
Numerous caches change size. For example, kmalloc-512 goes from
order-0 (vanilla) to order-2 with the revert.
So mostly this is down to the number of times SLUB calls into the
page allocator which only caches order-0 pages on a per-cpu basis"
Clearly num_online_cpus() doesn't work too early in bootup. We could
change the order dynamically in a memory hotplug callback, but runtime
order changing for existing kmem caches has been already shown as
dangerous, and removed in 32a6f409b6 ("mm, slub: remove runtime
allocation order changes").
It could be resurrected in a safe manner with some effort, but to fix
the regression we need something simpler.
We could use num_present_cpus() that should be the number of physically
present CPUs even before they are onlined. That would work for PowerPC
[3], which triggered the original commit, but that still doesn't work on
arm64 [4] as explained in [5].
So this patch tries to determine the best available value without
specific arch knowledge.
- num_present_cpus() if the number is larger than 1, as that means the
arch is likely setting it properly
- nr_cpu_ids otherwise
This should fix the reported regressions while also keeping the effect
of 045ab8c948 for PowerPC systems. It's possible there are
configurations where num_present_cpus() is 1 during boot while
nr_cpu_ids is at the same time bloated, so these (if they exist) would
keep the large orders based on nr_cpu_ids as was before 045ab8c948.
[1] https://lore.kernel.org/linux-mm/CAKfTPtA_JgMf_+zdFbcb_V9rM7JBWNPjAz9irgwFj7Rou=xzZg@mail.gmail.com/
[2] https://lore.kernel.org/linux-mm/20210128134512.GF3592@techsingularity.net/
[3] https://lore.kernel.org/linux-mm/20210123051607.GC2587010@in.ibm.com/
[4] https://lore.kernel.org/linux-mm/CAKfTPtAjyVmS5VYvU6DBxg4-JEo5bdmWbngf-03YsY18cmWv_g@mail.gmail.com/
[5] https://lore.kernel.org/linux-mm/20210126230305.GD30941@willie-the-truck/
Link: https://lkml.kernel.org/r/20210208134108.22286-1-vbabka@suse.cz
Fixes: 045ab8c948 ("mm/slub: let number of online CPUs determine the slub page order")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Vincent Guittot <vincent.guittot@linaro.org>
Reported-by: Mel Gorman <mgorman@techsingularity.net>
Tested-by: Mel Gorman <mgorman@techsingularity.net>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Bharata B Rao <bharata@linux.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jann Horn <jannh@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Will Deacon <will@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit f9ce0be71d ("mm: Cleanup faultaround and finish_fault()
codepaths") added a call to 'update_mmu_cache()' in mm/filemap.c, which
breaks the build for microblaze:
| mm/filemap.c: In function 'filemap_map_pages':
| mm/filemap.c:3153:3: error: implicit declaration of function 'update_mmu_cache'; did you mean 'update_mmu_tlb'?
Include asm/tlbflush.h in mm/filemap.c to make sure that the function
(or indeed, macro) is available.
Reported-by: Guenter Roeck <linux@roeck-us.net>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lore.kernel.org/r/20210209202449.GA104837@roeck-us.net
Signed-off-by: Will Deacon <will@kernel.org>
Open code the parts of map_swap_entry that was actually used by
swapdev_block, and remove the now unused map_swap_entry function.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This reverts commit 536d3bf261, as it can
cause writers to memory.high to get stuck in the kernel forever,
performing page reclaim and consuming excessive amounts of CPU cycles.
Before the patch, a write to memory.high would first put the new limit
in place for the workload, and then reclaim the requested delta. After
the patch, the kernel tries to reclaim the delta before putting the new
limit into place, in order to not overwhelm the workload with a sudden,
large excess over the limit. However, if reclaim is actively racing
with new allocations from the uncurbed workload, it can keep the write()
working inside the kernel indefinitely.
This is causing problems in Facebook production. A privileged
system-level daemon that adjusts memory.high for various workloads
running on a host can get unexpectedly stuck in the kernel and
essentially turn into a sort of involuntary kswapd for one of the
workloads. We've observed that daemon busy-spin in a write() for
minutes at a time, neglecting its other duties on the system, and
expending privileged system resources on behalf of a workload.
To remedy this, we have first considered changing the reclaim logic to
break out after a couple of loops - whether the workload has converged
to the new limit or not - and bound the write() call this way. However,
the root cause that inspired the sequence change in the first place has
been fixed through other means, and so a revert back to the proven
limit-setting sequence, also used by memory.max, is preferable.
The sequence was changed to avoid extreme latencies in the workload when
the limit was lowered: the sudden, large excess created by the limit
lowering would erroneously trigger the penalty sleeping code that is
meant to throttle excessive growth from below. Allocating threads could
end up sleeping long after the write() had already reclaimed the delta
for which they were being punished.
However, erroneous throttling also caused problems in other scenarios at
around the same time. This resulted in commit b3ff92916a ("mm, memcg:
reclaim more aggressively before high allocator throttling"), included
in the same release as the offending commit. When allocating threads
now encounter large excess caused by a racing write() to memory.high,
instead of entering punitive sleeps, they will simply be tasked with
helping reclaim down the excess, and will be held no longer than it
takes to accomplish that. This is in line with regular limit
enforcement - i.e. if the workload allocates up against or over an
otherwise unchanged limit from below.
With the patch breaking userspace, and the root cause addressed by other
means already, revert it again.
Link: https://lkml.kernel.org/r/20210122184341.292461-1-hannes@cmpxchg.org
Fixes: 536d3bf261 ("mm: memcontrol: avoid workload stalls when lowering memory.high")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Tejun Heo <tj@kernel.org>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: <stable@vger.kernel.org> [5.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
clang can't evaluate this function argument at compile time when the
function is not inlined, which leads to a link time failure:
ld.lld: error: undefined symbol: __compiletime_assert_414
>>> referenced by mremap.c
>>> mremap.o:(get_extent) in archive mm/built-in.a
Mark the function as __always_inline to avoid it.
Link: https://lkml.kernel.org/r/20201230154104.522605-1-arnd@kernel.org
Fixes: 9ad9718bfa ("mm/mremap: calculate extent in one place")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Cc: Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: Brian Geffon <bgeffon@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, whether the alloc/free stack traces collection is enabled by
default for hardware tag-based KASAN depends on CONFIG_DEBUG_KERNEL.
The intention for this dependency was to only enable collection on slow
debug kernels due to a significant perf and memory impact.
As it turns out, CONFIG_DEBUG_KERNEL is not considered a debug option
and is enabled on many productions kernels including Android and Ubuntu.
As the result, this dependency is pointless and only complicates the
code and documentation.
Having stack traces collection disabled by default would make the
hardware mode work differently to to the software ones, which is
confusing.
This change removes the dependency and enables stack traces collection
by default.
Looking into the future, this default might makes sense for production
kernels, assuming we implement a fast stack trace collection approach.
Link: https://lkml.kernel.org/r/6678d77ceffb71f1cff2cf61560e2ffe7bb6bfe9.1612808820.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the current implementation of page_frag_alloc(), it doesn't have
any align guarantee for the returned buffer address. But for some
hardwares they do require the DMA buffer to be aligned correctly,
so we would have to use some workarounds like below if the buffers
allocated by the page_frag_alloc() are used by these hardwares for
DMA.
buf = page_frag_alloc(really_needed_size + align);
buf = PTR_ALIGN(buf, align);
These codes seems ugly and would waste a lot of memories if the buffers
are used in a network driver for the TX/RX. So introduce
page_frag_alloc_align() to make sure that an aligned buffer address is
returned.
Signed-off-by: Kevin Hao <haokexin@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Alexander Duyck <alexanderduyck@fb.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The VM_BUG_ON_PAGE avoids the generation of any code, even if that
expression has side-effects when !CONFIG_DEBUG_VM.
Link: https://lkml.kernel.org/r/20210126031009.96266-1-songmuchun@bytedance.com
Fixes: e5dfacebe4 ("mm/hugetlb.c: just use put_page_testzero() instead of page_count()")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, addr_has_metadata() returns true for every address. An
invalid address (e.g. NULL) passed to the function when, KASAN_HW_TAGS
is enabled, leads to a kernel panic.
Make addr_has_metadata() return true for valid addresses only.
Note: KASAN_HW_TAGS support for vmalloc will be added with a future
patch.
Link: https://lkml.kernel.org/r/20210126134409.47894-3-vincenzo.frascino@arm.com
Fixes: 2e903b9147 ("kasan, arm64: implement HW_TAGS runtime")
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Leon Romanovsky <leonro@mellanox.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Naresh Kamboju <naresh.kamboju@linaro.org>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 3fea5a499d ("mm: memcontrol: convert page cache to a new
mem_cgroup_charge() API") introduced a bug in __add_to_page_cache_locked()
causing the following splat:
page dumped because: VM_BUG_ON_PAGE(page_memcg(page))
pages's memcg:ffff8889a4116000
------------[ cut here ]------------
kernel BUG at mm/memcontrol.c:2924!
invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 35 PID: 12345 Comm: cat Tainted: G S W I 5.11.0-rc4-debug+ #1
Hardware name: HP HP Z8 G4 Workstation/81C7, BIOS P60 v01.25 12/06/2017
RIP: commit_charge+0xf4/0x130
Call Trace:
mem_cgroup_charge+0x175/0x770
__add_to_page_cache_locked+0x712/0xad0
add_to_page_cache_lru+0xc5/0x1f0
cachefiles_read_or_alloc_pages+0x895/0x2e10 [cachefiles]
__fscache_read_or_alloc_pages+0x6c0/0xa00 [fscache]
__nfs_readpages_from_fscache+0x16d/0x630 [nfs]
nfs_readpages+0x24e/0x540 [nfs]
read_pages+0x5b1/0xc40
page_cache_ra_unbounded+0x460/0x750
generic_file_buffered_read_get_pages+0x290/0x1710
generic_file_buffered_read+0x2a9/0xc30
nfs_file_read+0x13f/0x230 [nfs]
new_sync_read+0x3af/0x610
vfs_read+0x339/0x4b0
ksys_read+0xf1/0x1c0
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Before that commit, there was a try_charge() and commit_charge() in
__add_to_page_cache_locked(). These two separated charge functions were
replaced by a single mem_cgroup_charge(). However, it forgot to add a
matching mem_cgroup_uncharge() when the xarray insertion failed with the
page released back to the pool.
Fix this by adding a mem_cgroup_uncharge() call when insertion error
happens.
Link: https://lkml.kernel.org/r/20210125042441.20030-1-longman@redhat.com
Fixes: 3fea5a499d ("mm: memcontrol: convert page cache to a new mem_cgroup_charge() API")
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <smuchun@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With kaslr the kernel image is placed at a random place, so starting the
bottom-up allocation with the kernel_end can result in an allocation
failure and a warning like this one:
hugetlb_cma: reserve 2048 MiB, up to 2048 MiB per node
------------[ cut here ]------------
memblock: bottom-up allocation failed, memory hotremove may be affected
WARNING: CPU: 0 PID: 0 at mm/memblock.c:332 memblock_find_in_range_node+0x178/0x25a
Modules linked in:
CPU: 0 PID: 0 Comm: swapper Not tainted 5.10.0+ #1169
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014
RIP: 0010:memblock_find_in_range_node+0x178/0x25a
Code: e9 6d ff ff ff 48 85 c0 0f 85 da 00 00 00 80 3d 9b 35 df 00 00 75 15 48 c7 c7 c0 75 59 88 c6 05 8b 35 df 00 01 e8 25 8a fa ff <0f> 0b 48 c7 44 24 20 ff ff ff ff 44 89 e6 44 89 ea 48 c7 c1 70 5c
RSP: 0000:ffffffff88803d18 EFLAGS: 00010086 ORIG_RAX: 0000000000000000
RAX: 0000000000000000 RBX: 0000000240000000 RCX: 00000000ffffdfff
RDX: 00000000ffffdfff RSI: 00000000ffffffea RDI: 0000000000000046
RBP: 0000000100000000 R08: ffffffff88922788 R09: 0000000000009ffb
R10: 00000000ffffe000 R11: 3fffffffffffffff R12: 0000000000000000
R13: 0000000000000000 R14: 0000000080000000 R15: 00000001fb42c000
FS: 0000000000000000(0000) GS:ffffffff88f71000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffa080fb401000 CR3: 00000001fa80a000 CR4: 00000000000406b0
Call Trace:
memblock_alloc_range_nid+0x8d/0x11e
cma_declare_contiguous_nid+0x2c4/0x38c
hugetlb_cma_reserve+0xdc/0x128
flush_tlb_one_kernel+0xc/0x20
native_set_fixmap+0x82/0xd0
flat_get_apic_id+0x5/0x10
register_lapic_address+0x8e/0x97
setup_arch+0x8a5/0xc3f
start_kernel+0x66/0x547
load_ucode_bsp+0x4c/0xcd
secondary_startup_64_no_verify+0xb0/0xbb
random: get_random_bytes called from __warn+0xab/0x110 with crng_init=0
---[ end trace f151227d0b39be70 ]---
At the same time, the kernel image is protected with memblock_reserve(),
so we can just start searching at PAGE_SIZE. In this case the bottom-up
allocation has the same chances to success as a top-down allocation, so
there is no reason to fallback in the case of a failure. All together it
simplifies the logic.
Link: https://lkml.kernel.org/r/20201217201214.3414100-2-guro@fb.com
Fixes: 8fabc62323 ("powerpc: Ensure that swiotlb buffer is allocated from low memory")
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Wonhyuk Yang <vvghjk1234@gmail.com>
Cc: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sergey reported deadlock between kswapd correctly doing its usual
lock_page(page) followed by down_read(page->mapping->i_mmap_rwsem), and
madvise(MADV_REMOVE) on an madvise(MADV_HUGEPAGE) area doing
down_write(page->mapping->i_mmap_rwsem) followed by lock_page(page).
This happened when shmem_fallocate(punch hole)'s unmap_mapping_range()
reaches zap_pmd_range()'s call to __split_huge_pmd(). The same deadlock
could occur when partially truncating a mapped huge tmpfs file, or using
fallocate(FALLOC_FL_PUNCH_HOLE) on it.
__split_huge_pmd()'s page lock was added in 5.8, to make sure that any
concurrent use of reuse_swap_page() (holding page lock) could not catch
the anon THP's mapcounts and swapcounts while they were being split.
Fortunately, reuse_swap_page() is never applied to a shmem or file THP
(not even by khugepaged, which checks PageSwapCache before calling), and
anonymous THPs are never created in shmem or file areas: so that
__split_huge_pmd()'s page lock can only be necessary for anonymous THPs,
on which there is no risk of deadlock with i_mmap_rwsem.
Link: https://lkml.kernel.org/r/alpine.LSU.2.11.2101161409470.2022@eggly.anvils
Fixes: c444eb564f ("mm: thp: make the THP mapcount atomic against __split_huge_pmd_locked()")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In fast_isolate_freepages, high_pfn will be used if a prefered one (ie
PFN >= low_fn) not found.
But the high_pfn is not reset before searching an free area, so when it
was used as freepage, it may from another free area searched before. As
a result move_freelist_head(freelist, freepage) will have unexpected
behavior (eg corrupt the MOVABLE freelist)
Unable to handle kernel paging request at virtual address dead000000000200
Mem abort info:
ESR = 0x96000044
Exception class = DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
Data abort info:
ISV = 0, ISS = 0x00000044
CM = 0, WnR = 1
[dead000000000200] address between user and kernel address ranges
-000|list_cut_before(inline)
-000|move_freelist_head(inline)
-000|fast_isolate_freepages(inline)
-000|isolate_freepages(inline)
-000|compaction_alloc(?, ?)
-001|unmap_and_move(inline)
-001|migrate_pages([NSD:0xFFFFFF80088CBBD0] from = 0xFFFFFF80088CBD88, [NSD:0xFFFFFF80088CBBC8] get_new_p
-002|__read_once_size(inline)
-002|static_key_count(inline)
-002|static_key_false(inline)
-002|trace_mm_compaction_migratepages(inline)
-002|compact_zone(?, [NSD:0xFFFFFF80088CBCB0] capc = 0x0)
-003|kcompactd_do_work(inline)
-003|kcompactd([X19] p = 0xFFFFFF93227FBC40)
-004|kthread([X20] _create = 0xFFFFFFE1AFB26380)
-005|ret_from_fork(asm)
The issue was reported on an smart phone product with 6GB ram and 3GB
zram as swap device.
This patch fixes the issue by reset high_pfn before searching each free
area, which ensure freepage and freelist match when call
move_freelist_head in fast_isolate_freepages().
Link: http://lkml.kernel.org/r/20190118175136.31341-12-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210112094720.1238444-1-wu-yan@tcl.com
Fixes: 5a811889de ("mm, compaction: use free lists to quickly locate a migration target")
Signed-off-by: Rokudo Yan <wu-yan@tcl.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All pages isolated for the migration have an elevated reference count and
therefore seeing a reference count equal to 1 means that the last user of
the page has dropped the reference and the page has became unused and
there doesn't make much sense to migrate it anymore.
This has been done for regular pages and this patch does the same for
hugetlb pages. Although the likelihood of the race is rather small for
hugetlb pages it makes sense the two code paths in sync.
Link: https://lkml.kernel.org/r/20210115124942.46403-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Yang Shi <shy828301@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page_huge_active() can be called from scan_movable_pages() which do
not hold a reference count to the HugeTLB page. So when we call
page_huge_active() from scan_movable_pages(), the HugeTLB page can be
freed parallel. Then we will trigger a BUG_ON which is in the
page_huge_active() when CONFIG_DEBUG_VM is enabled. Just remove the
VM_BUG_ON_PAGE.
Link: https://lkml.kernel.org/r/20210115124942.46403-6-songmuchun@bytedance.com
Fixes: 7e1f049efb ("mm: hugetlb: cleanup using paeg_huge_active()")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a race between isolate_huge_page() and __free_huge_page().
CPU0: CPU1:
if (PageHuge(page))
put_page(page)
__free_huge_page(page)
spin_lock(&hugetlb_lock)
update_and_free_page(page)
set_compound_page_dtor(page,
NULL_COMPOUND_DTOR)
spin_unlock(&hugetlb_lock)
isolate_huge_page(page)
// trigger BUG_ON
VM_BUG_ON_PAGE(!PageHead(page), page)
spin_lock(&hugetlb_lock)
page_huge_active(page)
// trigger BUG_ON
VM_BUG_ON_PAGE(!PageHuge(page), page)
spin_unlock(&hugetlb_lock)
When we isolate a HugeTLB page on CPU0. Meanwhile, we free it to the
buddy allocator on CPU1. Then, we can trigger a BUG_ON on CPU0, because
it is already freed to the buddy allocator.
Link: https://lkml.kernel.org/r/20210115124942.46403-5-songmuchun@bytedance.com
Fixes: c8721bbbdd ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a race condition between __free_huge_page()
and dissolve_free_huge_page().
CPU0: CPU1:
// page_count(page) == 1
put_page(page)
__free_huge_page(page)
dissolve_free_huge_page(page)
spin_lock(&hugetlb_lock)
// PageHuge(page) && !page_count(page)
update_and_free_page(page)
// page is freed to the buddy
spin_unlock(&hugetlb_lock)
spin_lock(&hugetlb_lock)
clear_page_huge_active(page)
enqueue_huge_page(page)
// It is wrong, the page is already freed
spin_unlock(&hugetlb_lock)
The race window is between put_page() and dissolve_free_huge_page().
We should make sure that the page is already on the free list when it is
dissolved.
As a result __free_huge_page would corrupt page(s) already in the buddy
allocator.
Link: https://lkml.kernel.org/r/20210115124942.46403-4-songmuchun@bytedance.com
Fixes: c8721bbbdd ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a new hugetlb page is allocated during fallocate it will not be
marked as active (set_page_huge_active) which will result in a later
isolate_huge_page failure when the page migration code would like to
move that page. Such a failure would be unexpected and wrong.
Only export set_page_huge_active, just leave clear_page_huge_active as
static. Because there are no external users.
Link: https://lkml.kernel.org/r/20210115124942.46403-3-songmuchun@bytedance.com
Fixes: 70c3547e36 (hugetlbfs: add hugetlbfs_fallocate())
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The 'start' and 'end' arguments to tlb_gather_mmu() are no longer
needed now that there is a separate function for 'fullmm' flushing.
Remove the unused arguments and update all callers.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Yu Zhao <yuzhao@google.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/CAHk-=wjQWa14_4UpfDf=fiineNP+RH74kZeDMo_f1D35xNzq9w@mail.gmail.com
Passing the range '0, -1' to tlb_gather_mmu() sets the 'fullmm' flag,
which indicates that the mm_struct being operated on is going away. In
this case, some architectures (such as arm64) can elide TLB invalidation
by ensuring that the TLB tag (ASID) associated with this mm is not
immediately reclaimed. Although this behaviour is documented in
asm-generic/tlb.h, it's subtle and easily missed.
Introduce tlb_gather_mmu_fullmm() to make it clearer that this is for the
entire mm and WARN() if tlb_gather_mmu() is called with the 'fullmm'
address range.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Yu Zhao <yuzhao@google.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lkml.kernel.org/r/20210127235347.1402-4-will@kernel.org
Since commit 7a30df49f6 ("mm: mmu_gather: remove __tlb_reset_range()
for force flush"), the 'start' and 'end' arguments to tlb_finish_mmu()
are no longer used, since we flush the whole mm in case of a nested
invalidation.
Remove the unused arguments and update all callers.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Yu Zhao <yuzhao@google.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lkml.kernel.org/r/20210127235347.1402-3-will@kernel.org
This reverts commit dde3c6b72a.
syzbot report a double-free bug. The following case can cause this bug.
- mm/slab_common.c: create_cache(): if the __kmem_cache_create() fails,
it does:
out_free_cache:
kmem_cache_free(kmem_cache, s);
- but __kmem_cache_create() - at least for slub() - will have done
sysfs_slab_add(s)
-> sysfs_create_group() .. fails ..
-> kobject_del(&s->kobj); .. which frees s ...
We can't remove the kmem_cache_free() in create_cache(), because other
error cases of __kmem_cache_create() do not free this.
So, revert the commit dde3c6b72a ("mm/slub: fix a memory leak in
sysfs_slab_add()") to fix this.
Reported-by: syzbot+d0bd96b4696c1ef67991@syzkaller.appspotmail.com
Fixes: dde3c6b72a ("mm/slub: fix a memory leak in sysfs_slab_add()")
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Wang Hai <wanghai38@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If CONFIG_MMU is not set (e.g. m68k/m5272c3_defconfig):
mm/nommu.c:1671:6: error: conflicting types for ‘filemap_map_pages’
1671 | void filemap_map_pages(struct vm_fault *vmf,
| ^~~~~~~~~~~~~~~~~
In file included from mm/nommu.c:20:
./include/linux/mm.h:2578:19: note: previous declaration of ‘filemap_map_pages’ was here
2578 | extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
| ^~~~~~~~~~~~~~~~~
The signature of filemap_map_pages() was changed, but the nommu
implementation wasn't updated.
Reported-by: noreply@ellerman.id.au
Fixes: f9ce0be71d ("mm: Cleanup faultaround and finish_fault() codepaths")
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Link: https://lore.kernel.org/r/20210128100626.2257638-1-geert@linux-m68k.org
Signed-off-by: Will Deacon <will@kernel.org>
Current tree spews this on compile:
mm/swapfile.c:2290:17: warning: ‘map_swap_entry’ defined but not used [-Wunused-function]
2290 | static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
| ^~~~~~~~~~~~~~
if !CONFIG_HIBERNATION, as we don't use the function unless we have that
config option set.
Fixes: 48d15436fd ("mm: remove get_swap_bio")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Just reuse the block_device and sector from the swap_info structure,
just as used by the SWP_SYNCHRONOUS path. Also remove the checks for
NULL returns from bio_alloc as that can't happen for sleeping
allocations.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Acked-by: Damien Le Moal <damien.lemoal@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This reverts commit d3921cb8be.
Chris Wilson reports that it causes boot problems:
"We have half a dozen or so different machines in CI that are silently
failing to boot, that we believe is bisected to this patch"
and the CI team confirmed that a revert fixed the issues.
The cause is unknown for now, so let's revert it.
Link: https://lore.kernel.org/lkml/161160687463.28991.354987542182281928@build.alporthouse.com/
Reported-and-tested-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace the gendisk pointer in struct bio with a pointer to the newly
improved struct block device. From that the gendisk can be trivially
accessed with an extra indirection, but it also allows to directly
look up all information related to partition remapping.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The generic kmap_local() map function uses set_pte_at(), but MIPS requires
set_pte() and PowerPC wants __set_pte_at().
Provide arch_kmap_local_set_pte() and default it to set_pte_at().
Link: https://lkml.kernel.org/r/20210112170411.056306194@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Cercueil <paul@crapouillou.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The conversion to move pfn_to_online_page() internal to
soft_offline_page() missed that the get_user_pages() reference taken by
the madvise() path needs to be dropped when pfn_to_online_page() fails.
Note the direct sysfs-path to soft_offline_page() does not perform a
get_user_pages() lookup.
When soft_offline_page() is handed a pfn_valid() && !pfn_to_online_page()
pfn the kernel hangs at dax-device shutdown due to a leaked reference.
Link: https://lkml.kernel.org/r/161058501210.1840162.8108917599181157327.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: feec24a613 ("mm, soft-offline: convert parameter to pfn")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Qian Cai <cai@lca.pw>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A previous commit added resetting KASAN page tags to
kernel_init_free_pages() to avoid false-positives due to accesses to
metadata with the hardware tag-based mode.
That commit did reset page tags before the metadata access, but didn't
restore them after. As the result, KASAN fails to detect bad accesses
to page_alloc allocations on some configurations.
Fix this by recovering the tag after the metadata access.
Link: https://lkml.kernel.org/r/02b5bcd692e912c27d484030f666b350ad7e4ae4.1611074450.git.andreyknvl@google.com
Fixes: aa1ef4d7b3 ("kasan, mm: reset tags when accessing metadata")
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A few places where SLUB accesses object's data or metadata were missed
in a previous patch. This leads to false positives with hardware
tag-based KASAN when bulk allocations are used with init_on_alloc/free.
Fix the false-positives by resetting pointer tags during these accesses.
(The kasan_reset_tag call is removed from slab_alloc_node, as it's added
into maybe_wipe_obj_freeptr.)
Link: https://linux-review.googlesource.com/id/I50dd32838a666e173fe06c3c5c766f2c36aae901
Link: https://lkml.kernel.org/r/093428b5d2ca8b507f4a79f92f9929b35f7fada7.1610731872.git.andreyknvl@google.com
Fixes: aa1ef4d7b3 ("kasan, mm: reset tags when accessing metadata")
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The initially proposed KASAN command line parameters are redundant.
This change drops the complex "kasan.mode=off/prod/full" parameter and
adds a simpler kill switch "kasan=off/on" instead. The new parameter
together with the already existing ones provides a cleaner way to
express the same set of features.
The full set of parameters with this change:
kasan=off/on - whether KASAN is enabled
kasan.fault=report/panic - whether to only print a report or also panic
kasan.stacktrace=off/on - whether to collect alloc/free stack traces
Default values:
kasan=on
kasan.fault=report
kasan.stacktrace=on (if CONFIG_DEBUG_KERNEL=y)
kasan.stacktrace=off (otherwise)
Link: https://linux-review.googlesource.com/id/Ib3694ed90b1e8ccac6cf77dfd301847af4aba7b8
Link: https://lkml.kernel.org/r/4e9c4a4bdcadc168317deb2419144582a9be6e61.1610736745.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kasan_remove_zero_shadow() shall use original virtual address, start and
size, instead of shadow address.
Link: https://lkml.kernel.org/r/20210103063847.5963-1-lecopzer@gmail.com
Fixes: 0207df4fa1 ("kernel/memremap, kasan: make ZONE_DEVICE with work with KASAN")
Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During testing kasan_populate_early_shadow and kasan_remove_zero_shadow,
if the shadow start and end address in kasan_remove_zero_shadow() is not
aligned to PMD_SIZE, the remain unaligned PTE won't be removed.
In the test case for kasan_remove_zero_shadow():
shadow_start: 0xffffffb802000000, shadow end: 0xffffffbfbe000000
3-level page table:
PUD_SIZE: 0x40000000 PMD_SIZE: 0x200000 PAGE_SIZE: 4K
0xffffffbf80000000 ~ 0xffffffbfbdf80000 will not be removed because in
kasan_remove_pud_table(), kasan_pmd_table(*pud) is true but the next
address is 0xffffffbfbdf80000 which is not aligned to PUD_SIZE.
In the correct condition, this should fallback to the next level
kasan_remove_pmd_table() but the condition flow always continue to skip
the unaligned part.
Fix by correcting the condition when next and addr are neither aligned.
Link: https://lkml.kernel.org/r/20210103135621.83129-1-lecopzer@gmail.com
Fixes: 0207df4fa1 ("kernel/memremap, kasan: make ZONE_DEVICE with work with KASAN")
Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: YJ Chiang <yj.chiang@mediatek.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the kernel is not correctly updating the numa stats for
NR_FILE_PAGES and NR_SHMEM on THP migration. Fix that.
For NR_FILE_DIRTY and NR_ZONE_WRITE_PENDING, although at the moment
there is no need to handle THP migration as kernel still does not have
write support for file THP but to be more future proof, this patch adds
the THP support for those stats as well.
Link: https://lkml.kernel.org/r/20210108155813.2914586-2-shakeelb@google.com
Fixes: e71769ae52 ("mm: enable thp migration for shmem thp")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kernel updates the per-node NR_FILE_DIRTY stats on page migration
but not the memcg numa stats.
That was not an issue until recently the commit 5f9a4f4a70 ("mm:
memcontrol: add the missing numa_stat interface for cgroup v2") exposed
numa stats for the memcg.
So fix the file_dirty per-memcg numa stat.
Link: https://lkml.kernel.org/r/20210108155813.2914586-1-shakeelb@google.com
Fixes: 5f9a4f4a70 ("mm: memcontrol: add the missing numa_stat interface for cgroup v2")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There could be struct pages that are not backed by actual physical
memory. This can happen when the actual memory bank is not a multiple
of SECTION_SIZE or when an architecture does not register memory holes
reserved by the firmware as memblock.memory.
Such pages are currently initialized using init_unavailable_mem()
function that iterates through PFNs in holes in memblock.memory and if
there is a struct page corresponding to a PFN, the fields if this page
are set to default values and the page is marked as Reserved.
init_unavailable_mem() does not take into account zone and node the page
belongs to and sets both zone and node links in struct page to zero.
On a system that has firmware reserved holes in a zone above ZONE_DMA,
for instance in a configuration below:
# grep -A1 E820 /proc/iomem
7a17b000-7a216fff : Unknown E820 type
7a217000-7bffffff : System RAM
unset zone link in struct page will trigger
VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
because there are pages in both ZONE_DMA32 and ZONE_DMA (unset zone link
in struct page) in the same pageblock.
Update init_unavailable_mem() to use zone constraints defined by an
architecture to properly setup the zone link and use node ID of the
adjacent range in memblock.memory to set the node link.
Link: https://lkml.kernel.org/r/20210111194017.22696-3-rppt@kernel.org
Fixes: 73a6e474cb ("mm: memmap_init: iterate over memblock regions rather that check each PFN")
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reported-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit adds the starting address and number of pages to the vmalloc()
information dumped by way of vmalloc_dump_obj().
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <linux-mm@kvack.org>
Reported-by: Andrii Nakryiko <andrii@kernel.org>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds vmalloc() support to mem_dump_obj(). Note that the
vmalloc_dump_obj() function combines the checking and dumping, in
contrast with the split between kmem_valid_obj() and kmem_dump_obj().
The reason for the difference is that the checking in the vmalloc()
case involves acquiring a global lock, and redundant acquisitions of
global locks should be avoided, even on not-so-fast paths.
Note that this change causes on-stack variables to be reported as
vmalloc() storage from kernel_clone() or similar, depending on the degree
of inlining that your compiler does. This is likely more helpful than
the earlier "non-paged (local) memory".
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <linux-mm@kvack.org>
Reported-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit makes mem_dump_obj() call out NULL and zero-sized pointers
specially instead of classifying them as non-paged memory.
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <linux-mm@kvack.org>
Reported-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
There are kernel facilities such as per-CPU reference counts that give
error messages in generic handlers or callbacks, whose messages are
unenlightening. In the case of per-CPU reference-count underflow, this
is not a problem when creating a new use of this facility because in that
case the bug is almost certainly in the code implementing that new use.
However, trouble arises when deploying across many systems, which might
exercise corner cases that were not seen during development and testing.
Here, it would be really nice to get some kind of hint as to which of
several uses the underflow was caused by.
This commit therefore exposes a mem_dump_obj() function that takes
a pointer to memory (which must still be allocated if it has been
dynamically allocated) and prints available information on where that
memory came from. This pointer can reference the middle of the block as
well as the beginning of the block, as needed by things like RCU callback
functions and timer handlers that might not know where the beginning of
the memory block is. These functions and handlers can use mem_dump_obj()
to print out better hints as to where the problem might lie.
The information printed can depend on kernel configuration. For example,
the allocation return address can be printed only for slab and slub,
and even then only when the necessary debug has been enabled. For slab,
build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space
to the next power of two or use the SLAB_STORE_USER when creating the
kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and
boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create()
if more focused use is desired. Also for slub, use CONFIG_STACKTRACE
to enable printing of the allocation-time stack trace.
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <linux-mm@kvack.org>
Reported-by: Andrii Nakryiko <andrii@kernel.org>
[ paulmck: Convert to printing and change names per Joonsoo Kim. ]
[ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ]
[ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ]
[ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ]
[ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ]
[ paulmck: Explicitly check for small pointers per Naresh Kamboju. ]
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
In preparation for const-ifying the anonymous struct field of
'struct vm_fault', ensure that it is initialised using designated
initialisers.
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
In preparation for const-ifying the anonymous struct field of
'struct vm_fault', rework __collapse_huge_page_swapin() to avoid
continuously updating vmf.address and instead populate a new
'struct vm_fault' on the stack for each page being processed.
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Will Deacon <will@kernel.org>