Commit Graph

160 Commits

Author SHA1 Message Date
Josef Bacik
0eb79294db btrfs: dio iomap DSYNC workaround
iomap dio will run generic_write_sync() for us if the iocb is DSYNC.
This is problematic for us because of 2 reasons:

1. we hold the inode_lock() during this operation, and we take it in
   generic_write_sync()
2. we hold a read lock on the dio_sem but take the write lock in fsync

Since we don't want to rip out this code right now, but reworking the
locking is a bit much to do at this point, work around this problem with
this masterpiece of a patch.

First, we clear DSYNC on the iocb so that the iomap stuff doesn't know
that it needs to handle the sync.  We save this fact in
current->journal_info, because we need to see do special things once
we're in iomap_begin, and we have no way to pass private information
into iomap_dio_rw().

Next we specify a separate iomap_dio_ops for sync, which implements an
->end_io() callback that gets called when the dio completes.  This is
important for AIO, because we really do need to run generic_write_sync()
if we complete asynchronously.  However if we're still in the submitting
context when we enter ->end_io() we clear the flag so that the submitter
knows they're the ones that needs to run generic_write_sync().

This is meant to be temporary.  We need to work out how to eliminate the
inode_lock() and the dio_sem in our fsync and use another mechanism to
protect these operations.

Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:06:57 +02:00
Filipe Manana
487781796d btrfs: make fast fsyncs wait only for writeback
Currently regardless of a full or a fast fsync we always wait for ordered
extents to complete, and then start logging the inode after that. However
for fast fsyncs we can just wait for the writeback to complete, we don't
need to wait for the ordered extents to complete since we use the list of
modified extents maps to figure out which extents we must log and we can
get their checksums directly from the ordered extents that are still in
flight, otherwise look them up from the checksums tree.

Until commit b5e6c3e170 ("btrfs: always wait on ordered extents at
fsync time"), for fast fsyncs, we used to start logging without even
waiting for the writeback to complete first, we would wait for it to
complete after logging, while holding a transaction open, which lead to
performance issues when using cgroups and probably for other cases too,
as wait for IO while holding a transaction handle should be avoided as
much as possible. After that, for fast fsyncs, we started to wait for
ordered extents to complete before starting to log, which adds some
latency to fsyncs and we even got at least one report about a performance
drop which bisected to that particular change:

https://lore.kernel.org/linux-btrfs/20181109215148.GF23260@techsingularity.net/

This change makes fast fsyncs only wait for writeback to finish before
starting to log the inode, instead of waiting for both the writeback to
finish and for the ordered extents to complete. This brings back part of
the logic we had that extracts checksums from in flight ordered extents,
which are not yet in the checksums tree, and making sure transaction
commits wait for the completion of ordered extents previously logged
(by far most of the time they have already completed by the time a
transaction commit starts, resulting in no wait at all), to avoid any
data loss if an ordered extent completes after the transaction used to
log an inode is committed, followed by a power failure.

When there are no other tasks accessing the checksums and the subvolume
btrees, the ordered extent completion is pretty fast, typically taking
100 to 200 microseconds only in my observations. However when there are
other tasks accessing these btrees, ordered extent completion can take a
lot more time due to lock contention on nodes and leaves of these btrees.
I've seen cases over 2 milliseconds, which starts to be significant. In
particular when we do have concurrent fsyncs against different files there
is a lot of contention on the checksums btree, since we have many tasks
writing the checksums into the btree and other tasks that already started
the logging phase are doing lookups for checksums in the btree.

This change also turns all ranged fsyncs into full ranged fsyncs, which
is something we already did when not using the NO_HOLES features or when
doing a full fsync. This is to guarantee we never miss checksums due to
writeback having been triggered only for a part of an extent, and we end
up logging the full extent but only checksums for the written range, which
results in missing checksums after log replay. Allowing ranged fsyncs to
operate again only in the original range, when using the NO_HOLES feature
and doing a fast fsync is doable but requires some non trivial changes to
the writeback path, which can always be worked on later if needed, but I
don't think they are a very common use case.

Several tests were performed using fio for different numbers of concurrent
jobs, each writing and fsyncing its own file, for both sequential and
random file writes. The tests were run on bare metal, no virtualization,
on a box with 12 cores (Intel i7-8700), 64Gb of RAM and a NVMe device,
with a kernel configuration that is the default of typical distributions
(debian in this case), without debug options enabled (kasan, kmemleak,
slub debug, debug of page allocations, lock debugging, etc).

The following script that calls fio was used:

  $ cat test-fsync.sh
  #!/bin/bash

  DEV=/dev/nvme0n1
  MNT=/mnt/btrfs
  MOUNT_OPTIONS="-o ssd -o space_cache=v2"
  MKFS_OPTIONS="-d single -m single"

  if [ $# -ne 5 ]; then
    echo "Use $0 NUM_JOBS FILE_SIZE FSYNC_FREQ BLOCK_SIZE [write|randwrite]"
    exit 1
  fi

  NUM_JOBS=$1
  FILE_SIZE=$2
  FSYNC_FREQ=$3
  BLOCK_SIZE=$4
  WRITE_MODE=$5

  if [ "$WRITE_MODE" != "write" ] && [ "$WRITE_MODE" != "randwrite" ]; then
    echo "Invalid WRITE_MODE, must be 'write' or 'randwrite'"
    exit 1
  fi

  cat <<EOF > /tmp/fio-job.ini
  [writers]
  rw=$WRITE_MODE
  fsync=$FSYNC_FREQ
  fallocate=none
  group_reporting=1
  direct=0
  bs=$BLOCK_SIZE
  ioengine=sync
  size=$FILE_SIZE
  directory=$MNT
  numjobs=$NUM_JOBS
  EOF

  echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

  echo
  echo "Using config:"
  echo
  cat /tmp/fio-job.ini
  echo

  umount $MNT &> /dev/null
  mkfs.btrfs -f $MKFS_OPTIONS $DEV
  mount $MOUNT_OPTIONS $DEV $MNT
  fio /tmp/fio-job.ini
  umount $MNT

The results were the following:

*************************
*** sequential writes ***
*************************

==== 1 job, 8GiB file, fsync frequency 1, block size 64KiB ====

Before patch:

WRITE: bw=36.6MiB/s (38.4MB/s), 36.6MiB/s-36.6MiB/s (38.4MB/s-38.4MB/s), io=8192MiB (8590MB), run=223689-223689msec

After patch:

WRITE: bw=40.2MiB/s (42.1MB/s), 40.2MiB/s-40.2MiB/s (42.1MB/s-42.1MB/s), io=8192MiB (8590MB), run=203980-203980msec
(+9.8%, -8.8% runtime)

==== 2 jobs, 4GiB files, fsync frequency 1, block size 64KiB ====

Before patch:

WRITE: bw=35.8MiB/s (37.5MB/s), 35.8MiB/s-35.8MiB/s (37.5MB/s-37.5MB/s), io=8192MiB (8590MB), run=228950-228950msec

After patch:

WRITE: bw=43.5MiB/s (45.6MB/s), 43.5MiB/s-43.5MiB/s (45.6MB/s-45.6MB/s), io=8192MiB (8590MB), run=188272-188272msec
(+21.5% throughput, -17.8% runtime)

==== 4 jobs, 2GiB files, fsync frequency 1, block size 64KiB ====

Before patch:

WRITE: bw=50.1MiB/s (52.6MB/s), 50.1MiB/s-50.1MiB/s (52.6MB/s-52.6MB/s), io=8192MiB (8590MB), run=163446-163446msec

After patch:

WRITE: bw=64.5MiB/s (67.6MB/s), 64.5MiB/s-64.5MiB/s (67.6MB/s-67.6MB/s), io=8192MiB (8590MB), run=126987-126987msec
(+28.7% throughput, -22.3% runtime)

==== 8 jobs, 1GiB files, fsync frequency 1, block size 64KiB ====

Before patch:

WRITE: bw=64.0MiB/s (68.1MB/s), 64.0MiB/s-64.0MiB/s (68.1MB/s-68.1MB/s), io=8192MiB (8590MB), run=126075-126075msec

After patch:

WRITE: bw=86.8MiB/s (91.0MB/s), 86.8MiB/s-86.8MiB/s (91.0MB/s-91.0MB/s), io=8192MiB (8590MB), run=94358-94358msec
(+35.6% throughput, -25.2% runtime)

==== 16 jobs, 512MiB files, fsync frequency 1, block size 64KiB ====

Before patch:

WRITE: bw=79.8MiB/s (83.6MB/s), 79.8MiB/s-79.8MiB/s (83.6MB/s-83.6MB/s), io=8192MiB (8590MB), run=102694-102694msec

After patch:

WRITE: bw=107MiB/s (112MB/s), 107MiB/s-107MiB/s (112MB/s-112MB/s), io=8192MiB (8590MB), run=76446-76446msec
(+34.1% throughput, -25.6% runtime)

==== 32 jobs, 512MiB files, fsync frequency 1, block size 64KiB ====

Before patch:

WRITE: bw=93.2MiB/s (97.7MB/s), 93.2MiB/s-93.2MiB/s (97.7MB/s-97.7MB/s), io=16.0GiB (17.2GB), run=175836-175836msec

After patch:

WRITE: bw=111MiB/s (117MB/s), 111MiB/s-111MiB/s (117MB/s-117MB/s), io=16.0GiB (17.2GB), run=147001-147001msec
(+19.1% throughput, -16.4% runtime)

==== 64 jobs, 512MiB files, fsync frequency 1, block size 64KiB ====

Before patch:

WRITE: bw=108MiB/s (114MB/s), 108MiB/s-108MiB/s (114MB/s-114MB/s), io=32.0GiB (34.4GB), run=302656-302656msec

After patch:

WRITE: bw=133MiB/s (140MB/s), 133MiB/s-133MiB/s (140MB/s-140MB/s), io=32.0GiB (34.4GB), run=246003-246003msec
(+23.1% throughput, -18.7% runtime)

************************
***   random writes  ***
************************

==== 1 job, 8GiB file, fsync frequency 16, block size 4KiB ====

Before patch:

WRITE: bw=11.5MiB/s (12.0MB/s), 11.5MiB/s-11.5MiB/s (12.0MB/s-12.0MB/s), io=8192MiB (8590MB), run=714281-714281msec

After patch:

WRITE: bw=11.6MiB/s (12.2MB/s), 11.6MiB/s-11.6MiB/s (12.2MB/s-12.2MB/s), io=8192MiB (8590MB), run=705959-705959msec
(+0.9% throughput, -1.7% runtime)

==== 2 jobs, 4GiB files, fsync frequency 16, block size 4KiB ====

Before patch:

WRITE: bw=12.8MiB/s (13.5MB/s), 12.8MiB/s-12.8MiB/s (13.5MB/s-13.5MB/s), io=8192MiB (8590MB), run=638101-638101msec

After patch:

WRITE: bw=13.1MiB/s (13.7MB/s), 13.1MiB/s-13.1MiB/s (13.7MB/s-13.7MB/s), io=8192MiB (8590MB), run=625374-625374msec
(+2.3% throughput, -2.0% runtime)

==== 4 jobs, 2GiB files, fsync frequency 16, block size 4KiB ====

Before patch:

WRITE: bw=15.4MiB/s (16.2MB/s), 15.4MiB/s-15.4MiB/s (16.2MB/s-16.2MB/s), io=8192MiB (8590MB), run=531146-531146msec

After patch:

WRITE: bw=17.8MiB/s (18.7MB/s), 17.8MiB/s-17.8MiB/s (18.7MB/s-18.7MB/s), io=8192MiB (8590MB), run=460431-460431msec
(+15.6% throughput, -13.3% runtime)

==== 8 jobs, 1GiB files, fsync frequency 16, block size 4KiB ====

Before patch:

WRITE: bw=19.9MiB/s (20.8MB/s), 19.9MiB/s-19.9MiB/s (20.8MB/s-20.8MB/s), io=8192MiB (8590MB), run=412664-412664msec

After patch:

WRITE: bw=22.2MiB/s (23.3MB/s), 22.2MiB/s-22.2MiB/s (23.3MB/s-23.3MB/s), io=8192MiB (8590MB), run=368589-368589msec
(+11.6% throughput, -10.7% runtime)

==== 16 jobs, 512MiB files, fsync frequency 16, block size 4KiB ====

Before patch:

WRITE: bw=29.3MiB/s (30.7MB/s), 29.3MiB/s-29.3MiB/s (30.7MB/s-30.7MB/s), io=8192MiB (8590MB), run=279924-279924msec

After patch:

WRITE: bw=30.4MiB/s (31.9MB/s), 30.4MiB/s-30.4MiB/s (31.9MB/s-31.9MB/s), io=8192MiB (8590MB), run=269258-269258msec
(+3.8% throughput, -3.8% runtime)

==== 32 jobs, 512MiB files, fsync frequency 16, block size 4KiB ====

Before patch:

WRITE: bw=36.9MiB/s (38.7MB/s), 36.9MiB/s-36.9MiB/s (38.7MB/s-38.7MB/s), io=16.0GiB (17.2GB), run=443581-443581msec

After patch:

WRITE: bw=41.6MiB/s (43.6MB/s), 41.6MiB/s-41.6MiB/s (43.6MB/s-43.6MB/s), io=16.0GiB (17.2GB), run=394114-394114msec
(+12.7% throughput, -11.2% runtime)

==== 64 jobs, 512MiB files, fsync frequency 16, block size 4KiB ====

Before patch:

WRITE: bw=45.9MiB/s (48.1MB/s), 45.9MiB/s-45.9MiB/s (48.1MB/s-48.1MB/s), io=32.0GiB (34.4GB), run=714614-714614msec

After patch:

WRITE: bw=48.8MiB/s (51.1MB/s), 48.8MiB/s-48.8MiB/s (51.1MB/s-51.1MB/s), io=32.0GiB (34.4GB), run=672087-672087msec
(+6.3% throughput, -6.0% runtime)

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:06:56 +02:00
Qu Wenruo
adca4d945c btrfs: qgroup: remove ASYNC_COMMIT mechanism in favor of reserve retry-after-EDQUOT
commit a514d63882 ("btrfs: qgroup: Commit transaction in advance to
reduce early EDQUOT") tries to reduce the early EDQUOT problems by
checking the qgroup free against threshold and tries to wake up commit
kthread to free some space.

The problem of that mechanism is, it can only free qgroup per-trans
metadata space, can't do anything to data, nor prealloc qgroup space.

Now since we have the ability to flush qgroup space, and implemented
retry-after-EDQUOT behavior, such mechanism can be completely replaced.

So this patch will cleanup such mechanism in favor of
retry-after-EDQUOT.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:43 +02:00
Qu Wenruo
2dfb1e43f5 btrfs: preallocate anon block device at first phase of snapshot creation
[BUG]
When the anonymous block device pool is exhausted, subvolume/snapshot
creation fails with EMFILE (Too many files open). This has been reported
by a user. The allocation happens in the second phase during transaction
commit where it's only way out is to abort the transaction

  BTRFS: Transaction aborted (error -24)
  WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs]
  RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs]
  Call Trace:
   create_pending_snapshots+0x82/0xa0 [btrfs]
   btrfs_commit_transaction+0x275/0x8c0 [btrfs]
   btrfs_mksubvol+0x4b9/0x500 [btrfs]
   btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs]
   btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs]
   btrfs_ioctl+0x11a4/0x2da0 [btrfs]
   do_vfs_ioctl+0xa9/0x640
   ksys_ioctl+0x67/0x90
   __x64_sys_ioctl+0x1a/0x20
   do_syscall_64+0x5a/0x110
   entry_SYSCALL_64_after_hwframe+0x44/0xa9
  ---[ end trace 33f2f83f3d5250e9 ]---
  BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown
  BTRFS info (device sda1): forced readonly
  BTRFS warning (device sda1): Skipping commit of aborted transaction.
  BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown

[CAUSE]
When the global anonymous block device pool is exhausted, the following
call chain will fail, and lead to transaction abort:

 btrfs_ioctl_snap_create_v2()
 |- btrfs_ioctl_snap_create_transid()
    |- btrfs_mksubvol()
       |- btrfs_commit_transaction()
          |- create_pending_snapshot()
             |- btrfs_get_fs_root()
                |- btrfs_init_fs_root()
                   |- get_anon_bdev()

[FIX]
Although we can't enlarge the anonymous block device pool, at least we
can preallocate anon_dev for subvolume/snapshot in the first phase,
outside of transaction context and exactly at the moment the user calls
the creation ioctl.

Reported-by: Greed Rong <greedrong@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:38 +02:00
Nikolay Borisov
d90944141b btrfs: make btrfs_set_inode_last_trans take btrfs_inode
Instead of making multiple calls to BTRFS_I simply take btrfs_inode as
an input paramter.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:37 +02:00
Josef Bacik
7f9fe61440 btrfs: improve global reserve stealing logic
For unlink transactions and block group removal
btrfs_start_transaction_fallback_global_rsv will first try to start an
ordinary transaction and if it fails it will fall back to reserving the
required amount by stealing from the global reserve. This is problematic
because of all the same reasons we had with previous iterations of the
ENOSPC handling, thundering herd.  We get a bunch of failures all at
once, everybody tries to allocate from the global reserve, some win and
some lose, we get an ENSOPC.

Fix this behavior by introducing BTRFS_RESERVE_FLUSH_ALL_STEAL. It's
used to mark unlink reservation. To fix this we need to integrate this
logic into the normal ENOSPC infrastructure.  We still go through all of
the normal flushing work, and at the moment we begin to fail all the
tickets we try to satisfy any tickets that are allowed to steal by
stealing from the global reserve.  If this works we start the flushing
system over again just like we would with a normal ticket satisfaction.
This serializes our global reserve stealing, so we don't have the
thundering herd problem.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:22 +02:00
Nikolay Borisov
fe119a6eeb btrfs: switch to per-transaction pinned extents
This commit flips the switch to start tracking/processing pinned extents
on a per-transaction basis. It mostly replaces all references from
btrfs_fs_info::(pinned_extents|freed_extents[]) to
btrfs_transaction::pinned_extents.

Two notable modifications that warrant explicit mention are changing
clean_pinned_extents to get a reference to the previously running
transaction. The other one is removal of call to
btrfs_destroy_pinned_extent since transactions are going to be cleaned
in btrfs_cleanup_one_transaction.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:38 +01:00
David Sterba
bf31f87f71 btrfs: add wrapper for transaction abort predicate
The status of aborted transaction can change between calls and it needs
to be accessed by READ_ONCE. Add a helper that also wraps the unlikely
hint.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:34 +01:00
Nikolay Borisov
8d510121bf btrfs: Rename btrfs_join_transaction_nolock
This function is used only during the final phase of freespace cache
writeout. This is necessary since using the plain btrfs_join_transaction
api is deadlock prone. The deadlock looks like:

T1:
btrfs_commit_transaction
  commit_cowonly_roots
    btrfs_write_dirty_block_groups
      btrfs_wait_cache_io
        __btrfs_wait_cache_io
       btrfs_wait_ordered_range <-- Triggers ordered IO for freespace
                                    inode and blocks transaction commit
				    until freespace cache writeout

T2: <-- after T1 has triggered the writeout
finish_ordered_fn
  btrfs_finish_ordered_io
    btrfs_join_transaction <--- this would block waiting for current
                                transaction to commit, but since trans
				commit is waiting for this writeout to
				finish

The special purpose functions prevents it by simply skipping the "wait
for writeout" since it's guaranteed the transaction won't proceed until
we are done.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 12:46:54 +01:00
Qu Wenruo
3296bf5624 btrfs: transaction: Cleanup unused TRANS_STATE_BLOCKED
The state was introduced in commit 4a9d8bdee3 ("Btrfs: make the state
of the transaction more readable"), then in commit 302167c50b
("btrfs: don't end the transaction for delayed refs in throttle") the
state is completely removed.

So we can just clean up the state since it's only compared but never
set.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 12:46:50 +01:00
Filipe Manana
b9fae2ebee Btrfs: make btrfs_wait_extents() static
It's not used ouside of transaction.c

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18 12:46:45 +01:00
Filipe Manana
a6d155d2e3 Btrfs: fix deadlock between fiemap and transaction commits
The fiemap handler locks a file range that can have unflushed delalloc,
and after locking the range, it tries to attach to a running transaction.
If the running transaction started its commit, that is, it is in state
TRANS_STATE_COMMIT_START, and either the filesystem was mounted with the
flushoncommit option or the transaction is creating a snapshot for the
subvolume that contains the file that fiemap is operating on, we end up
deadlocking. This happens because fiemap is blocked on the transaction,
waiting for it to complete, and the transaction is waiting for the flushed
dealloc to complete, which requires locking the file range that the fiemap
task already locked. The following stack traces serve as an example of
when this deadlock happens:

  (...)
  [404571.515510] Workqueue: btrfs-endio-write btrfs_endio_write_helper [btrfs]
  [404571.515956] Call Trace:
  [404571.516360]  ? __schedule+0x3ae/0x7b0
  [404571.516730]  schedule+0x3a/0xb0
  [404571.517104]  lock_extent_bits+0x1ec/0x2a0 [btrfs]
  [404571.517465]  ? remove_wait_queue+0x60/0x60
  [404571.517832]  btrfs_finish_ordered_io+0x292/0x800 [btrfs]
  [404571.518202]  normal_work_helper+0xea/0x530 [btrfs]
  [404571.518566]  process_one_work+0x21e/0x5c0
  [404571.518990]  worker_thread+0x4f/0x3b0
  [404571.519413]  ? process_one_work+0x5c0/0x5c0
  [404571.519829]  kthread+0x103/0x140
  [404571.520191]  ? kthread_create_worker_on_cpu+0x70/0x70
  [404571.520565]  ret_from_fork+0x3a/0x50
  [404571.520915] kworker/u8:6    D    0 31651      2 0x80004000
  [404571.521290] Workqueue: btrfs-flush_delalloc btrfs_flush_delalloc_helper [btrfs]
  (...)
  [404571.537000] fsstress        D    0 13117  13115 0x00004000
  [404571.537263] Call Trace:
  [404571.537524]  ? __schedule+0x3ae/0x7b0
  [404571.537788]  schedule+0x3a/0xb0
  [404571.538066]  wait_current_trans+0xc8/0x100 [btrfs]
  [404571.538349]  ? remove_wait_queue+0x60/0x60
  [404571.538680]  start_transaction+0x33c/0x500 [btrfs]
  [404571.539076]  btrfs_check_shared+0xa3/0x1f0 [btrfs]
  [404571.539513]  ? extent_fiemap+0x2ce/0x650 [btrfs]
  [404571.539866]  extent_fiemap+0x2ce/0x650 [btrfs]
  [404571.540170]  do_vfs_ioctl+0x526/0x6f0
  [404571.540436]  ksys_ioctl+0x70/0x80
  [404571.540734]  __x64_sys_ioctl+0x16/0x20
  [404571.540997]  do_syscall_64+0x60/0x1d0
  [404571.541279]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
  (...)
  [404571.543729] btrfs           D    0 14210  14208 0x00004000
  [404571.544023] Call Trace:
  [404571.544275]  ? __schedule+0x3ae/0x7b0
  [404571.544526]  ? wait_for_completion+0x112/0x1a0
  [404571.544795]  schedule+0x3a/0xb0
  [404571.545064]  schedule_timeout+0x1ff/0x390
  [404571.545351]  ? lock_acquire+0xa6/0x190
  [404571.545638]  ? wait_for_completion+0x49/0x1a0
  [404571.545890]  ? wait_for_completion+0x112/0x1a0
  [404571.546228]  wait_for_completion+0x131/0x1a0
  [404571.546503]  ? wake_up_q+0x70/0x70
  [404571.546775]  btrfs_wait_ordered_extents+0x27c/0x400 [btrfs]
  [404571.547159]  btrfs_commit_transaction+0x3b0/0xae0 [btrfs]
  [404571.547449]  ? btrfs_mksubvol+0x4a4/0x640 [btrfs]
  [404571.547703]  ? remove_wait_queue+0x60/0x60
  [404571.547969]  btrfs_mksubvol+0x605/0x640 [btrfs]
  [404571.548226]  ? __sb_start_write+0xd4/0x1c0
  [404571.548512]  ? mnt_want_write_file+0x24/0x50
  [404571.548789]  btrfs_ioctl_snap_create_transid+0x169/0x1a0 [btrfs]
  [404571.549048]  btrfs_ioctl_snap_create_v2+0x11d/0x170 [btrfs]
  [404571.549307]  btrfs_ioctl+0x133f/0x3150 [btrfs]
  [404571.549549]  ? mem_cgroup_charge_statistics+0x4c/0xd0
  [404571.549792]  ? mem_cgroup_commit_charge+0x84/0x4b0
  [404571.550064]  ? __handle_mm_fault+0xe3e/0x11f0
  [404571.550306]  ? do_raw_spin_unlock+0x49/0xc0
  [404571.550608]  ? _raw_spin_unlock+0x24/0x30
  [404571.550976]  ? __handle_mm_fault+0xedf/0x11f0
  [404571.551319]  ? do_vfs_ioctl+0xa2/0x6f0
  [404571.551659]  ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
  [404571.552087]  do_vfs_ioctl+0xa2/0x6f0
  [404571.552355]  ksys_ioctl+0x70/0x80
  [404571.552621]  __x64_sys_ioctl+0x16/0x20
  [404571.552864]  do_syscall_64+0x60/0x1d0
  [404571.553104]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
  (...)

If we were joining the transaction instead of attaching to it, we would
not risk a deadlock because a join only blocks if the transaction is in a
state greater then or equals to TRANS_STATE_COMMIT_DOING, and the delalloc
flush performed by a transaction is done before it reaches that state,
when it is in the state TRANS_STATE_COMMIT_START. However a transaction
join is intended for use cases where we do modify the filesystem, and
fiemap only needs to peek at delayed references from the current
transaction in order to determine if extents are shared, and, besides
that, when there is no current transaction or when it blocks to wait for
a current committing transaction to complete, it creates a new transaction
without reserving any space. Such unnecessary transactions, besides doing
unnecessary IO, can cause transaction aborts (-ENOSPC) and unnecessary
rotation of the precious backup roots.

So fix this by adding a new transaction join variant, named join_nostart,
which behaves like the regular join, but it does not create a transaction
when none currently exists or after waiting for a committing transaction
to complete.

Fixes: 03628cdbc6 ("Btrfs: do not start a transaction during fiemap")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-30 18:25:12 +02:00
Josef Bacik
fb6dea2660 btrfs: migrate btrfs_trans_release_chunk_metadata
Move this into transaction.c with the rest of the transaction related
code.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-04 17:26:17 +02:00
Filipe Manana
74f657d89c Btrfs: remove no longer used member num_dirty_bgs from transaction
The member num_dirty_bgs of struct btrfs_transaction is not used anymore,
it is set and incremented but nothing reads its value anymore. Its last
read use was removed by commit 64403612b7 ("btrfs: rework
btrfs_check_space_for_delayed_refs"). So just remove that member.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29 19:02:43 +02:00
Jeff Mahoney
1c11b63eff btrfs: replace pending/pinned chunks lists with io tree
The pending chunks list contains chunks that are allocated in the
current transaction but haven't been created yet. The pinned chunks
list contains chunks that are being released in the current transaction.
Both describe chunks that are not reflected on disk as in use but are
unavailable just the same.

The pending chunks list is anchored by the transaction handle, which
means that we need to hold a reference to a transaction when working
with the list.

The way we use them is by iterating over both lists to perform
comparisons on the stripes they describe for each device. This is
backwards and requires that we keep a transaction handle open while
we're trimming.

This patchset adds an extent_io_tree to btrfs_device that maintains
the allocation state of the device.  Extents are set dirty when
chunks are first allocated -- when the extent maps are added to the
mapping tree. They're cleared when last removed -- when the extent
maps are removed from the mapping tree. This matches the lifespan
of the pending and pinned chunks list and allows us to do trims
on unallocated space safely without pinning the transaction for what
may be a lengthy operation. We can also use this io tree to mark
which chunks have already been trimmed so we don't repeat the operation.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29 19:02:37 +02:00
Nikolay Borisov
bbbf7243d6 btrfs: combine device update operations during transaction commit
We currently overload the pending_chunks list to handle updating
btrfs_device->commit_bytes used.  We don't actually care about the
extent mapping or even the device mapping for the chunk - we just need
the device, and we can end up processing it multiple times.  The
fs_devices->resized_list does more or less the same thing, but with the
disk size.  They are called consecutively during commit and have more or
less the same purpose.

We can combine the two lists into a single list that attaches to the
transaction and contains a list of devices that need updating.  Since we
always add the device to a list when we change bytes_used or
disk_total_size, there's no harm in copying both values at once.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29 19:02:36 +02:00
Filipe Manana
3b1da515c6 Btrfs: remove no longer used 'sync' member from transaction handle
Commit db2462a6ad ("btrfs: don't run delayed refs in the end transaction
logic") removed its last use, so now it does absolutely nothing, therefore
remove it.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29 19:02:18 +02:00
David Sterba
bbe339cc32 btrfs: drop extra enum initialization where using defaults
The first auto-assigned value to enum is 0, we can use that and not
initialize all members where the auto-increment does the same. This is
used for values that are not part of on-disk format.

Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-17 14:51:43 +01:00
Filipe Manana
85dd506c8e Btrfs: remove no longer used stuff for tracking pending ordered extents
Tracking pending ordered extents per transaction was introduced in commit
50d9aa99bd ("Btrfs: make sure logged extents complete in the current
transaction V3") and later updated in commit 161c3549b4 ("Btrfs: change
how we wait for pending ordered extents").

However now that on fsync we always wait for ordered extents to complete
before logging, done in commit 5636cf7d6d ("btrfs: remove the logged
extents infrastructure"), we no longer need the stuff to track for pending
ordered extents, which was not completely removed in the mentioned commit.
So remove the remaining of the pending ordered extents infrastructure.

Reviewed-by: Liu Bo <bo.liu@linux.alibaba.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-17 14:51:25 +01:00
Allen Pais
a944442c2b btrfs: replace get_seconds with new 64bit time API
The get_seconds() function is deprecated as it truncates the timestamp
to 32 bits. Change it to or ktime_get_real_seconds().

Signed-off-by: Allen Pais <allen.lkml@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 13:12:29 +02:00
Gu JinXiang
6b0cb1f901 btrfs: drop useless member qgroup_reserved of btrfs_pending_snapshot
Since there is no more use of qgroup_reserved member in struct
btrfs_pending_snapshot, remove it.

Signed-off-by: Gu JinXiang <gujx@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-30 16:46:54 +02:00
Qu Wenruo
a514d63882 btrfs: qgroup: Commit transaction in advance to reduce early EDQUOT
Unlike previous method that tries to commit transaction inside
qgroup_reserve(), this time we will try to commit transaction using
fs_info->transaction_kthread to avoid nested transaction and no need to
worry about locking context.

Since it's an asynchronous function call and we won't wait for
transaction commit, unlike previous method, we must call it before we
hit the qgroup limit.

So this patch will use the ratio and size of qgroup meta_pertrans
reservation as indicator to check if we should trigger a transaction
commit.  (meta_prealloc won't be cleaned in transaction committ, it's
useless anyway)

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-18 16:46:47 +02:00
David Sterba
9888c3402c btrfs: replace GPL boilerplate by SPDX -- headers
Remove GPL boilerplate text (long, short, one-line) and keep the rest,
ie. personal, company or original source copyright statements. Add the
SPDX header.

Unify the include protection macros to match the file names.

Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-12 16:29:46 +02:00
Nikolay Borisov
bcf3a3e7fb btrfs: Remove code referencing unused TRANS_USERSPACE
Now that the userspace transaction ioctls have been removed,
TRANS_USERSPACE is no longer used hence we can remove it.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31 01:26:51 +02:00
Nikolay Borisov
45ae2c1841 btrfs: Document consistency of transaction->io_bgs list
The reason why io_bgs can be modified without holding any lock is
non-obvious. Document it and reference that documentation from the
respective call sites.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-26 15:09:34 +02:00
Nikolay Borisov
7806c6eb15 btrfs: Remove unused btrfs_start_transaction_lflush function
Commit 0e8c36a9fd ("Btrfs: fix lots of orphan inodes when the space
is not enough") changed the way transaction reservation is made in
btrfs_evict_node and as a result this function became unused. This has
been the status quo for 5 years in which time no one noticed, so I'd
say it's safe to assume it's unlikely it will ever be used again.

Historical note: there were more attempts to remove the function, the
reasoning was missing and only based on some static analysis tool
reports. Other reason for rejection was that there seemed to be
connection to BTRFS_RESERVE_FLUSH_LIMIT and that would need to be
removeed to. This was not correct so removing the function is all we can
do.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
[ add the note ]
Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-26 15:09:29 +02:00
David Sterba
5302e08964 btrfs: reorder btrfs_transaction members for better packing
There are now 20 bytes of holes, we can reduce that to 4 by minor
changes. Moving 'aborted' to the status and flags is also more logical,
similar for num_dirty_bgs. The size goes from 432 to 416.

Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-01-22 16:08:14 +01:00
David Sterba
165c8b022c btrfs: use narrower type for btrfs_transaction::num_dirty_bgs
The u64 is an overkill here, we could not possibly create that many
blockgroups in one transaction.

Signed-off-by: David Sterba <dsterba@suse.com>
2018-01-22 16:08:14 +01:00
David Sterba
1ca4bb63f6 btrfs: reorder btrfs_trans_handle members for better packing
Recent updates to the structure left some holes, reorder the types so
the packing is tight. The size goes from 112 to 104 on 64bit.

Signed-off-by: David Sterba <dsterba@suse.com>
2018-01-22 16:08:14 +01:00
David Sterba
b50fff816c btrfs: switch to refcount_t type for btrfs_trans_handle::use_count
The use_count is a reference counter, we can use the refcount_t type,
though we don't use the atomicity. This is not a performance critical
code and we could catch the underflows. The type is changed from long,
but the number of references will fit an int.

Signed-off-by: David Sterba <dsterba@suse.com>
2018-01-22 16:08:14 +01:00
David Sterba
2dbda74ed9 btrfs: remove unused member of btrfs_trans_handle
Last user was removed in a monster commit a22285a6a3
("Btrfs: Integrate metadata reservation with start_transaction") in
2010.

Signed-off-by: David Sterba <dsterba@suse.com>
2018-01-22 16:08:14 +01:00
David Sterba
7c2871a2f4 btrfs: switch btrfs_trans_handle::adding_csums to bool
The semantics of adding_csums matches bool, 'short' was most likely used
to save space in a698d0755a ("Btrfs: add a type field for the
transaction handle").

Signed-off-by: David Sterba <dsterba@suse.com>
2018-01-22 16:08:14 +01:00
David Sterba
f486135eba btrfs: remove unused qgroup members from btrfs_trans_handle
The members have been effectively unused since "Btrfs: rework qgroup
accounting" (fcebe4562d), there's no substitute for
assert_qgroups_uptodate so it's removed as well.

Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-04-18 14:07:25 +02:00
Elena Reshetova
9b64f57ddf btrfs: convert btrfs_transaction.use_count from atomic_t to refcount_t
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.

Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-04-18 14:07:23 +02:00
Jeff Mahoney
3a45bb207e btrfs: remove root parameter from transaction commit/end routines
Now we only use the root parameter to print the root objectid in
a tracepoint.  We can use the root parameter from the transaction
handle for that.  It's also used to join the transaction with
async commits, so we remove the comment that it's just for checking.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-12-06 16:07:00 +01:00
Jeff Mahoney
bf89d38feb btrfs: split btrfs_wait_marked_extents into normal and tree log functions
btrfs_write_and_wait_marked_extents and btrfs_sync_log both call
btrfs_wait_marked_extents, which provides a core loop and then handles
errors differently based on whether it's it's a log root or not.

This means that btrfs_write_and_wait_marked_extents needs to take a root
because btrfs_wait_marked_extents requires one, even though it's only
used to determine whether the root is a log root.  The log root code
won't ever call into the transaction commit code using a log root, so we
can factor out the core loop and provide the error handling appropriate
to each waiter in new routines.  This allows us to eventually remove
the root argument from btrfs_commit_transaction, and as a result,
btrfs_end_transaction.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-12-06 16:07:00 +01:00
Jeff Mahoney
2ff7e61e0d btrfs: take an fs_info directly when the root is not used otherwise
There are loads of functions in btrfs that accept a root parameter
but only use it to obtain an fs_info pointer.  Let's convert those to
just accept an fs_info pointer directly.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-12-06 16:06:59 +01:00
Jeff Mahoney
ab8d0fc48d btrfs: convert pr_* to btrfs_* where possible
For many printks, we want to know which file system issued the message.

This patch converts most pr_* calls to use the btrfs_* versions instead.
In some cases, this means adding plumbing to allow call sites access to
an fs_info pointer.

fs/btrfs/check-integrity.c is left alone for another day.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-09-26 19:37:04 +02:00
Jeff Mahoney
64b6358072 btrfs: add btrfs_trans_handle->fs_info pointer
btrfs_trans_handle->root is documented as for use for confirming
that the root passed in to start the transaction is the same as the
one ending it.  It's used in several places when an fs_info pointer
is needed, so let's just add an fs_info pointer directly.  Eventually,
the root pointer can be removed.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-07-26 13:54:26 +02:00
Jeff Mahoney
64c12921e1 btrfs: account for non-CoW'd blocks in btrfs_abort_transaction
The test for !trans->blocks_used in btrfs_abort_transaction is
insufficient to determine whether it's safe to drop the transaction
handle on the floor.  btrfs_cow_block, informed by should_cow_block,
can return blocks that have already been CoW'd in the current
transaction.  trans->blocks_used is only incremented for new block
allocations. If an operation overlaps the blocks in the current
transaction entirely and must abort the transaction, we'll happily
let it clean up the trans handle even though it may have modified
the blocks and will commit an incomplete operation.

In the long-term, I'd like to do closer tracking of when the fs
is actually modified so we can still recover as gracefully as possible,
but that approach will need some discussion.  In the short term,
since this is the only code using trans->blocks_used, let's just
switch it to a bool indicating whether any blocks were used and set
it when should_cow_block returns false.

Cc: stable@vger.kernel.org # 3.4+
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-17 18:32:40 +02:00
Nicholas D Steeves
0132761017 btrfs: fix string and comment grammatical issues and typos
Signed-off-by: Nicholas D Steeves <nsteeves@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-05-25 22:35:14 +02:00
David Sterba
8546b57051 btrfs: preallocate path for snapshot creation at ioctl time
We can also preallocate btrfs_path that's used during pending snapshot
creation and avoid another late ENOMEM failure.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 15:20:55 +01:00
David Sterba
b0c0ea6338 btrfs: allocate root item at snapshot ioctl time
The actual snapshot creation is delayed until transaction commit. If we
cannot get enough memory for the root item there, we have to fail the
whole transaction commit which is bad. So we'll allocate the memory at
the ioctl call and pass it along with the pending_snapshot struct. The
potential ENOMEM will be returned to the caller of snapshot ioctl.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 15:20:54 +01:00
Filipe Manana
348a0013d5 Btrfs: fix unprotected list move from unused_bgs to deleted_bgs list
As of my previous change titled "Btrfs: fix scrub preventing unused block
groups from being deleted", the following warning at
extent-tree.c:btrfs_delete_unused_bgs() can be hit when we mount the a
filesysten with "-o discard":

 10263  void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
 10264  {
 (...)
 10405                  if (trimming) {
 10406                          WARN_ON(!list_empty(&block_group->bg_list));
 10407                          spin_lock(&trans->transaction->deleted_bgs_lock);
 10408                          list_move(&block_group->bg_list,
 10409                                    &trans->transaction->deleted_bgs);
 10410                          spin_unlock(&trans->transaction->deleted_bgs_lock);
 10411                          btrfs_get_block_group(block_group);
 10412                  }
 (...)

This happens because scrub can now add back the block group to the list of
unused block groups (fs_info->unused_bgs). This is dangerous because we
are moving the block group from the unused block groups list to the list
of deleted block groups without holding the lock that protects the source
list (fs_info->unused_bgs_lock).

The following diagram illustrates how this happens:

            CPU 1                                     CPU 2

 cleaner_kthread()
   btrfs_delete_unused_bgs()

     sees bg X in list
      fs_info->unused_bgs

     deletes bg X from list
      fs_info->unused_bgs

                                            scrub_enumerate_chunks()

                                              searches device tree using
                                              its commit root

                                              finds device extent for
                                              block group X

                                              gets block group X from the tree
                                              fs_info->block_group_cache_tree
                                              (via btrfs_lookup_block_group())

                                              sets bg X to RO (again)

                                              scrub_chunk(bg X)

                                              sets bg X back to RW mode

                                              adds bg X to the list
                                              fs_info->unused_bgs again,
                                              since it's still unused and
                                              currently not in that list

     sets bg X to RO mode

     btrfs_remove_chunk(bg X)

     --> discard is enabled and bg X
         is in the fs_info->unused_bgs
         list again so the warning is
         triggered
     --> we move it from that list into
         the transaction's delete_bgs
         list, but we can have another
         task currently manipulating
         the first list (fs_info->unused_bgs)

Fix this by using the same lock (fs_info->unused_bgs_lock) to protect both
the list of unused block groups and the list of deleted block groups. This
makes it safe and there's not much worry for more lock contention, as this
lock is seldom used and only the cleaner kthread adds elements to the list
of deleted block groups. The warning goes away too, as this was previously
an impossible case (and would have been better a BUG_ON/ASSERT) but it's
not impossible anymore.
Reproduced with fstest btrfs/073 (using MOUNT_OPTIONS="-o discard").

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-12-10 11:22:38 +00:00
Filipe Manana
8eab77ff16 Btrfs: use global reserve when deleting unused block group after ENOSPC
It's possible to reach a state where the cleaner kthread isn't able to
start a transaction to delete an unused block group due to lack of enough
free metadata space and due to lack of unallocated device space to allocate
a new metadata block group as well. If this happens try to use space from
the global block group reserve just like we do for unlink operations, so
that we don't reach a permanent state where starting a transaction for
filesystem operations (file creation, renames, etc) keeps failing with
-ENOSPC. Such an unfortunate state was observed on a machine where over
a dozen unused data block groups existed and the cleaner kthread was
failing to delete them due to ENOSPC error when attempting to start a
transaction, and even running balance with a -dusage=0 filter failed with
ENOSPC as well. Also unmounting and mounting again the filesystem didn't
help. Allowing the cleaner kthread to use the global block reserve to
delete the unused data block groups fixed the problem.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-11-25 05:19:50 -08:00
Chris Mason
a9e6d15356 Merge branch 'allocator-fixes' into for-linus-4.4
Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21 19:00:38 -07:00
Josef Bacik
2968b1f48b Btrfs: don't continue setting up space cache when enospc
If we hit ENOSPC when setting up a space cache don't bother setting up any of
the other space cache's in this transaction, it'll just induce unnecessary
latency.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21 18:55:36 -07:00
Josef Bacik
3204d33cda Btrfs: add a flags field to btrfs_transaction
I want to set some per transaction flags, so instead of adding yet another int
lets just convert the current two int indicators to flags and add a flags field
for future use.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21 18:51:45 -07:00
Josef Bacik
161c3549b4 Btrfs: change how we wait for pending ordered extents
We have a mechanism to make sure we don't lose updates for ordered extents that
were logged in the transaction that is currently running.  We add the ordered
extent to a transaction list and then the transaction waits on all the ordered
extents in that list.  However are substantially large file systems this list
can be extremely large, and can give us soft lockups, since the ordered extents
don't remove themselves from the list when they do complete.

To fix this we simply add a counter to the transaction that is incremented any
time we have a logged extent that needs to be completed in the current
transaction.  Then when the ordered extent finally completes it decrements the
per transaction counter and wakes up the transaction if we are the last ones.
This will eliminate the softlockup.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21 18:51:40 -07:00
Qu Wenruo
7174109c65 btrfs: qgroup: Use new metadata reservation.
As we have the new metadata reservation functions, use them to replace
the old btrfs_qgroup_reserve() call for metadata.

Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21 18:40:40 -07:00