Commit Graph

4818 Commits

Author SHA1 Message Date
Konrad Rzeszutek Wilk
ca83b4a7f2 x86/KVM/VMX: Add find_msr() helper function
.. to help find the MSR on either the guest or host MSR list.

Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-07-04 20:49:40 +02:00
Konrad Rzeszutek Wilk
33966dd6b2 x86/KVM/VMX: Split the VMX MSR LOAD structures to have an host/guest numbers
There is no semantic change but this change allows an unbalanced amount of
MSRs to be loaded on VMEXIT and VMENTER, i.e. the number of MSRs to save or
restore on VMEXIT or VMENTER may be different.

Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-07-04 20:49:40 +02:00
Paolo Bonzini
c595ceee45 x86/KVM/VMX: Add L1D flush logic
Add the logic for flushing L1D on VMENTER. The flush depends on the static
key being enabled and the new l1tf_flush_l1d flag being set.

The flags is set:
 - Always, if the flush module parameter is 'always'

 - Conditionally at:
   - Entry to vcpu_run(), i.e. after executing user space

   - From the sched_in notifier, i.e. when switching to a vCPU thread.

   - From vmexit handlers which are considered unsafe, i.e. where
     sensitive data can be brought into L1D:

     - The emulator, which could be a good target for other speculative
       execution-based threats,

     - The MMU, which can bring host page tables in the L1 cache.
     
     - External interrupts

     - Nested operations that require the MMU (see above). That is
       vmptrld, vmptrst, vmclear,vmwrite,vmread.

     - When handling invept,invvpid

[ tglx: Split out from combo patch and reduced to a single flag ]

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-07-04 20:49:39 +02:00
Paolo Bonzini
3fa045be4c x86/KVM/VMX: Add L1D MSR based flush
336996-Speculative-Execution-Side-Channel-Mitigations.pdf defines a new MSR
(IA32_FLUSH_CMD aka 0x10B) which has similar write-only semantics to other
MSRs defined in the document.

The semantics of this MSR is to allow "finer granularity invalidation of
caching structures than existing mechanisms like WBINVD. It will writeback
and invalidate the L1 data cache, including all cachelines brought in by
preceding instructions, without invalidating all caches (eg. L2 or
LLC). Some processors may also invalidate the first level level instruction
cache on a L1D_FLUSH command. The L1 data and instruction caches may be
shared across the logical processors of a core."

Use it instead of the loop based L1 flush algorithm.

A copy of this document is available at
   https://bugzilla.kernel.org/show_bug.cgi?id=199511

[ tglx: Avoid allocating pages when the MSR is available ]

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-07-04 20:49:39 +02:00
Paolo Bonzini
a47dd5f067 x86/KVM/VMX: Add L1D flush algorithm
To mitigate the L1 Terminal Fault vulnerability it's required to flush L1D
on VMENTER to prevent rogue guests from snooping host memory.

CPUs will have a new control MSR via a microcode update to flush L1D with a
single MSR write, but in the absence of microcode a fallback to a software
based flush algorithm is required.

Add a software flush loop which is based on code from Intel.

[ tglx: Split out from combo patch ]
[ bpetkov: Polish the asm code ]

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-07-04 20:49:38 +02:00
Konrad Rzeszutek Wilk
a399477e52 x86/KVM/VMX: Add module argument for L1TF mitigation
Add a mitigation mode parameter "vmentry_l1d_flush" for CVE-2018-3620, aka
L1 terminal fault. The valid arguments are:

 - "always" 	L1D cache flush on every VMENTER.
 - "cond"	Conditional L1D cache flush, explained below
 - "never"	Disable the L1D cache flush mitigation

"cond" is trying to avoid L1D cache flushes on VMENTER if the code executed
between VMEXIT and VMENTER is considered safe, i.e. is not bringing any
interesting information into L1D which might exploited.

[ tglx: Split out from a larger patch ]

Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-07-04 20:49:38 +02:00
Konrad Rzeszutek Wilk
26acfb666a x86/KVM: Warn user if KVM is loaded SMT and L1TF CPU bug being present
If the L1TF CPU bug is present we allow the KVM module to be loaded as the
major of users that use Linux and KVM have trusted guests and do not want a
broken setup.

Cloud vendors are the ones that are uncomfortable with CVE 2018-3620 and as
such they are the ones that should set nosmt to one.

Setting 'nosmt' means that the system administrator also needs to disable
SMT (Hyper-threading) in the BIOS, or via the 'nosmt' command line
parameter, or via the /sys/devices/system/cpu/smt/control. See commit
05736e4ac1 ("cpu/hotplug: Provide knobs to control SMT").

Other mitigations are to use task affinity, cpu sets, interrupt binding,
etc - anything to make sure that _only_ the same guests vCPUs are running
on sibling threads.

Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-07-04 20:49:38 +02:00
Ingo Molnar
4520843dfa Merge branch 'sched/urgent' into sched/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-03 09:20:22 +02:00
Marc Orr
0447378a4a kvm: vmx: Nested VM-entry prereqs for event inj.
This patch extends the checks done prior to a nested VM entry.
Specifically, it extends the check_vmentry_prereqs function with checks
for fields relevant to the VM-entry event injection information, as
described in the Intel SDM, volume 3.

This patch is motivated by a syzkaller bug, where a bad VM-entry
interruption information field is generated in the VMCS02, which causes
the nested VM launch to fail. Then, KVM fails to resume L1.

While KVM should be improved to correctly resume L1 execution after a
failed nested launch, this change is justified because the existing code
to resume L1 is flaky/ad-hoc and the test coverage for resuming L1 is
sparse.

Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Marc Orr <marcorr@google.com>
[Removed comment whose parts were describing previous revisions and the
 rest was obvious from function/variable naming. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-06-22 16:46:26 +02:00
Peter Zijlstra
b3dae109fa sched/swait: Rename to exclusive
Since swait basically implemented exclusive waits only, make sure
the API reflects that.

  $ git grep -l -e "\<swake_up\>"
		-e "\<swait_event[^ (]*"
		-e "\<prepare_to_swait\>" | while read file;
    do
	sed -i -e 's/\<swake_up\>/&_one/g'
	       -e 's/\<swait_event[^ (]*/&_exclusive/g'
	       -e 's/\<prepare_to_swait\>/&_exclusive/g' $file;
    done

With a few manual touch-ups.

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: bigeasy@linutronix.de
Cc: oleg@redhat.com
Cc: paulmck@linux.vnet.ibm.com
Cc: pbonzini@redhat.com
Link: https://lkml.kernel.org/r/20180612083909.261946548@infradead.org
2018-06-20 11:35:56 +02:00
Arnd Bergmann
1f008e114b KVM: x86: VMX: redo fix for link error without CONFIG_HYPERV
Arnd had sent this patch to the KVM mailing list, but it slipped through
the cracks of maintainers hand-off, and therefore wasn't included in
the pull request.

The same issue had been fixed by Linus in commit dbee3d0 ("KVM: x86:
VMX: fix build without hyper-v", 2018-06-12) as a self-described
"quick-and-hacky build fix".  However, checking the compile-time
configuration symbol with IS_ENABLED is cleaner and it is enough to
avoid the link error, so switch to Arnd's solution.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
[Rewritten commit message. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-14 18:53:14 +02:00
Marcelo Tosatti
273ba45796 KVM: x86: fix typo at kvm_arch_hardware_setup comment
Fix typo in sentence about min value calculation.

Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-14 17:42:47 +02:00
Linus Torvalds
dbee3d0245 KVM: x86: VMX: fix build without hyper-v
Commit ceef7d10df ("KVM: x86: VMX: hyper-v: Enlightened MSR-Bitmap
support") broke the build with Hyper-V disabled, because it accesses
ms_hyperv.nested_features without checking if that exists.

This is the quick-and-hacky build fix.

I suspect the proper fix is to replace the

    static_branch_unlikely(&enable_evmcs)

tests with an inline helper function that also checks that CONFIG_HYPERV
is enabled, since without that, enable_evmcs makes no sense.

But I want a working build environment first and foremost, and I'm upset
this slipped through in the first place.  My primary build tests missed
it because I tend to build with everything enabled, but it should have
been caught in the kvm tree.

Fixes: ceef7d10df ("KVM: x86: VMX: hyper-v: Enlightened MSR-Bitmap support")
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-12 20:28:00 -07:00
Linus Torvalds
b08fc5277a - Error path bug fix for overflow tests (Dan)
- Additional struct_size() conversions (Matthew, Kees)
 - Explicitly reported overflow fixes (Silvio, Kees)
 - Add missing kvcalloc() function (Kees)
 - Treewide conversions of allocators to use either 2-factor argument
   variant when available, or array_size() and array3_size() as needed (Kees)
 -----BEGIN PGP SIGNATURE-----
 Comment: Kees Cook <kees@outflux.net>
 
 iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAlsgVtMWHGtlZXNjb29r
 QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJhsJEACLYe2EbwLFJz7emOT1KUGK5R1b
 oVxJog0893WyMqgk9XBlA2lvTBRBYzR3tzsadfYo87L3VOBzazUv0YZaweJb65sF
 bAvxW3nY06brhKKwTRed1PrMa1iG9R63WISnNAuZAq7+79mN6YgW4G6YSAEF9lW7
 oPJoPw93YxcI8JcG+dA8BC9w7pJFKooZH4gvLUSUNl5XKr8Ru5YnWcV8F+8M4vZI
 EJtXFmdlmxAledUPxTSCIojO8m/tNOjYTreBJt9K1DXKY6UcgAdhk75TRLEsp38P
 fPvMigYQpBDnYz2pi9ourTgvZLkffK1OBZ46PPt8BgUZVf70D6CBg10vK47KO6N2
 zreloxkMTrz5XohyjfNjYFRkyyuwV2sSVrRJqF4dpyJ4NJQRjvyywxIP4Myifwlb
 ONipCM1EjvQjaEUbdcqKgvlooMdhcyxfshqJWjHzXB6BL22uPzq5jHXXugz8/ol8
 tOSM2FuJ2sBLQso+szhisxtMd11PihzIZK9BfxEG3du+/hlI+2XgN7hnmlXuA2k3
 BUW6BSDhab41HNd6pp50bDJnL0uKPWyFC6hqSNZw+GOIb46jfFcQqnCB3VZGCwj3
 LH53Be1XlUrttc/NrtkvVhm4bdxtfsp4F7nsPFNDuHvYNkalAVoC3An0BzOibtkh
 AtfvEeaPHaOyD8/h2Q==
 =zUUp
 -----END PGP SIGNATURE-----

Merge tag 'overflow-v4.18-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull more overflow updates from Kees Cook:
 "The rest of the overflow changes for v4.18-rc1.

  This includes the explicit overflow fixes from Silvio, further
  struct_size() conversions from Matthew, and a bug fix from Dan.

  But the bulk of it is the treewide conversions to use either the
  2-factor argument allocators (e.g. kmalloc(a * b, ...) into
  kmalloc_array(a, b, ...) or the array_size() macros (e.g. vmalloc(a *
  b) into vmalloc(array_size(a, b)).

  Coccinelle was fighting me on several fronts, so I've done a bunch of
  manual whitespace updates in the patches as well.

  Summary:

   - Error path bug fix for overflow tests (Dan)

   - Additional struct_size() conversions (Matthew, Kees)

   - Explicitly reported overflow fixes (Silvio, Kees)

   - Add missing kvcalloc() function (Kees)

   - Treewide conversions of allocators to use either 2-factor argument
     variant when available, or array_size() and array3_size() as needed
     (Kees)"

* tag 'overflow-v4.18-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (26 commits)
  treewide: Use array_size in f2fs_kvzalloc()
  treewide: Use array_size() in f2fs_kzalloc()
  treewide: Use array_size() in f2fs_kmalloc()
  treewide: Use array_size() in sock_kmalloc()
  treewide: Use array_size() in kvzalloc_node()
  treewide: Use array_size() in vzalloc_node()
  treewide: Use array_size() in vzalloc()
  treewide: Use array_size() in vmalloc()
  treewide: devm_kzalloc() -> devm_kcalloc()
  treewide: devm_kmalloc() -> devm_kmalloc_array()
  treewide: kvzalloc() -> kvcalloc()
  treewide: kvmalloc() -> kvmalloc_array()
  treewide: kzalloc_node() -> kcalloc_node()
  treewide: kzalloc() -> kcalloc()
  treewide: kmalloc() -> kmalloc_array()
  mm: Introduce kvcalloc()
  video: uvesafb: Fix integer overflow in allocation
  UBIFS: Fix potential integer overflow in allocation
  leds: Use struct_size() in allocation
  Convert intel uncore to struct_size
  ...
2018-06-12 18:28:00 -07:00
Kees Cook
fad953ce0b treewide: Use array_size() in vzalloc()
The vzalloc() function has no 2-factor argument form, so multiplication
factors need to be wrapped in array_size(). This patch replaces cases of:

        vzalloc(a * b)

with:
        vzalloc(array_size(a, b))

as well as handling cases of:

        vzalloc(a * b * c)

with:

        vzalloc(array3_size(a, b, c))

This does, however, attempt to ignore constant size factors like:

        vzalloc(4 * 1024)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  vzalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  vzalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  vzalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  vzalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  vzalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  vzalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  vzalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  vzalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  vzalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  vzalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
  vzalloc(
-	sizeof(TYPE) * (COUNT_ID)
+	array_size(COUNT_ID, sizeof(TYPE))
  , ...)
|
  vzalloc(
-	sizeof(TYPE) * COUNT_ID
+	array_size(COUNT_ID, sizeof(TYPE))
  , ...)
|
  vzalloc(
-	sizeof(TYPE) * (COUNT_CONST)
+	array_size(COUNT_CONST, sizeof(TYPE))
  , ...)
|
  vzalloc(
-	sizeof(TYPE) * COUNT_CONST
+	array_size(COUNT_CONST, sizeof(TYPE))
  , ...)
|
  vzalloc(
-	sizeof(THING) * (COUNT_ID)
+	array_size(COUNT_ID, sizeof(THING))
  , ...)
|
  vzalloc(
-	sizeof(THING) * COUNT_ID
+	array_size(COUNT_ID, sizeof(THING))
  , ...)
|
  vzalloc(
-	sizeof(THING) * (COUNT_CONST)
+	array_size(COUNT_CONST, sizeof(THING))
  , ...)
|
  vzalloc(
-	sizeof(THING) * COUNT_CONST
+	array_size(COUNT_CONST, sizeof(THING))
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

  vzalloc(
-	SIZE * COUNT
+	array_size(COUNT, SIZE)
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  vzalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vzalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vzalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vzalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vzalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vzalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vzalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vzalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  vzalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  vzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  vzalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  vzalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  vzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  vzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  vzalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vzalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vzalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vzalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vzalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vzalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vzalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vzalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  vzalloc(C1 * C2 * C3, ...)
|
  vzalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants.
@@
expression E1, E2;
constant C1, C2;
@@

(
  vzalloc(C1 * C2, ...)
|
  vzalloc(
-	E1 * E2
+	array_size(E1, E2)
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00
Kees Cook
42bc47b353 treewide: Use array_size() in vmalloc()
The vmalloc() function has no 2-factor argument form, so multiplication
factors need to be wrapped in array_size(). This patch replaces cases of:

        vmalloc(a * b)

with:
        vmalloc(array_size(a, b))

as well as handling cases of:

        vmalloc(a * b * c)

with:

        vmalloc(array3_size(a, b, c))

This does, however, attempt to ignore constant size factors like:

        vmalloc(4 * 1024)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  vmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  vmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  vmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
  vmalloc(
-	sizeof(TYPE) * (COUNT_ID)
+	array_size(COUNT_ID, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT_ID
+	array_size(COUNT_ID, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * (COUNT_CONST)
+	array_size(COUNT_CONST, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT_CONST
+	array_size(COUNT_CONST, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT_ID)
+	array_size(COUNT_ID, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT_ID
+	array_size(COUNT_ID, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT_CONST)
+	array_size(COUNT_CONST, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT_CONST
+	array_size(COUNT_CONST, sizeof(THING))
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

  vmalloc(
-	SIZE * COUNT
+	array_size(COUNT, SIZE)
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  vmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  vmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  vmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  vmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  vmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  vmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  vmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  vmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  vmalloc(C1 * C2 * C3, ...)
|
  vmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants.
@@
expression E1, E2;
constant C1, C2;
@@

(
  vmalloc(C1 * C2, ...)
|
  vmalloc(
-	E1 * E2
+	array_size(E1, E2)
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00
Kees Cook
778e1cdd81 treewide: kvzalloc() -> kvcalloc()
The kvzalloc() function has a 2-factor argument form, kvcalloc(). This
patch replaces cases of:

        kvzalloc(a * b, gfp)

with:
        kvcalloc(a * b, gfp)

as well as handling cases of:

        kvzalloc(a * b * c, gfp)

with:

        kvzalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        kvcalloc(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        kvzalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  kvzalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kvzalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  kvzalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kvzalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kvzalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kvzalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kvzalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kvzalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kvzalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kvzalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kvzalloc
+ kvcalloc
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kvzalloc
+ kvcalloc
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  kvzalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kvzalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kvzalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kvzalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kvzalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kvzalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kvzalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kvzalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  kvzalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kvzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kvzalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kvzalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kvzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kvzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  kvzalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kvzalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kvzalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kvzalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kvzalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kvzalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kvzalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kvzalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  kvzalloc(C1 * C2 * C3, ...)
|
  kvzalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kvzalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kvzalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kvzalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  kvzalloc(sizeof(THING) * C2, ...)
|
  kvzalloc(sizeof(TYPE) * C2, ...)
|
  kvzalloc(C1 * C2 * C3, ...)
|
  kvzalloc(C1 * C2, ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00
Kees Cook
6da2ec5605 treewide: kmalloc() -> kmalloc_array()
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:

        kmalloc(a * b, gfp)

with:
        kmalloc_array(a * b, gfp)

as well as handling cases of:

        kmalloc(a * b * c, gfp)

with:

        kmalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        kmalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        kmalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  kmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  kmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kmalloc
+ kmalloc_array
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  kmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  kmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  kmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  kmalloc(sizeof(THING) * C2, ...)
|
  kmalloc(sizeof(TYPE) * C2, ...)
|
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00
Linus Torvalds
b357bf6023 Small update for KVM.
* ARM: lazy context-switching of FPSIMD registers on arm64, "split"
 regions for vGIC redistributor
 
 * s390: cleanups for nested, clock handling, crypto, storage keys and
 control register bits
 
 * x86: many bugfixes, implement more Hyper-V super powers,
 implement lapic_timer_advance_ns even when the LAPIC timer
 is emulated using the processor's VMX preemption timer.  Two
 security-related bugfixes at the top of the branch.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJbH8Z/AAoJEL/70l94x66DF+UIAJeOuTp6LGasT/9uAb2OovaN
 +5kGmOPGFwkTcmg8BQHI2fXT4vhxMXWPFcQnyig9eXJVxhuwluXDOH4P9IMay0yw
 VDCBsWRdMvZDQad2hn6Z5zR4Jx01XrSaG/KqvXbbDKDCy96mWG7SYAY2m3ZwmeQi
 3Pa3O3BTijr7hBYnMhdXGkSn4ZyU8uPaAgIJ8795YKeOJ2JmioGYk6fj6y2WCxA3
 ztJymBjTmIoZ/F8bjuVouIyP64xH4q9roAyw4rpu7vnbWGqx1fjPYJoB8yddluWF
 JqCPsPzhKDO7mjZJy+lfaxIlzz2BN7tKBNCm88s5GefGXgZwk3ByAq/0GQ2M3rk=
 =H5zI
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "Small update for KVM:

  ARM:
   - lazy context-switching of FPSIMD registers on arm64
   - "split" regions for vGIC redistributor

  s390:
   - cleanups for nested
   - clock handling
   - crypto
   - storage keys
   - control register bits

  x86:
   - many bugfixes
   - implement more Hyper-V super powers
   - implement lapic_timer_advance_ns even when the LAPIC timer is
     emulated using the processor's VMX preemption timer.
   - two security-related bugfixes at the top of the branch"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (79 commits)
  kvm: fix typo in flag name
  kvm: x86: use correct privilege level for sgdt/sidt/fxsave/fxrstor access
  KVM: x86: pass kvm_vcpu to kvm_read_guest_virt and kvm_write_guest_virt_system
  KVM: x86: introduce linear_{read,write}_system
  kvm: nVMX: Enforce cpl=0 for VMX instructions
  kvm: nVMX: Add support for "VMWRITE to any supported field"
  kvm: nVMX: Restrict VMX capability MSR changes
  KVM: VMX: Optimize tscdeadline timer latency
  KVM: docs: nVMX: Remove known limitations as they do not exist now
  KVM: docs: mmu: KVM support exposing SLAT to guests
  kvm: no need to check return value of debugfs_create functions
  kvm: Make VM ioctl do valloc for some archs
  kvm: Change return type to vm_fault_t
  KVM: docs: mmu: Fix link to NPT presentation from KVM Forum 2008
  kvm: x86: Amend the KVM_GET_SUPPORTED_CPUID API documentation
  KVM: x86: hyperv: declare KVM_CAP_HYPERV_TLBFLUSH capability
  KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE}_EX implementation
  KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE} implementation
  KVM: introduce kvm_make_vcpus_request_mask() API
  KVM: x86: hyperv: do rep check for each hypercall separately
  ...
2018-06-12 11:34:04 -07:00
Michael S. Tsirkin
766d3571d8 kvm: fix typo in flag name
KVM_X86_DISABLE_EXITS_HTL really refers to exit on halt.
Obviously a typo: should be named KVM_X86_DISABLE_EXITS_HLT.

Fixes: caa057a2ca ("KVM: X86: Provide a capability to disable HLT intercepts")
Cc: stable@vger.kernel.org
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-12 15:06:35 +02:00
Paolo Bonzini
3c9fa24ca7 kvm: x86: use correct privilege level for sgdt/sidt/fxsave/fxrstor access
The functions that were used in the emulation of fxrstor, fxsave, sgdt and
sidt were originally meant for task switching, and as such they did not
check privilege levels.  This is very bad when the same functions are used
in the emulation of unprivileged instructions.  This is CVE-2018-10853.

The obvious fix is to add a new argument to ops->read_std and ops->write_std,
which decides whether the access is a "system" access or should use the
processor's CPL.

Fixes: 129a72a0d3 ("KVM: x86: Introduce segmented_write_std", 2017-01-12)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-12 15:06:34 +02:00
Paolo Bonzini
ce14e868a5 KVM: x86: pass kvm_vcpu to kvm_read_guest_virt and kvm_write_guest_virt_system
Int the next patch the emulator's .read_std and .write_std callbacks will
grow another argument, which is not needed in kvm_read_guest_virt and
kvm_write_guest_virt_system's callers.  Since we have to make separate
functions, let's give the currently existing names a nicer interface, too.

Fixes: 129a72a0d3 ("KVM: x86: Introduce segmented_write_std", 2017-01-12)
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-12 15:06:28 +02:00
Paolo Bonzini
79367a6574 KVM: x86: introduce linear_{read,write}_system
Wrap the common invocation of ctxt->ops->read_std and ctxt->ops->write_std, so
as to have a smaller patch when the functions grow another argument.

Fixes: 129a72a0d3 ("KVM: x86: Introduce segmented_write_std", 2017-01-12)
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-12 15:06:15 +02:00
Felix Wilhelm
727ba748e1 kvm: nVMX: Enforce cpl=0 for VMX instructions
VMX instructions executed inside a L1 VM will always trigger a VM exit
even when executed with cpl 3. This means we must perform the
privilege check in software.

Fixes: 70f3aac964ae("kvm: nVMX: Remove superfluous VMX instruction fault checks")
Cc: stable@vger.kernel.org
Signed-off-by: Felix Wilhelm <fwilhelm@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-12 15:06:06 +02:00
Konrad Rzeszutek Wilk
6ac2f49edb x86/bugs: Add AMD's SPEC_CTRL MSR usage
The AMD document outlining the SSBD handling
124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
mentions that if CPUID 8000_0008.EBX[24] is set we should be using
the SPEC_CTRL MSR (0x48) over the VIRT SPEC_CTRL MSR (0xC001_011f)
for speculative store bypass disable.

This in effect means we should clear the X86_FEATURE_VIRT_SSBD
flag so that we would prefer the SPEC_CTRL MSR.

See the document titled:
   124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf

A copy of this document is available at
   https://bugzilla.kernel.org/show_bug.cgi?id=199889

Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Cc: kvm@vger.kernel.org
Cc: KarimAllah Ahmed <karahmed@amazon.de>
Cc: andrew.cooper3@citrix.com
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20180601145921.9500-3-konrad.wilk@oracle.com
2018-06-06 14:13:16 +02:00
Konrad Rzeszutek Wilk
2480986001 x86/bugs: Add AMD's variant of SSB_NO
The AMD document outlining the SSBD handling
124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
mentions that the CPUID 8000_0008.EBX[26] will mean that the
speculative store bypass disable is no longer needed.

A copy of this document is available at:
    https://bugzilla.kernel.org/show_bug.cgi?id=199889

Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Cc: kvm@vger.kernel.org
Cc: andrew.cooper3@citrix.com
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/20180601145921.9500-2-konrad.wilk@oracle.com
2018-06-06 14:13:16 +02:00
Linus Torvalds
93e95fa574 Merge branch 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull siginfo updates from Eric Biederman:
 "This set of changes close the known issues with setting si_code to an
  invalid value, and with not fully initializing struct siginfo. There
  remains work to do on nds32, arc, unicore32, powerpc, arm, arm64, ia64
  and x86 to get the code that generates siginfo into a simpler and more
  maintainable state. Most of that work involves refactoring the signal
  handling code and thus careful code review.

  Also not included is the work to shrink the in kernel version of
  struct siginfo. That depends on getting the number of places that
  directly manipulate struct siginfo under control, as it requires the
  introduction of struct kernel_siginfo for the in kernel things.

  Overall this set of changes looks like it is making good progress, and
  with a little luck I will be wrapping up the siginfo work next
  development cycle"

* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (46 commits)
  signal/sh: Stop gcc warning about an impossible case in do_divide_error
  signal/mips: Report FPE_FLTUNK for undiagnosed floating point exceptions
  signal/um: More carefully relay signals in relay_signal.
  signal: Extend siginfo_layout with SIL_FAULT_{MCEERR|BNDERR|PKUERR}
  signal: Remove unncessary #ifdef SEGV_PKUERR in 32bit compat code
  signal/signalfd: Add support for SIGSYS
  signal/signalfd: Remove __put_user from signalfd_copyinfo
  signal/xtensa: Use force_sig_fault where appropriate
  signal/xtensa: Consistenly use SIGBUS in do_unaligned_user
  signal/um: Use force_sig_fault where appropriate
  signal/sparc: Use force_sig_fault where appropriate
  signal/sparc: Use send_sig_fault where appropriate
  signal/sh: Use force_sig_fault where appropriate
  signal/s390: Use force_sig_fault where appropriate
  signal/riscv: Replace do_trap_siginfo with force_sig_fault
  signal/riscv: Use force_sig_fault where appropriate
  signal/parisc: Use force_sig_fault where appropriate
  signal/parisc: Use force_sig_mceerr where appropriate
  signal/openrisc: Use force_sig_fault where appropriate
  signal/nios2: Use force_sig_fault where appropriate
  ...
2018-06-04 15:23:48 -07:00
Jim Mattson
f4160e459c kvm: nVMX: Add support for "VMWRITE to any supported field"
Add support for "VMWRITE to any supported field in the VMCS" and
enable this feature by default in L1's IA32_VMX_MISC MSR. If userspace
clears the VMX capability bit, the old behavior will be restored.

Note that this feature is a prerequisite for kvm in L1 to use VMCS
shadowing, once that feature is available.

Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-04 17:52:51 +02:00
Jim Mattson
a943ac50d1 kvm: nVMX: Restrict VMX capability MSR changes
Disallow changes to the VMX capability MSRs while the vCPU is in VMX
operation. Although this does break the existing API, it helps to
avoid some potentially tricky situations for which there is no
architected behavior.

Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-04 17:52:51 +02:00
Wanpeng Li
c5ce8235cf KVM: VMX: Optimize tscdeadline timer latency
'Commit d0659d946b ("KVM: x86: add option to advance tscdeadline
hrtimer expiration")' advances the tscdeadline (the timer is emulated
by hrtimer) expiration in order that the latency which is incurred
by hypervisor (apic_timer_fn -> vmentry) can be avoided. This patch
adds the advance tscdeadline expiration support to which the tscdeadline
timer is emulated by VMX preemption timer to reduce the hypervisor
lantency (handle_preemption_timer -> vmentry). The guest can also
set an expiration that is very small (for example in Linux if an
hrtimer feeds a expiration in the past); in that case we set delta_tsc
to 0, leading to an immediately vmexit when delta_tsc is not bigger than
advance ns.

This patch can reduce ~63% latency (~4450 cycles to ~1660 cycles on
a haswell desktop) for kvm-unit-tests/tscdeadline_latency when testing
busy waits.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-04 17:51:59 +02:00
Marc Orr
d1e5b0e98e kvm: Make VM ioctl do valloc for some archs
The kvm struct has been bloating. For example, it's tens of kilo-bytes
for x86, which turns out to be a large amount of memory to allocate
contiguously via kzalloc. Thus, this patch does the following:
1. Uses architecture-specific routines to allocate the kvm struct via
   vzalloc for x86.
2. Switches arm to __KVM_HAVE_ARCH_VM_ALLOC so that it can use vzalloc
   when has_vhe() is true.

Other architectures continue to default to kalloc, as they have a
dependency on kalloc or have a small-enough struct kvm.

Signed-off-by: Marc Orr <marcorr@google.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-01 19:18:26 +02:00
Souptick Joarder
1499fa809e kvm: Change return type to vm_fault_t
Use new return type vm_fault_t for fault handler. For
now, this is just documenting that the function returns
a VM_FAULT value rather than an errno. Once all instances
are converted, vm_fault_t will become a distinct type.

commit 1c8f422059 ("mm: change return type to vm_fault_t")

Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-01 19:18:25 +02:00
Linus Torvalds
b2096a5e07 Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 store buffer fixes from Thomas Gleixner:
 "Two fixes for the SSBD mitigation code:

   - expose SSBD properly to guests. This got broken when the CPU
     feature flags got reshuffled.

   - simplify the CPU detection logic to avoid duplicate entries in the
     tables"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/speculation: Simplify the CPU bug detection logic
  KVM/VMX: Expose SSBD properly to guests
2018-05-26 13:24:16 -07:00
Linus Torvalds
ec30dcf7f4 KVM fixes for v4.17-rc7
PPC:
  - Close a hole which could possibly lead to the host timebase getting
    out of sync.
 
  - Three fixes relating to PTEs and TLB entries for radix guests.
 
  - Fix a bug which could lead to an interrupt never getting delivered
    to the guest, if it is pending for a guest vCPU when the vCPU gets
    offlined.
 
 s390:
  - Fix false negatives in VSIE validity check (Cc stable)
 
 x86:
  - Fix time drift of VMX preemption timer when a guest uses LAPIC timer
    in periodic mode (Cc stable)
 
  - Unconditionally expose CPUID.IA32_ARCH_CAPABILITIES to allow
    migration from hosts that don't need retpoline mitigation (Cc stable)
 
  - Fix guest crashes on reboot by properly coupling CR4.OSXSAVE and
    CPUID.OSXSAVE (Cc stable)
 
  - Report correct RIP after Hyper-V hypercall #UD (introduced in -rc6)
 -----BEGIN PGP SIGNATURE-----
 
 iQEcBAABCAAGBQJbCXxHAAoJEED/6hsPKofon5oIAKTwpbpBi0UKIyYcHQ2pwIoP
 +qITTZUGGhEaIfe+aDkzE4vxVIA2ywYCbaC2+OSy4gNVThnytRL8WuhLyV8WLmlC
 sDVSQ87RWaN8mW6hEJ95qXMS7FS0TsDJdytaw+c8OpODrsykw1XMSyV2rMLb0sMT
 SmfioO2kuDx5JQGyiAPKFFXKHjAnnkH+OtffNemAEHGoPpenJ4qLRuXvrjQU8XT6
 tVARIBZsutee5ITIsBKVDmI2n98mUoIe9na21M7N2QaJ98IF+qRz5CxZyL1CgvFk
 tHqG8PZ/bqhnmuIIR5Di919UmhamOC3MODsKUVeciBLDS6LHlhado+HEpj6B8mI=
 =ygB7
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM fixes from Radim Krčmář:
 "PPC:

   - Close a hole which could possibly lead to the host timebase getting
     out of sync.

   - Three fixes relating to PTEs and TLB entries for radix guests.

   - Fix a bug which could lead to an interrupt never getting delivered
     to the guest, if it is pending for a guest vCPU when the vCPU gets
     offlined.

  s390:

   - Fix false negatives in VSIE validity check (Cc stable)

  x86:

   - Fix time drift of VMX preemption timer when a guest uses LAPIC
     timer in periodic mode (Cc stable)

   - Unconditionally expose CPUID.IA32_ARCH_CAPABILITIES to allow
     migration from hosts that don't need retpoline mitigation (Cc
     stable)

   - Fix guest crashes on reboot by properly coupling CR4.OSXSAVE and
     CPUID.OSXSAVE (Cc stable)

   - Report correct RIP after Hyper-V hypercall #UD (introduced in
     -rc6)"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
  KVM: x86: fix #UD address of failed Hyper-V hypercalls
  kvm: x86: IA32_ARCH_CAPABILITIES is always supported
  KVM: x86: Update cpuid properly when CR4.OSXAVE or CR4.PKE is changed
  x86/kvm: fix LAPIC timer drift when guest uses periodic mode
  KVM: s390: vsie: fix < 8k check for the itdba
  KVM: PPC: Book 3S HV: Do ptesync in radix guest exit path
  KVM: PPC: Book3S HV: XIVE: Resend re-routed interrupts on CPU priority change
  KVM: PPC: Book3S HV: Make radix clear pte when unmapping
  KVM: PPC: Book3S HV: Make radix use correct tlbie sequence in kvmppc_radix_tlbie_page
  KVM: PPC: Book3S HV: Snapshot timebase offset on guest entry
2018-05-26 10:46:57 -07:00
Vitaly Kuznetsov
c1aea9196e KVM: x86: hyperv: declare KVM_CAP_HYPERV_TLBFLUSH capability
We need a new capability to indicate support for the newly added
HvFlushVirtualAddress{List,Space}{,Ex} hypercalls. Upon seeing this
capability, userspace is supposed to announce PV TLB flush features
by setting the appropriate CPUID bits (if needed).

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-26 15:35:35 +02:00
Vitaly Kuznetsov
c70126764b KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE}_EX implementation
Implement HvFlushVirtualAddress{List,Space}Ex hypercalls in the same way
we've implemented non-EX counterparts.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
[Initialized valid_bank_mask to silence misguided GCC warnigs. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-26 15:35:35 +02:00
Vitaly Kuznetsov
e2f11f4282 KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE} implementation
Implement HvFlushVirtualAddress{List,Space} hypercalls in a simplistic way:
do full TLB flush with KVM_REQ_TLB_FLUSH and kick vCPUs which are currently
IN_GUEST_MODE.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-26 14:14:33 +02:00
Vitaly Kuznetsov
56b9ae7830 KVM: x86: hyperv: do rep check for each hypercall separately
Prepare to support TLB flush hypercalls, some of which are REP hypercalls.
Also, return HV_STATUS_INVALID_HYPERCALL_INPUT as it seems more
appropriate.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-26 14:14:33 +02:00
Vitaly Kuznetsov
142c95da92 KVM: x86: hyperv: use defines when parsing hypercall parameters
Avoid open-coding offsets for hypercall input parameters, we already
have defines for them.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-26 14:14:33 +02:00
Radim Krčmář
f33ecec9bb Merge branch 'x86/hyperv' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
To resolve conflicts with the PV TLB flush series.
2018-05-26 13:45:49 +02:00
Radim Krčmář
696ca779a9 KVM: x86: fix #UD address of failed Hyper-V hypercalls
If the hypercall was called from userspace or real mode, KVM injects #UD
and then advances RIP, so it looks like #UD was caused by the following
instruction.  This probably won't cause more than confusion, but could
give an unexpected access to guest OS' instruction emulator.

Also, refactor the code to count hv hypercalls that were handled by the
virt userspace.

Fixes: 6356ee0c96 ("x86: Delay skip of emulated hypercall instruction")
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-25 21:33:31 +02:00
Jingqi Liu
0ea3286e2d KVM: x86: Expose CLDEMOTE CPU feature to guest VM
The CLDEMOTE instruction hints to hardware that the cache line that
contains the linear address should be moved("demoted") from
the cache(s) closest to the processor core to a level more distant
from the processor core. This may accelerate subsequent accesses
to the line by other cores in the same coherence domain,
especially if the line was written by the core that demotes the line.

This patch exposes the cldemote feature to the guest.

The release document ref below link:
https://software.intel.com/sites/default/files/managed/c5/15/\
architecture-instruction-set-extensions-programming-reference.pdf
This patch has a dependency on https://lkml.org/lkml/2018/4/23/928

Signed-off-by: Jingqi Liu <jingqi.liu@intel.com>
Reviewed-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-24 20:15:22 +02:00
Liran Alon
cd9a491f6e KVM: nVMX: Emulate L1 individual-address invvpid by L0 individual-address invvpid
When vmcs12 uses VPID, all TLB entries populated by L2 are tagged with
vmx->nested.vpid02. Currently, INVVPID executed by L1 is emulated by L0
by using INVVPID single/global-context to flush all TLB entries
tagged with vmx->nested.vpid02 regardless of INVVPID type executed by
L1.

However, we can easily optimize the case of L1 INVVPID on an
individual-address. Just INVVPID given individual-address tagged with
vmx->nested.vpid02.

Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
[Squashed with a preparatory patch that added the !operand.vpid line.]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-24 19:45:45 +02:00
Liran Alon
6f1e03bcab KVM: nVMX: Don't flush TLB when vmcs12 uses VPID
Since commit 5c614b3583 ("KVM: nVMX: nested VPID emulation"),
vmcs01 and vmcs02 don't share the same VPID. vmcs01 uses vmx->vpid
while vmcs02 uses vmx->nested.vpid02. This was done such that TLB
flush could be avoided when switching between L1 and L2.

However, the above mentioned commit only changed L2 VMEntry logic to
not flush TLB when switching from L1 to L2. It forgot to also remove
the TLB flush which is done when simulating a VMExit from L2 to L1.

To fix this issue, on VMExit from L2 to L1 we flush TLB only in case
vmcs01 enables VPID and vmcs01->vpid==vmcs02->vpid. This happens when
vmcs01 enables VPID and vmcs12 does not.

Fixes: 5c614b3583 ("KVM: nVMX: nested VPID emulation")

Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-24 19:45:40 +02:00
Liran Alon
6bce30c7d9 KVM: nVMX: Use vmx local var for referencing vpid02
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-24 19:45:37 +02:00
Dan Carpenter
86bf20cb57 KVM: x86: prevent integer overflows in KVM_MEMORY_ENCRYPT_REG_REGION
This is a fix from reviewing the code, but it looks like it might be
able to lead to an Oops.  It affects 32bit systems.

The KVM_MEMORY_ENCRYPT_REG_REGION ioctl uses a u64 for range->addr and
range->size but the high 32 bits would be truncated away on a 32 bit
system.  This is harmless but it's also harmless to prevent it.

Then in sev_pin_memory() the "uaddr + ulen" calculation can wrap around.
The wrap around can happen on 32 bit or 64 bit systems, but I was only
able to figure out a problem for 32 bit systems.  We would pick a number
which results in "npages" being zero.  The sev_pin_memory() would then
return ZERO_SIZE_PTR without allocating anything.

I made it illegal to call sev_pin_memory() with "ulen" set to zero.
Hopefully, that doesn't cause any problems.  I also changed the type of
"first" and "last" to long, just for cosmetic reasons.  Otherwise on a
64 bit system you're saving "uaddr >> 12" in an int and it truncates the
high 20 bits away.  The math works in the current code so far as I can
see but it's just weird.

Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
[Brijesh noted that the code is only reachable on X86_64.]
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-24 19:32:20 +02:00
Sean Christopherson
a1d588e951 KVM: x86: remove obsolete EXPORT... of handle_mmio_page_fault
handle_mmio_page_fault() was recently moved to be an internal-only
MMU function, i.e. it's static and no longer defined in kvm_host.h.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-24 19:32:20 +02:00
Jim Mattson
1eaafe91a0 kvm: x86: IA32_ARCH_CAPABILITIES is always supported
If there is a possibility that a VM may migrate to a Skylake host,
then the hypervisor should report IA32_ARCH_CAPABILITIES.RSBA[bit 2]
as being set (future work, of course). This implies that
CPUID.(EAX=7,ECX=0):EDX.ARCH_CAPABILITIES[bit 29] should be
set. Therefore, kvm should report this CPUID bit as being supported
whether or not the host supports it.  Userspace is still free to clear
the bit if it chooses.

For more information on RSBA, see Intel's white paper, "Retpoline: A
Branch Target Injection Mitigation" (Document Number 337131-001),
currently available at https://bugzilla.kernel.org/show_bug.cgi?id=199511.

Since the IA32_ARCH_CAPABILITIES MSR is emulated in kvm, there is no
dependency on hardware support for this feature.

Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Fixes: 28c1c9fabf ("KVM/VMX: Emulate MSR_IA32_ARCH_CAPABILITIES")
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-24 18:38:34 +02:00
Wei Huang
c4d2188206 KVM: x86: Update cpuid properly when CR4.OSXAVE or CR4.PKE is changed
The CPUID bits of OSXSAVE (function=0x1) and OSPKE (func=0x7, leaf=0x0)
allows user apps to detect if OS has set CR4.OSXSAVE or CR4.PKE. KVM is
supposed to update these CPUID bits when CR4 is updated. Current KVM
code doesn't handle some special cases when updates come from emulator.
Here is one example:

  Step 1: guest boots
  Step 2: guest OS enables XSAVE ==> CR4.OSXSAVE=1 and CPUID.OSXSAVE=1
  Step 3: guest hot reboot ==> QEMU reset CR4 to 0, but CPUID.OSXAVE==1
  Step 4: guest os checks CPUID.OSXAVE, detects 1, then executes xgetbv

Step 4 above will cause an #UD and guest crash because guest OS hasn't
turned on OSXAVE yet. This patch solves the problem by comparing the the
old_cr4 with cr4. If the related bits have been changed,
kvm_update_cpuid() needs to be called.

Signed-off-by: Wei Huang <wei@redhat.com>
Reviewed-by: Bandan Das <bsd@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-24 17:57:18 +02:00
David Vrabel
d8f2f498d9 x86/kvm: fix LAPIC timer drift when guest uses periodic mode
Since 4.10, commit 8003c9ae20 (KVM: LAPIC: add APIC Timer
periodic/oneshot mode VMX preemption timer support), guests using
periodic LAPIC timers (such as FreeBSD 8.4) would see their timers
drift significantly over time.

Differences in the underlying clocks and numerical errors means the
periods of the two timers (hv and sw) are not the same. This
difference will accumulate with every expiry resulting in a large
error between the hv and sw timer.

This means the sw timer may be running slow when compared to the hv
timer. When the timer is switched from hv to sw, the now active sw
timer will expire late. The guest VCPU is reentered and it switches to
using the hv timer. This timer catches up, injecting multiple IRQs
into the guest (of which the guest only sees one as it does not get to
run until the hv timer has caught up) and thus the guest's timer rate
is low (and becomes increasing slower over time as the sw timer lags
further and further behind).

I believe a similar problem would occur if the hv timer is the slower
one, but I have not observed this.

Fix this by synchronizing the deadlines for both timers to the same
time source on every tick. This prevents the errors from accumulating.

Fixes: 8003c9ae20
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: David Vrabel <david.vrabel@nutanix.com>
Cc: stable@vger.kernel.org
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-24 16:48:55 +02:00
Jim Mattson
21ebf53b2c KVM: nVMX: Ensure that VMCS12 field offsets do not change
Enforce the invariant that existing VMCS12 field offsets must not
change. Experience has shown that without strict enforcement, this
invariant will not be maintained.

Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[Changed the code to use BUILD_BUG_ON_MSG instead of better, but GCC 4.6
 requiring _Static_assert. - Radim.]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-23 17:48:42 +02:00
Jim Mattson
b348e7933c KVM: nVMX: Restore the VMCS12 offsets for v4.0 fields
Changing the VMCS12 layout will break save/restore compatibility with
older kvm releases once the KVM_{GET,SET}_NESTED_STATE ioctls are
accepted upstream. Google has already been using these ioctls for some
time, and we implore the community not to disturb the existing layout.

Move the four most recently added fields to preserve the offsets of
the previously defined fields and reserve locations for the vmread and
vmwrite bitmaps, which will be used in the virtualization of VMCS
shadowing (to improve the performance of double-nesting).

Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[Kept the SDM order in vmcs_field_to_offset_table. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-23 16:33:48 +02:00
Arnd Bergmann
899a31f509 KVM: x86: use timespec64 for KVM_HC_CLOCK_PAIRING
The hypercall was added using a struct timespec based implementation,
but we should not use timespec in new code.

This changes it to timespec64. There is no functional change
here since the implementation is only used in 64-bit kernels
that use the same definition for timespec and timespec64.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-23 15:22:02 +02:00
Jim Mattson
6514dc380d kvm: nVMX: Use nested_run_pending rather than from_vmentry
When saving a vCPU's nested state, the vmcs02 is discarded. Only the
shadow vmcs12 is saved. The shadow vmcs12 contains all of the
information needed to reconstruct an equivalent vmcs02 on restore, but
we have to be able to deal with two contexts:

1. The nested state was saved immediately after an emulated VM-entry,
   before the vmcs02 was ever launched.

2. The nested state was saved some time after the first successful
   launch of the vmcs02.

Though it's an implementation detail rather than an architected bit,
vmx->nested_run_pending serves to distinguish between these two
cases. Hence, we save it as part of the vCPU's nested state. (Yes,
this is ugly.)

Even when restoring from a checkpoint, it may be necessary to build
the vmcs02 as if prepare_vmcs02 was called from nested_vmx_run. So,
the 'from_vmentry' argument should be dropped, and
vmx->nested_run_pending should be consulted instead. The nested state
restoration code then has to set vmx->nested_run_pending prior to
calling prepare_vmcs02. It's important that the restoration code set
vmx->nested_run_pending anyway, since the flag impacts things like
interrupt delivery as well.

Fixes: cf8b84f48a ("kvm: nVMX: Prepare for checkpointing L2 state")
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-23 15:22:02 +02:00
Konrad Rzeszutek Wilk
0aa48468d0 KVM/VMX: Expose SSBD properly to guests
The X86_FEATURE_SSBD is an synthetic CPU feature - that is
it bit location has no relevance to the real CPUID 0x7.EBX[31]
bit position. For that we need the new CPU feature name.

Fixes: 52817587e7 ("x86/cpufeatures: Disentangle SSBD enumeration")
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: stable@vger.kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lkml.kernel.org/r/20180521215449.26423-2-konrad.wilk@oracle.com
2018-05-23 10:55:52 +02:00
Linus Torvalds
3b78ce4a34 Merge branch 'speck-v20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Merge speculative store buffer bypass fixes from Thomas Gleixner:

 - rework of the SPEC_CTRL MSR management to accomodate the new fancy
   SSBD (Speculative Store Bypass Disable) bit handling.

 - the CPU bug and sysfs infrastructure for the exciting new Speculative
   Store Bypass 'feature'.

 - support for disabling SSB via LS_CFG MSR on AMD CPUs including
   Hyperthread synchronization on ZEN.

 - PRCTL support for dynamic runtime control of SSB

 - SECCOMP integration to automatically disable SSB for sandboxed
   processes with a filter flag for opt-out.

 - KVM integration to allow guests fiddling with SSBD including the new
   software MSR VIRT_SPEC_CTRL to handle the LS_CFG based oddities on
   AMD.

 - BPF protection against SSB

.. this is just the core and x86 side, other architecture support will
come separately.

* 'speck-v20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (49 commits)
  bpf: Prevent memory disambiguation attack
  x86/bugs: Rename SSBD_NO to SSB_NO
  KVM: SVM: Implement VIRT_SPEC_CTRL support for SSBD
  x86/speculation, KVM: Implement support for VIRT_SPEC_CTRL/LS_CFG
  x86/bugs: Rework spec_ctrl base and mask logic
  x86/bugs: Remove x86_spec_ctrl_set()
  x86/bugs: Expose x86_spec_ctrl_base directly
  x86/bugs: Unify x86_spec_ctrl_{set_guest,restore_host}
  x86/speculation: Rework speculative_store_bypass_update()
  x86/speculation: Add virtualized speculative store bypass disable support
  x86/bugs, KVM: Extend speculation control for VIRT_SPEC_CTRL
  x86/speculation: Handle HT correctly on AMD
  x86/cpufeatures: Add FEATURE_ZEN
  x86/cpufeatures: Disentangle SSBD enumeration
  x86/cpufeatures: Disentangle MSR_SPEC_CTRL enumeration from IBRS
  x86/speculation: Use synthetic bits for IBRS/IBPB/STIBP
  KVM: SVM: Move spec control call after restore of GS
  x86/cpu: Make alternative_msr_write work for 32-bit code
  x86/bugs: Fix the parameters alignment and missing void
  x86/bugs: Make cpu_show_common() static
  ...
2018-05-21 11:23:26 -07:00
Tom Lendacky
bc226f07dc KVM: SVM: Implement VIRT_SPEC_CTRL support for SSBD
Expose the new virtualized architectural mechanism, VIRT_SSBD, for using
speculative store bypass disable (SSBD) under SVM.  This will allow guests
to use SSBD on hardware that uses non-architectural mechanisms for enabling
SSBD.

[ tglx: Folded the migration fixup from Paolo Bonzini ]

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-05-17 17:09:21 +02:00
Thomas Gleixner
ccbcd26744 x86/bugs, KVM: Extend speculation control for VIRT_SPEC_CTRL
AMD is proposing a VIRT_SPEC_CTRL MSR to handle the Speculative Store
Bypass Disable via MSR_AMD64_LS_CFG so that guests do not have to care
about the bit position of the SSBD bit and thus facilitate migration.
Also, the sibling coordination on Family 17H CPUs can only be done on
the host.

Extend x86_spec_ctrl_set_guest() and x86_spec_ctrl_restore_host() with an
extra argument for the VIRT_SPEC_CTRL MSR.

Hand in 0 from VMX and in SVM add a new virt_spec_ctrl member to the CPU
data structure which is going to be used in later patches for the actual
implementation.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-17 17:09:18 +02:00
Borislav Petkov
e7c587da12 x86/speculation: Use synthetic bits for IBRS/IBPB/STIBP
Intel and AMD have different CPUID bits hence for those use synthetic bits
which get set on the respective vendor's in init_speculation_control(). So
that debacles like what the commit message of

  c65732e4f7 ("x86/cpu: Restore CPUID_8000_0008_EBX reload")

talks about don't happen anymore.

Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: Jörg Otte <jrg.otte@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: https://lkml.kernel.org/r/20180504161815.GG9257@pd.tnic
2018-05-17 17:09:16 +02:00
Thomas Gleixner
15e6c22fd8 KVM: SVM: Move spec control call after restore of GS
svm_vcpu_run() invokes x86_spec_ctrl_restore_host() after VMEXIT, but
before the host GS is restored. x86_spec_ctrl_restore_host() uses 'current'
to determine the host SSBD state of the thread. 'current' is GS based, but
host GS is not yet restored and the access causes a triple fault.

Move the call after the host GS restore.

Fixes: 885f82bfbc x86/process: Allow runtime control of Speculative Store Bypass
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-17 17:09:16 +02:00
Wanpeng Li
4c27625b7a KVM: X86: Lower the default timer frequency limit to 200us
Anthoine reported:
 The period used by Windows change over time but it can be 1
 milliseconds or less. I saw the limit_periodic_timer_frequency
 print so 500 microseconds is sometimes reached.

As suggested by Paolo, lower the default timer frequency limit to a
smaller interval of 200 us (5000 Hz) to leave some headroom. This
is required due to Windows 10 changing the scheduler tick limit
from 1024 Hz to 2048 Hz.

Reported-by: Anthoine Bourgeois <anthoine.bourgeois@blade-group.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Anthoine Bourgeois <anthoine.bourgeois@blade-group.com>
Cc: Darren Kenny <darren.kenny@oracle.com>
Cc: Jan Kiszka <jan.kiszka@web.de>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-15 11:56:21 +02:00
Jim Mattson
3a2936dedd kvm: mmu: Don't expose private memslots to L2
These private pages have special purposes in the virtualization of L1,
but not in the virtualization of L2. In particular, L1's APIC access
page should never be entered into L2's page tables, because this
causes a great deal of confusion when the APIC virtualization hardware
is being used to accelerate L2's accesses to its own APIC.

Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-14 18:24:26 +02:00
Jim Mattson
1313cc2bd8 kvm: mmu: Add guest_mode to kvm_mmu_page_role
L1 and L2 need to have disjoint mappings, so that L1's APIC access
page (under VMX) can be omitted from L2's mappings.

Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-14 18:24:25 +02:00
Jim Mattson
ab5df31cee kvm: nVMX: Eliminate APIC access page sharing between L1 and L2
It is only possible to share the APIC access page between L1 and L2 if
they also share the virtual-APIC page.  If L2 has its own virtual-APIC
page, then MMIO accesses to L1's TPR from L2 will access L2's TPR
instead.  Moreover, L1's local APIC has to be in xAPIC mode, which is
another condition that hasn't been checked.

Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-14 18:24:24 +02:00
Jim Mattson
8d860bbeed kvm: vmx: Basic APIC virtualization controls have three settings
Previously, we toggled between SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
and SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES, depending on whether or
not the EXTD bit was set in MSR_IA32_APICBASE. However, if the local
APIC is disabled, we should not set either of these APIC
virtualization control bits.

Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-14 18:24:24 +02:00
Jim Mattson
5887164942 kvm: vmx: Introduce lapic_mode enumeration
The local APIC can be in one of three modes: disabled, xAPIC or
x2APIC. (A fourth mode, "invalid," is included for completeness.)

Using the new enumeration can make some of the APIC mode logic easier
to read. In kvm_set_apic_base, for instance, it is clear that one
cannot transition directly from x2APIC mode to xAPIC mode or directly
from APIC disabled to x2APIC mode.

Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
[Check invalid bits even if msr_info->host_initiated.  Reported by
 Wanpeng Li. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-14 18:14:25 +02:00
Vitaly Kuznetsov
ceef7d10df KVM: x86: VMX: hyper-v: Enlightened MSR-Bitmap support
Enlightened MSR-Bitmap is a natural extension of Enlightened VMCS:
Hyper-V Top Level Functional Specification states:

"The L1 hypervisor may collaborate with the L0 hypervisor to make MSR
accesses more efficient. It can enable enlightened MSR bitmaps by setting
the corresponding field in the enlightened VMCS to 1. When enabled, the L0
hypervisor does not monitor the MSR bitmaps for changes. Instead, the L1
hypervisor must invalidate the corresponding clean field after making
changes to one of the MSR bitmaps."

I reached out to Hyper-V team for additional details and I got the
following information:

"Current Hyper-V implementation works as following:

If the enlightened MSR bitmap is not enabled:
- All MSR accesses of L2 guests cause physical VM-Exits

If the enlightened MSR bitmap is enabled:
- Physical VM-Exits for L2 accesses to certain MSRs (currently FS_BASE,
  GS_BASE and KERNEL_GS_BASE) are avoided, thus making these MSR accesses
  faster."

I tested my series with a tight rdmsrl loop in L2, for KERNEL_GS_BASE the
results are:

Without Enlightened MSR-Bitmap: 1300 cycles/read
With Enlightened MSR-Bitmap: 120 cycles/read

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Tested-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-14 18:14:24 +02:00
Junaid Shahid
74b566e6cf kvm: x86: Refactor mmu_free_roots()
Extract the logic to free a root page in a separate function to avoid code
duplication in mmu_free_roots(). Also, change it to an exported function
i.e. kvm_mmu_free_roots().

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-14 18:14:23 +02:00
Wanpeng Li
a780a3ea62 KVM: X86: Fix reserved bits check for MOV to CR3
MSB of CR3 is a reserved bit if the PCIDE bit is not set in CR4.
It should be checked when PCIDE bit is not set, however commit
'd1cd3ce900441 ("KVM: MMU: check guest CR3 reserved bits based on
its physical address width")' removes the bit 63 checking
unconditionally. This patch fixes it by checking bit 63 of CR3
when PCIDE bit is not set in CR4.

Fixes: d1cd3ce900 (KVM: MMU: check guest CR3 reserved bits based on its physical address width)
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: stable@vger.kernel.org
Reviewed-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-14 18:14:16 +02:00
Sean Christopherson
64f7a11586 KVM: vmx: update sec exec controls for UMIP iff emulating UMIP
Update SECONDARY_EXEC_DESC for UMIP emulation if and only UMIP
is actually being emulated.  Skipping the VMCS update eliminates
unnecessary VMREAD/VMWRITE when UMIP is supported in hardware,
and on platforms that don't have SECONDARY_VM_EXEC_CONTROL.  The
latter case resolves a bug where KVM would fill the kernel log
with warnings due to failed VMWRITEs on older platforms.

Fixes: 0367f205a3 ("KVM: vmx: add support for emulating UMIP")
Cc: stable@vger.kernel.org #4.16
Reported-by: Paolo Zeppegno <pzeppegno@gmail.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Suggested-by: Radim KrÄmář <rkrcmar@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-11 11:21:13 +02:00
Junaid Shahid
c19986fea8 kvm: x86: Suppress CR3_PCID_INVD bit only when PCIDs are enabled
If the PCIDE bit is not set in CR4, then the MSb of CR3 is a reserved
bit. If the guest tries to set it, that should cause a #GP fault. So
mask out the bit only when the PCIDE bit is set.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-11 11:21:12 +02:00
Paolo Bonzini
452a68d0ef KVM: hyperv: idr_find needs RCU protection
Even though the eventfd is released after the KVM SRCU grace period
elapses, the conn_to_evt data structure itself is not; it uses RCU
internally, instead.  Fix the read-side critical section to happen
under rcu_read_lock/unlock; the result is still protected by
vcpu->kvm->srcu.

Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-11 11:21:11 +02:00
Marian Rotariu
6356ee0c96 x86: Delay skip of emulated hypercall instruction
The IP increment should be done after the hypercall emulation, after
calling the various handlers. In this way, these handlers can accurately
identify the the IP of the VMCALL if they need it.

This patch keeps the same functionality for the Hyper-V handler which does
not use the return code of the standard kvm_skip_emulated_instruction()
call.

Signed-off-by: Marian Rotariu <mrotariu@bitdefender.com>
[Hyper-V hypercalls also need kvm_skip_emulated_instruction() - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-11 11:21:10 +02:00
Konrad Rzeszutek Wilk
9f65fb2937 x86/bugs: Rename _RDS to _SSBD
Intel collateral will reference the SSB mitigation bit in IA32_SPEC_CTL[2]
as SSBD (Speculative Store Bypass Disable).

Hence changing it.

It is unclear yet what the MSR_IA32_ARCH_CAPABILITIES (0x10a) Bit(4) name
is going to be. Following the rename it would be SSBD_NO but that rolls out
to Speculative Store Bypass Disable No.

Also fixed the missing space in X86_FEATURE_AMD_SSBD.

[ tglx: Fixup x86_amd_rds_enable() and rds_tif_to_amd_ls_cfg() as well ]

Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-05-09 21:41:38 +02:00
Anthoine Bourgeois
ecf08dad72 KVM: x86: remove APIC Timer periodic/oneshot spikes
Since the commit "8003c9ae204e: add APIC Timer periodic/oneshot mode VMX
preemption timer support", a Windows 10 guest has some erratic timer
spikes.

Here the results on a 150000 times 1ms timer without any load:
	  Before 8003c9ae20 | After 8003c9ae20
Max           1834us          |  86000us
Mean          1100us          |   1021us
Deviation       59us          |    149us
Here the results on a 150000 times 1ms timer with a cpu-z stress test:
	  Before 8003c9ae20 | After 8003c9ae20
Max          32000us          | 140000us
Mean          1006us          |   1997us
Deviation      140us          |  11095us

The root cause of the problem is starting hrtimer with an expiry time
already in the past can take more than 20 milliseconds to trigger the
timer function.  It can be solved by forward such past timers
immediately, rather than submitting them to hrtimer_start().
In case the timer is periodic, update the target expiration and call
hrtimer_start with it.

v2: Check if the tsc deadline is already expired. Thank you Mika.
v3: Execute the past timers immediately rather than submitting them to
hrtimer_start().
v4: Rearm the periodic timer with advance_periodic_target_expiration() a
simpler version of set_target_expiration(). Thank you Paolo.

Cc: Mika Penttilä <mika.penttila@nextfour.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Anthoine Bourgeois <anthoine.bourgeois@blade-group.com>
8003c9ae20 ("KVM: LAPIC: add APIC Timer periodic/oneshot mode VMX preemption timer support")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-05 23:09:39 +02:00
Thomas Gleixner
28a2775217 x86/speculation: Create spec-ctrl.h to avoid include hell
Having everything in nospec-branch.h creates a hell of dependencies when
adding the prctl based switching mechanism. Move everything which is not
required in nospec-branch.h to spec-ctrl.h and fix up the includes in the
relevant files.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
2018-05-03 13:55:50 +02:00
Konrad Rzeszutek Wilk
da39556f66 x86/KVM/VMX: Expose SPEC_CTRL Bit(2) to the guest
Expose the CPUID.7.EDX[31] bit to the guest, and also guard against various
combinations of SPEC_CTRL MSR values.

The handling of the MSR (to take into account the host value of SPEC_CTRL
Bit(2)) is taken care of in patch:

  KVM/SVM/VMX/x86/spectre_v2: Support the combination of guest and host IBRS

Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
2018-05-03 13:55:49 +02:00
Konrad Rzeszutek Wilk
5cf6875487 x86/bugs, KVM: Support the combination of guest and host IBRS
A guest may modify the SPEC_CTRL MSR from the value used by the
kernel. Since the kernel doesn't use IBRS, this means a value of zero is
what is needed in the host.

But the 336996-Speculative-Execution-Side-Channel-Mitigations.pdf refers to
the other bits as reserved so the kernel should respect the boot time
SPEC_CTRL value and use that.

This allows to deal with future extensions to the SPEC_CTRL interface if
any at all.

Note: This uses wrmsrl() instead of native_wrmsl(). I does not make any
difference as paravirt will over-write the callq *0xfff.. with the wrmsrl
assembler code.

Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
2018-05-03 13:55:47 +02:00
KarimAllah Ahmed
5e62493f1a x86/headers/UAPI: Move DISABLE_EXITS KVM capability bits to the UAPI
Move DISABLE_EXITS KVM capability bits to the UAPI just like the rest of
capabilities.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-04-27 18:37:17 +02:00
Junaid Shahid
a468f2dbf9 kvm: apic: Flush TLB after APIC mode/address change if VPIDs are in use
Currently, KVM flushes the TLB after a change to the APIC access page
address or the APIC mode when EPT mode is enabled. However, even in
shadow paging mode, a TLB flush is needed if VPIDs are being used, as
specified in the Intel SDM Section 29.4.5.

So replace vmx_flush_tlb_ept_only() with vmx_flush_tlb(), which will
flush if either EPT or VPIDs are in use.

Signed-off-by: Junaid Shahid <junaids@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-04-27 17:44:00 +02:00
Eric W. Biederman
3eb0f5193b signal: Ensure every siginfo we send has all bits initialized
Call clear_siginfo to ensure every stack allocated siginfo is properly
initialized before being passed to the signal sending functions.

Note: It is not safe to depend on C initializers to initialize struct
siginfo on the stack because C is allowed to skip holes when
initializing a structure.

The initialization of struct siginfo in tracehook_report_syscall_exit
was moved from the helper user_single_step_siginfo into
tracehook_report_syscall_exit itself, to make it clear that the local
variable siginfo gets fully initialized.

In a few cases the scope of struct siginfo has been reduced to make it
clear that siginfo siginfo is not used on other paths in the function
in which it is declared.

Instances of using memset to initialize siginfo have been replaced
with calls clear_siginfo for clarity.

Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-04-25 10:40:51 -05:00
Linus Torvalds
e6d9bfdeb4 Bug fixes, plus a new test case and the associated infrastructure for
writing nested virtualization tests.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJa1MZMAAoJEL/70l94x66DupgH/jIRQ6wsZ9Hq5qBJ39sLFXNe
 cAIAbaCUAck4tl5YNDgv/SOQ644ClmDVP/4CgezqosoY29eLY0+P71GQZEIQ7aB5
 Taa7UI5qYnIctBmxFwD1+iV717Vyb+QLpRnMb8zjLkfT/3S8HsQvpcYJlQrrN3PP
 w4VIvhZjPx11wvXDCuY6ire7sBEb/vSQQewGWg9dLt4hnDz1tRFMtAg/7GVT+rG9
 SjuH57NrXAKWiNVlQvYfLSfaTyPf5J41i49nwFJJVPY1kMaXvOSDDOfejTD/SjTs
 pYye7o8TGbrsY9O8H85gxdppHz4K0+sP9xNunUqk1wQ+zo9lWTejIaDoN2rzyuA=
 =GKBC
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm fixes from Paolo Bonzini:
 "Bug fixes, plus a new test case and the associated infrastructure for
  writing nested virtualization tests"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
  kvm: selftests: add vmx_tsc_adjust_test
  kvm: x86: move MSR_IA32_TSC handling to x86.c
  X86/KVM: Properly update 'tsc_offset' to represent the running guest
  kvm: selftests: add -std=gnu99 cflags
  x86: Add check for APIC access address for vmentry of L2 guests
  KVM: X86: fix incorrect reference of trace_kvm_pi_irte_update
  X86/KVM: Do not allow DISABLE_EXITS_MWAIT when LAPIC ARAT is not available
  kvm: selftests: fix spelling mistake: "divisable" and "divisible"
  X86/VMX: Disable VMX preemption timer if MWAIT is not intercepted
2018-04-16 11:24:28 -07:00
Paolo Bonzini
dd259935e4 kvm: x86: move MSR_IA32_TSC handling to x86.c
This is not specific to Intel/AMD anymore.  The TSC offset is available
in vcpu->arch.tsc_offset.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-16 17:50:22 +02:00
KarimAllah Ahmed
e79f245dde X86/KVM: Properly update 'tsc_offset' to represent the running guest
Update 'tsc_offset' on vmentry/vmexit of L2 guests to ensure that it always
captures the TSC_OFFSET of the running guest whether it is the L1 or L2
guest.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
[AMD changes, fix update_ia32_tsc_adjust_msr. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-16 17:50:11 +02:00
Krish Sadhukhan
f0f4cf5b30 x86: Add check for APIC access address for vmentry of L2 guests
According to the sub-section titled 'VM-Execution Control Fields' in the
section titled 'Basic VM-Entry Checks' in Intel SDM vol. 3C, the following
vmentry check must be enforced:

    If the 'virtualize APIC-accesses' VM-execution control is 1, the
    APIC-access address must satisfy the following checks:

	- Bits 11:0 of the address must be 0.
	- The address should not set any bits beyond the processor's
	  physical-address width.

This patch adds the necessary check to conform to this rule. If the check
fails, we cause the L2 VMENTRY to fail which is what the associated unit
test (following patch) expects.

Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-12 18:36:28 +02:00
hu huajun
2698d82e51 KVM: X86: fix incorrect reference of trace_kvm_pi_irte_update
In arch/x86/kvm/trace.h, this function is declared as host_irq the
first input, and vcpu_id the second, instead of otherwise.

Signed-off-by: hu huajun <huhuajun@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-11 13:34:48 +02:00
KarimAllah Ahmed
8e9b29b618 X86/KVM: Do not allow DISABLE_EXITS_MWAIT when LAPIC ARAT is not available
If the processor does not have an "Always Running APIC Timer" (aka ARAT),
we should not give guests direct access to MWAIT. The LAPIC timer would
stop ticking in deep C-states, so any host deadlines would not wakeup the
host kernel.

The host kernel intel_idle driver handles this by switching to broadcast
mode when ARAT is not available and MWAIT is issued with a deep C-state
that would stop the LAPIC timer. When MWAIT is passed through, we can not
tell when MWAIT is issued.

So just disable this capability when LAPIC ARAT is not available. I am not
even sure if there are any CPUs with VMX support but no LAPIC ARAT or not.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Reported-by: Wanpeng Li <kernellwp@gmail.com>
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-11 11:34:16 +02:00
KarimAllah Ahmed
386c6ddbda X86/VMX: Disable VMX preemption timer if MWAIT is not intercepted
The VMX-preemption timer is used by KVM as a way to set deadlines for the
guest (i.e. timer emulation). That was safe till very recently when
capability KVM_X86_DISABLE_EXITS_MWAIT to disable intercepting MWAIT was
introduced. According to Intel SDM 25.5.1:

"""
The VMX-preemption timer operates in the C-states C0, C1, and C2; it also
operates in the shutdown and wait-for-SIPI states. If the timer counts down
to zero in any state other than the wait-for SIPI state, the logical
processor transitions to the C0 C-state and causes a VM exit; the timer
does not cause a VM exit if it counts down to zero in the wait-for-SIPI
state. The timer is not decremented in C-states deeper than C2.
"""

Now once the guest issues the MWAIT with a c-state deeper than
C2 the preemption timer will never wake it up again since it stopped
ticking! Usually this is compensated by other activities in the system that
would wake the core from the deep C-state (and cause a VMExit). For
example, if the host itself is ticking or it received interrupts, etc!

So disable the VMX-preemption timer if MWAIT is exposed to the guest!

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Fixes: 4d5422cea3
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-10 17:19:44 +02:00
Linus Torvalds
d8312a3f61 ARM:
- VHE optimizations
 - EL2 address space randomization
 - speculative execution mitigations ("variant 3a", aka execution past invalid
 privilege register access)
 - bugfixes and cleanups
 
 PPC:
 - improvements for the radix page fault handler for HV KVM on POWER9
 
 s390:
 - more kvm stat counters
 - virtio gpu plumbing
 - documentation
 - facilities improvements
 
 x86:
 - support for VMware magic I/O port and pseudo-PMCs
 - AMD pause loop exiting
 - support for AMD core performance extensions
 - support for synchronous register access
 - expose nVMX capabilities to userspace
 - support for Hyper-V signaling via eventfd
 - use Enlightened VMCS when running on Hyper-V
 - allow userspace to disable MWAIT/HLT/PAUSE vmexits
 - usual roundup of optimizations and nested virtualization bugfixes
 
 Generic:
 - API selftest infrastructure (though the only tests are for x86 as of now)
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJay19UAAoJEL/70l94x66DGKYIAIu9PTHAEwaX0et15fPW5y2x
 rrtS355lSAmMrPJ1nePRQ+rProD/1B0Kizj3/9O+B9OTKKRsorRYNa4CSu9neO2k
 N3rdE46M1wHAPwuJPcYvh3iBVXtgbMayk1EK5aVoSXaMXEHh+PWZextkl+F+G853
 kC27yDy30jj9pStwnEFSBszO9ua/URdKNKBATNx8WUP6d9U/dlfm5xv3Dc3WtKt2
 UMGmog2wh0i7ecXo7hRkMK4R7OYP3ZxAexq5aa9BOPuFp+ZdzC/MVpN+jsjq2J/M
 Zq6RNyA2HFyQeP0E9QgFsYS2BNOPeLZnT5Jg1z4jyiD32lAZ/iC51zwm4oNKcDM=
 =bPlD
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "ARM:
   - VHE optimizations

   - EL2 address space randomization

   - speculative execution mitigations ("variant 3a", aka execution past
     invalid privilege register access)

   - bugfixes and cleanups

  PPC:
   - improvements for the radix page fault handler for HV KVM on POWER9

  s390:
   - more kvm stat counters

   - virtio gpu plumbing

   - documentation

   - facilities improvements

  x86:
   - support for VMware magic I/O port and pseudo-PMCs

   - AMD pause loop exiting

   - support for AMD core performance extensions

   - support for synchronous register access

   - expose nVMX capabilities to userspace

   - support for Hyper-V signaling via eventfd

   - use Enlightened VMCS when running on Hyper-V

   - allow userspace to disable MWAIT/HLT/PAUSE vmexits

   - usual roundup of optimizations and nested virtualization bugfixes

  Generic:
   - API selftest infrastructure (though the only tests are for x86 as
     of now)"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (174 commits)
  kvm: x86: fix a prototype warning
  kvm: selftests: add sync_regs_test
  kvm: selftests: add API testing infrastructure
  kvm: x86: fix a compile warning
  KVM: X86: Add Force Emulation Prefix for "emulate the next instruction"
  KVM: X86: Introduce handle_ud()
  KVM: vmx: unify adjacent #ifdefs
  x86: kvm: hide the unused 'cpu' variable
  KVM: VMX: remove bogus WARN_ON in handle_ept_misconfig
  Revert "KVM: X86: Fix SMRAM accessing even if VM is shutdown"
  kvm: Add emulation for movups/movupd
  KVM: VMX: raise internal error for exception during invalid protected mode state
  KVM: nVMX: Optimization: Dont set KVM_REQ_EVENT when VMExit with nested_run_pending
  KVM: nVMX: Require immediate-exit when event reinjected to L2 and L1 event pending
  KVM: x86: Fix misleading comments on handling pending exceptions
  KVM: x86: Rename interrupt.pending to interrupt.injected
  KVM: VMX: No need to clear pending NMI/interrupt on inject realmode interrupt
  x86/kvm: use Enlightened VMCS when running on Hyper-V
  x86/hyper-v: detect nested features
  x86/hyper-v: define struct hv_enlightened_vmcs and clean field bits
  ...
2018-04-09 11:42:31 -07:00
Peng Hao
e01bca2fc6 kvm: x86: fix a prototype warning
Make the function static to avoid a

    warning: no previous prototype for ‘vmx_enable_tdp’

Signed-off-by: Peng Hao <peng.hao2@zte.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-06 18:20:31 +02:00
Peng Hao
3140c156e9 kvm: x86: fix a compile warning
fix a "warning: no previous prototype".

Cc: stable@vger.kernel.org
Signed-off-by: Peng Hao <peng.hao2@zte.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-04 19:10:29 +02:00
Wanpeng Li
6c86eedc20 KVM: X86: Add Force Emulation Prefix for "emulate the next instruction"
There is no easy way to force KVM to run an instruction through the emulator
(by design as that will expose the x86 emulator as a significant attack-surface).
However, we do wish to expose the x86 emulator in case we are testing it
(e.g. via kvm-unit-tests). Therefore, this patch adds a "force emulation prefix"
that is designed to raise #UD which KVM will trap and it's #UD exit-handler will
match "force emulation prefix" to run instruction after prefix by the x86 emulator.
To not expose the x86 emulator by default, we add a module parameter that should
be off by default.

A simple testcase here:

    #include <stdio.h>
    #include <string.h>

    #define HYPERVISOR_INFO 0x40000000

    #define CPUID(idx, eax, ebx, ecx, edx) \
        asm volatile (\
        "ud2a; .ascii \"kvm\"; cpuid" \
        :"=b" (*ebx), "=a" (*eax), "=c" (*ecx), "=d" (*edx) \
            :"0"(idx) );

    void main()
    {
        unsigned int eax, ebx, ecx, edx;
        char string[13];

        CPUID(HYPERVISOR_INFO, &eax, &ebx, &ecx, &edx);
        *(unsigned int *)(string + 0) = ebx;
        *(unsigned int *)(string + 4) = ecx;
        *(unsigned int *)(string + 8) = edx;

        string[12] = 0;
        if (strncmp(string, "KVMKVMKVM\0\0\0", 12) == 0)
            printf("kvm guest\n");
        else
            printf("bare hardware\n");
    }

Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
[Correctly handle usermode exits. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-04 19:09:40 +02:00
Wanpeng Li
082d06edab KVM: X86: Introduce handle_ud()
Introduce handle_ud() to handle invalid opcode, this function will be
used by later patches.

Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim KrÄmář <rkrcmar@redhat.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-04 19:03:58 +02:00
Paolo Bonzini
4fde8d57cf KVM: vmx: unify adjacent #ifdefs
vmx_save_host_state has multiple ifdefs for CONFIG_X86_64 that have
no other code between them.  Simplify by reducing them to a single
conditional.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-04 18:58:59 +02:00
Arnd Bergmann
51e8a8cc2f x86: kvm: hide the unused 'cpu' variable
The local variable was newly introduced but is only accessed in one
place on x86_64, but not on 32-bit:

arch/x86/kvm/vmx.c: In function 'vmx_save_host_state':
arch/x86/kvm/vmx.c:2175:6: error: unused variable 'cpu' [-Werror=unused-variable]

This puts it into another #ifdef.

Fixes: 35060ed6a1 ("x86/kvm/vmx: avoid expensive rdmsr for MSR_GS_BASE")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-04 18:57:40 +02:00
Sean Christopherson
c75d0edc8e KVM: VMX: remove bogus WARN_ON in handle_ept_misconfig
Remove the WARN_ON in handle_ept_misconfig() as it is unnecessary
and causes false positives.  Return the unmodified result of
kvm_mmu_page_fault() instead of converting a system error code to
KVM_EXIT_UNKNOWN so that userspace sees the error code of the
actual failure, not a generic "we don't know what went wrong".

  * kvm_mmu_page_fault() will WARN if reserved bits are set in the
    SPTEs, i.e. it covers the case where an EPT misconfig occurred
    because of a KVM bug.

  * The WARN_ON will fire on any system error code that is hit while
    handling the fault, e.g. -ENOMEM from mmu_topup_memory_caches()
    while handling a legitmate MMIO EPT misconfig or -EFAULT from
    kvm_handle_bad_page() if the corresponding HVA is invalid.  In
    either case, userspace should receive the original error code
    and firing a warning is incorrect behavior as KVM is operating
    as designed.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-04 18:00:40 +02:00
Sean Christopherson
2c151b2544 Revert "KVM: X86: Fix SMRAM accessing even if VM is shutdown"
The bug that led to commit 95e057e258
was a benign warning (no adverse affects other than the warning
itself) that was detected by syzkaller.  Further inspection shows
that the WARN_ON in question, in handle_ept_misconfig(), is
unnecessary and flawed (this was also briefly discussed in the
original patch: https://patchwork.kernel.org/patch/10204649).

  * The WARN_ON is unnecessary as kvm_mmu_page_fault() will WARN
    if reserved bits are set in the SPTEs, i.e. it covers the case
    where an EPT misconfig occurred because of a KVM bug.

  * The WARN_ON is flawed because it will fire on any system error
    code that is hit while handling the fault, e.g. -ENOMEM can be
    returned by mmu_topup_memory_caches() while handling a legitmate
    MMIO EPT misconfig.

The original behavior of returning -EFAULT when userspace munmaps
an HVA without first removing the memslot is correct and desirable,
i.e. KVM is letting userspace know it has generated a bad address.
Returning RET_PF_EMULATE masks the WARN_ON in the EPT misconfig path,
but does not fix the underlying bug, i.e. the WARN_ON is bogus.

Furthermore, returning RET_PF_EMULATE has the unwanted side effect of
causing KVM to attempt to emulate an instruction on any page fault
with an invalid HVA translation, e.g. a not-present EPT violation
on a VM_PFNMAP VMA whose fault handler failed to insert a PFN.

  * There is no guarantee that the fault is directly related to the
    instruction, i.e. the fault could have been triggered by a side
    effect memory access in the guest, e.g. while vectoring a #DB or
    writing a tracing record.  This could cause KVM to effectively
    mask the fault if KVM doesn't model the behavior leading to the
    fault, i.e. emulation could succeed and resume the guest.

  * If emulation does fail, KVM will return EMULATION_FAILED instead
    of -EFAULT, which is a red herring as the user will either debug
    a bogus emulation attempt or scratch their head wondering why we
    were attempting emulation in the first place.

TL;DR: revert to returning -EFAULT and remove the bogus WARN_ON in
handle_ept_misconfig in a future patch.

This reverts commit 95e057e258.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-04 18:00:36 +02:00
Stefan Fritsch
29916968c4 kvm: Add emulation for movups/movupd
This is very similar to the aligned versions movaps/movapd.

We have seen the corresponding emulation failures with openbsd as guest
and with Windows 10 with intel HD graphics pass through.

Signed-off-by: Christian Ehrhardt <christian_ehrhardt@genua.de>
Signed-off-by: Stefan Fritsch <sf@sfritsch.de>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-04 17:52:46 +02:00
Sean Christopherson
add5ff7a21 KVM: VMX: raise internal error for exception during invalid protected mode state
Exit to userspace with KVM_INTERNAL_ERROR_EMULATION if we encounter
an exception in Protected Mode while emulating guest due to invalid
guest state.  Unlike Big RM, KVM doesn't support emulating exceptions
in PM, i.e. PM exceptions are always injected via the VMCS.  Because
we will never do VMRESUME due to emulation_required, the exception is
never realized and we'll keep emulating the faulting instruction over
and over until we receive a signal.

Exit to userspace iff there is a pending exception, i.e. don't exit
simply on a requested event. The purpose of this check and exit is to
aid in debugging a guest that is in all likelihood already doomed.
Invalid guest state in PM is extremely limited in normal operation,
e.g. it generally only occurs for a few instructions early in BIOS,
and any exception at this time is all but guaranteed to be fatal.
Non-vectored interrupts, e.g. INIT, SIPI and SMI, can be cleanly
handled/emulated, while checking for vectored interrupts, e.g. INTR
and NMI, without hitting false positives would add a fair amount of
complexity for almost no benefit (getting hit by lightning seems
more likely than encountering this specific scenario).

Add a WARN_ON_ONCE to vmx_queue_exception() if we try to inject an
exception via the VMCS and emulation_required is true.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-04-04 17:51:55 +02:00
Linus Torvalds
986b37c0ae Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups and msr updates from Ingo Molnar:
 "The main change is a performance/latency improvement to /dev/msr
  access. The rest are misc cleanups"

* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/msr: Make rdmsrl_safe_on_cpu() scheduling safe as well
  x86/cpuid: Allow cpuid_read() to schedule
  x86/msr: Allow rdmsr_safe_on_cpu() to schedule
  x86/rtc: Stop using deprecated functions
  x86/dumpstack: Unify show_regs()
  x86/fault: Do not print IP in show_fault_oops()
  x86/MSR: Move native_* variants to msr.h
2018-04-02 15:16:43 -07:00
Linus Torvalds
72573481eb KVM fixes for v4.16-rc8
PPC:
  - Fix a bug causing occasional machine check exceptions on POWER8 hosts
    (introduced in 4.16-rc1)
 
 x86:
  - Fix a guest crashing regression with nested VMX and restricted guest
    (introduced in 4.16-rc1)
 
  - Fix dependency check for pv tlb flush (The wrong dependency that
    effectively disabled the feature was added in 4.16-rc4, the original
    feature in 4.16-rc1, so it got decent testing.)
 -----BEGIN PGP SIGNATURE-----
 
 iQEcBAABCAAGBQJavUt5AAoJEED/6hsPKofo8uQH/RuijrsAIUnymkYY+6BYFXlh
 Ri8qhG8VB+C3SpWEtsqcqNVkjJTepCD2Ej5BJTL4Gc9BSTWy7Ht6kqskEgwcnzu2
 xRfkg0q0vTj1+GDd+UiTZfxiinoHtB9x3fiXali5UNTCd1fweLxdidETfO+GqMMq
 KDhTR+S8dXE5VG7r+iJ80LZPtHQJ94f0fh9XpQk3X2ExTG5RBxag1U2nCfiKRAZk
 xRv1CNAxNaBxS38CgYfHzg31NJx38fnq/qREsIdOx0Ju9WQkglBFkhLAGUb4vL0I
 nn8YX/oV9cW2G8tyPWjC245AouABOLbzu0xyj5KgCY/z1leA9tdLFX/ET6Zye+E=
 =++uZ
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM fixes from Radim Krčmář:
 "PPC:
   - Fix a bug causing occasional machine check exceptions on POWER8
     hosts (introduced in 4.16-rc1)

  x86:
   - Fix a guest crashing regression with nested VMX and restricted
     guest (introduced in 4.16-rc1)

   - Fix dependency check for pv tlb flush (the wrong dependency that
     effectively disabled the feature was added in 4.16-rc4, the
     original feature in 4.16-rc1, so it got decent testing)"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
  KVM: x86: Fix pv tlb flush dependencies
  KVM: nVMX: sync vmcs02 segment regs prior to vmx_set_cr0
  KVM: PPC: Book3S HV: Fix duplication of host SLB entries
2018-03-30 07:24:14 -10:00
Liran Alon
f497b6c25d KVM: nVMX: Optimization: Dont set KVM_REQ_EVENT when VMExit with nested_run_pending
When vCPU runs L2 and there is a pending event that requires to exit
from L2 to L1 and nested_run_pending=1, vcpu_enter_guest() will request
an immediate-exit from L2 (See req_immediate_exit).

Since now handling of req_immediate_exit also makes sure to set
KVM_REQ_EVENT, there is no need to also set it on vmx_vcpu_run() when
nested_run_pending=1.

This optimizes cases where VMRESUME was executed by L1 to enter L2 and
there is no pending events that require exit from L2 to L1. Previously,
this would have set KVM_REQ_EVENT unnecessarly.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28 22:47:06 +02:00
Liran Alon
1a680e355c KVM: nVMX: Require immediate-exit when event reinjected to L2 and L1 event pending
In case L2 VMExit to L0 during event-delivery, VMCS02 is filled with
IDT-vectoring-info which vmx_complete_interrupts() makes sure to
reinject before next resume of L2.

While handling the VMExit in L0, an IPI could be sent by another L1 vCPU
to the L1 vCPU which currently runs L2 and exited to L0.

When L0 will reach vcpu_enter_guest() and call inject_pending_event(),
it will note that a previous event was re-injected to L2 (by
IDT-vectoring-info) and therefore won't check if there are pending L1
events which require exit from L2 to L1. Thus, L0 enters L2 without
immediate VMExit even though there are pending L1 events!

This commit fixes the issue by making sure to check for L1 pending
events even if a previous event was reinjected to L2 and bailing out
from inject_pending_event() before evaluating a new pending event in
case an event was already reinjected.

The bug was observed by the following setup:
* L0 is a 64CPU machine which runs KVM.
* L1 is a 16CPU machine which runs KVM.
* L0 & L1 runs with APICv disabled.
(Also reproduced with APICv enabled but easier to analyze below info
with APICv disabled)
* L1 runs a 16CPU L2 Windows Server 2012 R2 guest.
During L2 boot, L1 hangs completely and analyzing the hang reveals that
one L1 vCPU is holding KVM's mmu_lock and is waiting forever on an IPI
that he has sent for another L1 vCPU. And all other L1 vCPUs are
currently attempting to grab mmu_lock. Therefore, all L1 vCPUs are stuck
forever (as L1 runs with kernel-preemption disabled).

Observing /sys/kernel/debug/tracing/trace_pipe reveals the following
series of events:
(1) qemu-system-x86-19066 [030] kvm_nested_vmexit: rip:
0xfffff802c5dca82f reason: EPT_VIOLATION ext_inf1: 0x0000000000000182
ext_inf2: 0x00000000800000d2 ext_int: 0x00000000 ext_int_err: 0x00000000
(2) qemu-system-x86-19054 [028] kvm_apic_accept_irq: apicid f
vec 252 (Fixed|edge)
(3) qemu-system-x86-19066 [030] kvm_inj_virq: irq 210
(4) qemu-system-x86-19066 [030] kvm_entry: vcpu 15
(5) qemu-system-x86-19066 [030] kvm_exit: reason EPT_VIOLATION
rip 0xffffe00069202690 info 83 0
(6) qemu-system-x86-19066 [030] kvm_nested_vmexit: rip:
0xffffe00069202690 reason: EPT_VIOLATION ext_inf1: 0x0000000000000083
ext_inf2: 0x0000000000000000 ext_int: 0x00000000 ext_int_err: 0x00000000
(7) qemu-system-x86-19066 [030] kvm_nested_vmexit_inject: reason:
EPT_VIOLATION ext_inf1: 0x0000000000000083 ext_inf2: 0x0000000000000000
ext_int: 0x00000000 ext_int_err: 0x00000000
(8) qemu-system-x86-19066 [030] kvm_entry: vcpu 15

Which can be analyzed as follows:
(1) L2 VMExit to L0 on EPT_VIOLATION during delivery of vector 0xd2.
Therefore, vmx_complete_interrupts() will set KVM_REQ_EVENT and reinject
a pending-interrupt of 0xd2.
(2) L1 sends an IPI of vector 0xfc (CALL_FUNCTION_VECTOR) to destination
vCPU 15. This will set relevant bit in LAPIC's IRR and set KVM_REQ_EVENT.
(3) L0 reach vcpu_enter_guest() which calls inject_pending_event() which
notes that interrupt 0xd2 was reinjected and therefore calls
vmx_inject_irq() and returns. Without checking for pending L1 events!
Note that at this point, KVM_REQ_EVENT was cleared by vcpu_enter_guest()
before calling inject_pending_event().
(4) L0 resumes L2 without immediate-exit even though there is a pending
L1 event (The IPI pending in LAPIC's IRR).

We have already reached the buggy scenario but events could be
furthered analyzed:
(5+6) L2 VMExit to L0 on EPT_VIOLATION.  This time not during
event-delivery.
(7) L0 decides to forward the VMExit to L1 for further handling.
(8) L0 resumes into L1. Note that because KVM_REQ_EVENT is cleared, the
LAPIC's IRR is not examined and therefore the IPI is still not delivered
into L1!

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28 22:47:06 +02:00
Liran Alon
a042c26fd8 KVM: x86: Fix misleading comments on handling pending exceptions
The reason that exception.pending should block re-injection of
NMI/interrupt is not described correctly in comment in code.
Instead, it describes why a pending exception should be injected
before a pending NMI/interrupt.

Therefore, move currently present comment to code-block evaluating
a new pending event which explains why exception.pending is evaluated
first.
In addition, create a new comment describing that exception.pending
blocks re-injection of NMI/interrupt because the exception was
queued by handling vmexit which was due to NMI/interrupt delivery.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@orcle.com>
[Used a comment from Sean J <sean.j.christopherson@intel.com>. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28 22:47:06 +02:00
Liran Alon
04140b4144 KVM: x86: Rename interrupt.pending to interrupt.injected
For exceptions & NMIs events, KVM code use the following
coding convention:
*) "pending" represents an event that should be injected to guest at
some point but it's side-effects have not yet occurred.
*) "injected" represents an event that it's side-effects have already
occurred.

However, interrupts don't conform to this coding convention.
All current code flows mark interrupt.pending when it's side-effects
have already taken place (For example, bit moved from LAPIC IRR to
ISR). Therefore, it makes sense to just rename
interrupt.pending to interrupt.injected.

This change follows logic of previous commit 664f8e26b0 ("KVM: X86:
Fix loss of exception which has not yet been injected") which changed
exception to follow this coding convention as well.

It is important to note that in case !lapic_in_kernel(vcpu),
interrupt.pending usage was and still incorrect.
In this case, interrrupt.pending can only be set using one of the
following ioctls: KVM_INTERRUPT, KVM_SET_VCPU_EVENTS and
KVM_SET_SREGS. Looking at how QEMU uses these ioctls, one can see that
QEMU uses them either to re-set an "interrupt.pending" state it has
received from KVM (via KVM_GET_VCPU_EVENTS interrupt.pending or
via KVM_GET_SREGS interrupt_bitmap) or by dispatching a new interrupt
from QEMU's emulated LAPIC which reset bit in IRR and set bit in ISR
before sending ioctl to KVM. So it seems that indeed "interrupt.pending"
in this case is also suppose to represent "interrupt.injected".
However, kvm_cpu_has_interrupt() & kvm_cpu_has_injectable_intr()
is misusing (now named) interrupt.injected in order to return if
there is a pending interrupt.
This leads to nVMX/nSVM not be able to distinguish if it should exit
from L2 to L1 on EXTERNAL_INTERRUPT on pending interrupt or should
re-inject an injected interrupt.
Therefore, add a FIXME at these functions for handling this issue.

This patch introduce no semantics change.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28 22:47:06 +02:00
Liran Alon
7c5a6a5970 KVM: VMX: No need to clear pending NMI/interrupt on inject realmode interrupt
kvm_inject_realmode_interrupt() is called from one of the injection
functions which writes event-injection to VMCS: vmx_queue_exception(),
vmx_inject_irq() and vmx_inject_nmi().

All these functions are called just to cause an event-injection to
guest. They are not responsible of manipulating the event-pending
flag. The only purpose of kvm_inject_realmode_interrupt() should be
to emulate real-mode interrupt-injection.

This was also incorrect when called from vmx_queue_exception().

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28 22:47:06 +02:00
Vitaly Kuznetsov
773e8a0425 x86/kvm: use Enlightened VMCS when running on Hyper-V
Enlightened VMCS is just a structure in memory, the main benefit
besides avoiding somewhat slower VMREAD/VMWRITE is using clean field
mask: we tell the underlying hypervisor which fields were modified
since VMEXIT so there's no need to inspect them all.

Tight CPUID loop test shows significant speedup:
Before: 18890 cycles
After: 8304 cycles

Static key is being used to avoid performance penalty for non-Hyper-V
deployments.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28 22:47:06 +02:00
Ladi Prosek
d4abc577bb x86/kvm: rename HV_X64_MSR_APIC_ASSIST_PAGE to HV_X64_MSR_VP_ASSIST_PAGE
The assist page has been used only for the paravirtual EOI so far, hence
the "APIC" in the MSR name. Renaming to match the Hyper-V TLFS where it's
called "Virtual VP Assist MSR".

Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28 22:47:06 +02:00
Babu Moger
8566ac8b8e KVM: SVM: Implement pause loop exit logic in SVM
Bring the PLE(pause loop exit) logic to AMD svm driver.

While testing, we found this helping in situations where numerous
pauses are generated. Without these patches we could see continuos
VMEXITS due to pause interceptions. Tested it on AMD EPYC server with
boot parameter idle=poll on a VM with 32 vcpus to simulate extensive
pause behaviour. Here are VMEXITS in 10 seconds interval.

Pauses                  810199                  504
Total                   882184                  325415

Signed-off-by: Babu Moger <babu.moger@amd.com>
[Prevented the window from dropping below the initial value. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28 22:47:06 +02:00
Babu Moger
1d8fb44a72 KVM: SVM: Add pause filter threshold
This patch adds the support for pause filtering threshold. This feature
support is indicated by CPUID Fn8000_000A_EDX. See AMD APM Vol 2 Section
15.14.4 Pause Intercept Filtering for more details.

In this mode, a 16-bit pause filter threshold field is added in VMCB.
The threshold value is a cycle count that is used to reset the pause
counter.  As with simple pause filtering, VMRUN loads the pause count
value from VMCB into an internal counter. Then, on each pause instruction
the hardware checks the elapsed number of cycles since the most recent
pause instruction against the pause Filter Threshold. If the elapsed cycle
count is greater than the pause filter threshold, then the internal pause
count is reloaded from VMCB and execution continues. If the elapsed cycle
count is less than the pause filter threshold, then the internal pause
count is decremented. If the count value is less than zero and pause
intercept is enabled, a #VMEXIT is triggered. If advanced pause filtering
is supported and pause filter threshold field is set to zero, the filter
will operate in the simpler, count only mode.

Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28 22:47:06 +02:00
Babu Moger
c8e88717cf KVM: VMX: Bring the common code to header file
This patch brings some of the code from vmx to x86.h header file. Now, we
can share this code between vmx and svm. Modified couple functions to make
it common.

Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28 22:47:06 +02:00
Babu Moger
18abdc3425 KVM: VMX: Remove ple_window_actual_max
Get rid of ple_window_actual_max, because its benefits are really
minuscule and the logic is complicated.

The overflows(and underflow) are controlled in __ple_window_grow
and _ple_window_shrink respectively.

Suggested-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Babu Moger <babu.moger@amd.com>
[Fixed potential wraparound and change the max to UINT_MAX. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28 22:47:06 +02:00
Babu Moger
7fbc85a5fb KVM: VMX: Fix the module parameters for vmx
The vmx module parameters are supposed to be unsigned variants.

Also fixed the checkpatch errors like the one below.

WARNING: Symbolic permissions 'S_IRUGO' are not preferred. Consider using octal permissions '0444'.
+module_param(ple_gap, uint, S_IRUGO);

Signed-off-by: Babu Moger <babu.moger@amd.com>
[Expanded uint to unsigned int in code. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28 22:47:06 +02:00
Andi Kleen
dd60d21706 KVM: x86: Fix perf timer mode IP reporting
KVM and perf have a special backdoor mechanism to report the IP for interrupts
re-executed after vm exit. This works for the NMIs that perf normally uses.

However when perf is in timer mode it doesn't work because the timer interrupt
doesn't get this special treatment. This is common when KVM is running
nested in another hypervisor which may not implement the PMU, so only
timer mode is available.

Call the functions to set up the backdoor IP also for non NMI interrupts.

I renamed the functions to set up the backdoor IP reporting to be more
appropiate for their new use.  The SVM change is only compile tested.

v2: Moved the functions inline.
For the normal interrupt case the before/after functions are now
called from x86.c, not arch specific code.
For the NMI case we still need to call it in the architecture
specific code, because it's already needed in the low level *_run
functions.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
[Removed unnecessary calls from arch handle_external_intr. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28 16:12:59 +02:00
Dan Carpenter
d32ef547fd kvm: x86: hyperv: delete dead code in kvm_hv_hypercall()
"rep_done" is always zero so the "(((u64)rep_done & 0xfff) << 32)"
expression is just zero.  We can remove the "res" temporary variable as
well and just use "ret" directly.

Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-23 20:11:01 +01:00
Sean Christopherson
81811c162d KVM: SVM: add struct kvm_svm to hold SVM specific KVM vars
Add struct kvm_svm, which is analagous to struct vcpu_svm, along with
a helper to_kvm_svm() to retrieve kvm_svm from a struct kvm *.  Move
the SVM specific variables and struct definitions out of kvm_arch
and into kvm_svm.

Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-23 18:32:19 +01:00
Sean Christopherson
40bbb9d03f KVM: VMX: add struct kvm_vmx to hold VMX specific KVM vars
Add struct kvm_vmx, which wraps struct kvm, and a helper to_kvm_vmx()
that retrieves 'struct kvm_vmx *' from 'struct kvm *'.  Move the VMX
specific variables out of kvm_arch and into kvm_vmx.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-23 18:32:03 +01:00
Sean Christopherson
2ac52ab861 KVM: x86: move setting of ept_identity_map_addr to vmx.c
Add kvm_x86_ops->set_identity_map_addr and set ept_identity_map_addr
in VMX specific code so that ept_identity_map_addr can be moved out
of 'struct kvm_arch' in a future patch.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-23 18:30:47 +01:00
Sean Christopherson
434a1e9446 KVM: x86: define SVM/VMX specific kvm_arch_[alloc|free]_vm
Define kvm_arch_[alloc|free]_vm in x86 as pass through functions
to new kvm_x86_ops vm_alloc and vm_free, and move the current
allocation logic as-is to SVM and VMX.  Vendor specific alloc/free
functions set the stage for SVM/VMX wrappers of 'struct kvm',
which will allow us to move the growing number of SVM/VMX specific
member variables out of 'struct kvm_arch'.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-23 18:30:44 +01:00
Sean Christopherson
9d1887ef32 KVM: nVMX: sync vmcs02 segment regs prior to vmx_set_cr0
Segment registers must be synchronized prior to any code that may
trigger a call to emulation_required()/guest_state_valid(), e.g.
vmx_set_cr0().  Because preparing vmcs02 writes segmentation fields
directly, i.e. doesn't use vmx_set_segment(), emulation_required
will not be re-evaluated when synchronizing the segment registers,
which can result in L0 incorrectly starting emulation of L2.

Fixes: 8665c3f973 ("KVM: nVMX: initialize descriptor cache fields in prepare_vmcs02_full")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
[Move all of prepare_vmcs02_full earlier, not just segment registers. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-23 18:26:21 +01:00
Paolo Bonzini
3184a995f7 KVM: nVMX: fix vmentry failure code when L2 state would require emulation
Commit 2bb8cafea8 ("KVM: vVMX: signal failure for nested VMEntry if
emulation_required", 2018-03-12) introduces a new error path which does
not set *entry_failure_code.  Fix that to avoid a leak of L0 stack to L1.

Reported-by: Radim Krčmář <rkrcmar@redhat.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-21 14:20:33 +01:00
Liran Alon
e40ff1d660 KVM: nVMX: Do not load EOI-exitmap while running L2
When L1 IOAPIC redirection-table is written, a request of
KVM_REQ_SCAN_IOAPIC is set on all vCPUs. This is done such that
all vCPUs will now recalc their IOAPIC handled vectors and load
it to their EOI-exitmap.

However, it could be that one of the vCPUs is currently running
L2. In this case, load_eoi_exitmap() will be called which would
write to vmcs02->eoi_exit_bitmap, which is wrong because
vmcs02->eoi_exit_bitmap should always be equal to
vmcs12->eoi_exit_bitmap. Furthermore, at this point
KVM_REQ_SCAN_IOAPIC was already consumed and therefore we will
never update vmcs01->eoi_exit_bitmap. This could lead to remote_irr
of some IOAPIC level-triggered entry to remain set forever.

Fix this issue by delaying the load of EOI-exitmap to when vCPU
is running L1.

One may wonder why not just delay entire KVM_REQ_SCAN_IOAPIC
processing to when vCPU is running L1. This is done in order to handle
correctly the case where LAPIC & IO-APIC of L1 is pass-throughed into
L2. In this case, vmcs12->virtual_interrupt_delivery should be 0. In
current nVMX implementation, that results in
vmcs02->virtual_interrupt_delivery to also be 0. Thus,
vmcs02->eoi_exit_bitmap is not used. Therefore, every L2 EOI cause
a #VMExit into L0 (either on MSR_WRITE to x2APIC MSR or
APIC_ACCESS/APIC_WRITE/EPT_MISCONFIG to APIC MMIO page).
In order for such L2 EOI to be broadcasted, if needed, from LAPIC
to IO-APIC, vcpu->arch.ioapic_handled_vectors must be updated
while L2 is running. Therefore, patch makes sure to delay only the
loading of EOI-exitmap but not the update of
vcpu->arch.ioapic_handled_vectors.

Reviewed-by: Arbel Moshe <arbel.moshe@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-21 14:16:44 +01:00
Linus Torvalds
32d43cd391 kvm/x86: fix icebp instruction handling
The undocumented 'icebp' instruction (aka 'int1') works pretty much like
'int3' in the absense of in-circuit probing equipment (except,
obviously, that it raises #DB instead of raising #BP), and is used by
some validation test-suites as such.

But Andy Lutomirski noticed that his test suite acted differently in kvm
than on bare hardware.

The reason is that kvm used an inexact test for the icebp instruction:
it just assumed that an all-zero VM exit qualification value meant that
the VM exit was due to icebp.

That is not unlike the guess that do_debug() does for the actual
exception handling case, but it's purely a heuristic, not an absolute
rule.  do_debug() does it because it wants to ascribe _some_ reasons to
the #DB that happened, and an empty %dr6 value means that 'icebp' is the
most likely casue and we have no better information.

But kvm can just do it right, because unlike the do_debug() case, kvm
actually sees the real reason for the #DB in the VM-exit interruption
information field.

So instead of relying on an inexact heuristic, just use the actual VM
exit information that says "it was 'icebp'".

Right now the 'icebp' instruction isn't technically documented by Intel,
but that will hopefully change.  The special "privileged software
exception" information _is_ actually mentioned in the Intel SDM, even
though the cause of it isn't enumerated.

Reported-by: Andy Lutomirski <luto@kernel.org>
Tested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-03-20 14:58:34 -07:00
Vitaly Kuznetsov
35060ed6a1 x86/kvm/vmx: avoid expensive rdmsr for MSR_GS_BASE
vmx_save_host_state() is only called from kvm_arch_vcpu_ioctl_run() so
the context is pretty well defined and as we're past 'swapgs' MSR_GS_BASE
should contain kernel's GS base which we point to irq_stack_union.

Add new kernelmode_gs_base() API, irq_stack_union needs to be exported
as KVM can be build as module.

Acked-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:03:54 +01:00
Vitaly Kuznetsov
42b933b597 x86/kvm/vmx: read MSR_{FS,KERNEL_GS}_BASE from current->thread
vmx_save_host_state() is only called from kvm_arch_vcpu_ioctl_run() so
the context is pretty well defined. Read MSR_{FS,KERNEL_GS}_BASE from
current->thread after calling save_fsgs() which takes care of
X86_BUG_NULL_SEG case now and will do RD[FG,GS]BASE when FSGSBASE
extensions are exposed to userspace (currently they are not).

Acked-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:03:53 +01:00
Wanpeng Li
b31c114b82 KVM: X86: Provide a capability to disable PAUSE intercepts
Allow to disable pause loop exit/pause filtering on a per VM basis.

If some VMs have dedicated host CPUs, they won't be negatively affected
due to needlessly intercepted PAUSE instructions.

Thanks to Jan H. Schönherr's initial patch.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:03:53 +01:00
Wanpeng Li
caa057a2ca KVM: X86: Provide a capability to disable HLT intercepts
If host CPUs are dedicated to a VM, we can avoid VM exits on HLT.
This patch adds the per-VM capability to disable them.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:03:52 +01:00
Wanpeng Li
4d5422cea3 KVM: X86: Provide a capability to disable MWAIT intercepts
Allowing a guest to execute MWAIT without interception enables a guest
to put a (physical) CPU into a power saving state, where it takes
longer to return from than what may be desired by the host.

Don't give a guest that power over a host by default. (Especially,
since nothing prevents a guest from using MWAIT even when it is not
advertised via CPUID.)

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:03:51 +01:00
Arbel Moshe
2d7921c499 KVM: x86: Add support for VMware backdoor Pseudo-PMCs
VMware exposes the following Pseudo PMCs:
0x10000: Physical host TSC
0x10001: Elapsed real time in ns
0x10002: Elapsed apparent time in ns

For more info refer to:
https://www.vmware.com/files/pdf/techpaper/Timekeeping-In-VirtualMachines.pdf

VMware allows access to these Pseduo-PMCs even when read via RDPMC
in Ring3 and CR4.PCE=0. Therefore, commit modifies x86 emulator
to allow access to these PMCs in this situation. In addition,
emulation of these PMCs were added to kvm_pmu_rdpmc().

Signed-off-by: Arbel Moshe <arbel.moshe@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:02:01 +01:00
Liran Alon
9718420e9f KVM: x86: SVM: Intercept #GP to support access to VMware backdoor ports
If KVM enable_vmware_backdoor module parameter is set,
the commit change VMX to now intercept #GP instead of being directly
deliviered from CPU to guest.

It is done to support access to VMware Backdoor I/O ports
even if TSS I/O permission denies it.
In that case:
1. A #GP will be raised and intercepted.
2. #GP intercept handler will simulate I/O port access instruction.
3. I/O port access instruction simulation will allow access to VMware
backdoor ports specifically even if TSS I/O permission bitmap denies it.

Note that the above change introduce slight performance hit as now #GPs
are now not deliviered directly from CPU to guest but instead
cause #VMExit and instruction emulation.
However, this behavior is introduced only when enable_vmware_backdoor
KVM module parameter is set.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:01:43 +01:00
Liran Alon
9e86948041 KVM: x86: VMX: Intercept #GP to support access to VMware backdoor ports
If KVM enable_vmware_backdoor module parameter is set,
the commit change VMX to now intercept #GP instead of being directly
deliviered from CPU to guest.

It is done to support access to VMware backdoor I/O ports
even if TSS I/O permission denies it.
In that case:
1. A #GP will be raised and intercepted.
2. #GP intercept handler will simulate I/O port access instruction.
3. I/O port access instruction simulation will allow access to VMware
backdoor ports specifically even if TSS I/O permission bitmap denies it.

Note that the above change introduce slight performance hit as now #GPs
are not deliviered directly from CPU to guest but instead
cause #VMExit and instruction emulation.
However, this behavior is introduced only when enable_vmware_backdoor
KVM module parameter is set.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:01:42 +01:00
Liran Alon
04789b6664 KVM: x86: Emulate only IN/OUT instructions when accessing VMware backdoor
Access to VMware backdoor ports is done by one of the IN/OUT/INS/OUTS
instructions. These ports must be allowed access even if TSS I/O
permission bitmap don't allow it.

To handle this, VMX/SVM will be changed in future commits
to intercept #GP which was raised by such access and
handle it by calling x86 emulator to emulate instruction.
If it was one of these instructions, the x86 emulator already handles
it correctly (Since commit "KVM: x86: Always allow access to VMware
backdoor I/O ports") by not checking these ports against TSS I/O
permission bitmap.

One may wonder why checking for specific instructions is necessary
as we can just forward all #GPs to the x86 emulator.
There are multiple reasons for doing so:

1. We don't want the x86 emulator to be reached easily
by guest by just executing an instruction that raises #GP as that
exposes the x86 emulator as a bigger attack surface.

2. The x86 emulator is incomplete and therefore certain instructions
that can cause #GP cannot be emulated. Such an example is "INT x"
(opcode 0xcd) which reaches emulate_int() which can only emulate
the instruction if vCPU is in real-mode.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:01:42 +01:00
Liran Alon
e236617120 KVM: x86: Add emulation_type to not raise #UD on emulation failure
Next commits are going introduce support for accessing VMware backdoor
ports even though guest's TSS I/O permissions bitmap doesn't allow
access. This mimic VMware hypervisor behavior.

In order to support this, next commits will change VMX/SVM to
intercept #GP which was raised by such access and handle it by calling
the x86 emulator to emulate instruction. Since commit "KVM: x86:
Always allow access to VMware backdoor I/O ports", the x86 emulator
handles access to these I/O ports by not checking these ports against
the TSS I/O permission bitmap.

However, there could be cases that CPU rasies a #GP on instruction
that fails to be disassembled by the x86 emulator (Because of
incomplete implementation for example).

In those cases, we would like the #GP intercept to just forward #GP
as-is to guest as if there was no intercept to begin with.
However, current emulator code always queues #UD exception in case
emulator fails (including disassembly failures) which is not what is
wanted in this flow.

This commit addresses this issue by adding a new emulation_type flag
that will allow the #GP intercept handler to specify that it wishes
to be aware when instruction emulation fails and doesn't want #UD
exception to be queued.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:01:41 +01:00
Liran Alon
9a29d449e3 KVM: x86: Always allow access to VMware backdoor I/O ports
VMware allows access to these ports even if denied
by TSS I/O permission bitmap. Mimic behavior.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:01:40 +01:00
Liran Alon
c4ae60e4bb KVM: x86: Add module parameter for supporting VMware backdoor
Support access to VMware backdoor requires KVM to intercept #GP
exceptions from guest which introduce slight performance hit.
Therefore, control this support by module parameter.

Note that module parameter is exported as it should be consumed by
kvm_intel & kvm_amd to determine if they should intercept #GP or not.

This commit doesn't change semantics.
It is done as a preparation for future commits.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:01:40 +01:00
Sean Christopherson
dca7f1284f KVM: x86: add kvm_fast_pio() to consolidate fast PIO code
Add kvm_fast_pio() to consolidate duplicate code in VMX and SVM.
Unexport kvm_fast_pio_in() and kvm_fast_pio_out().

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:01:39 +01:00
Sean Christopherson
432baf60ee KVM: VMX: use kvm_fast_pio_in for handling IN I/O
Fast emulation of processor I/O for IN was disabled on x86 (both VMX
and SVM) some years ago due to a buggy implementation.  The addition
of kvm_fast_pio_in(), used by SVM, re-introduced (functional!) fast
emulation of IN.  Piggyback SVM's work and use kvm_fast_pio_in() on
VMX instead of performing full emulation of IN.

Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:01:38 +01:00
Sean Christopherson
2bb8cafea8 KVM: vVMX: signal failure for nested VMEntry if emulation_required
Fail a nested VMEntry with EXIT_REASON_INVALID_STATE if L2 guest state
is invalid, i.e. vmcs12 contained invalid guest state, and unrestricted
guest is disabled in L0 (and by extension disabled in L1).

WARN_ON_ONCE in handle_invalid_guest_state() if we're attempting to
emulate L2, i.e. nested_run_pending is true, to aid debug in the
(hopefully unlikely) scenario that we somehow skip the nested VMEntry
consistency check, e.g. due to a L0 bug.

Note: KVM relies on hardware to detect the scenario where unrestricted
guest is enabled in L0 but disabled in L1 and vmcs12 contains invalid
guest state, i.e. checking emulation_required in prepare_vmcs02 is
required only to handle the case were unrestricted guest is disabled
in L0 since L0 never actually attempts VMLAUNCH/VMRESUME with vmcs02.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:01:38 +01:00
Sean Christopherson
e1de91ccab KVM: VMX: WARN on a MOV CR3 exit w/ unrestricted guest
CR3 load/store exiting are always off when unrestricted guest
is enabled.  WARN on the associated CR3 VMEXIT to detect code
that would re-introduce CR3 load/store exiting for unrestricted
guest.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-16 22:01:37 +01:00
Sean Christopherson
b4d185175b KVM: VMX: give unrestricted guest full control of CR3
Now CR3 is not forced to a host-controlled value when paging is
disabled in an unrestricted guest, CR3 load/store exiting can be
left disabled (for an unrestricted guest).  And because CR0.WP
and CR4.PAE/PSE are also not force to host-controlled values,
all of ept_update_paging_mode_cr0() is no longer needed, i.e.
skip ept_update_paging_mode_cr0() for an unrestricted guest.

Because MOV CR3 no longer exits when paging is disabled for an
unrestricted guest, vmx_decache_cr3() must always read GUEST_CR3
from the VMCS for an unrestricted guest.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-16 22:01:36 +01:00
Sean Christopherson
5dc1f044a3 KVM: VMX: don't force CR4.PAE/PSE for unrestricted guest
CR4.PAE - Unrestricted guest can only be enabled when EPT is
enabled, and vmx_set_cr4() clears hardware CR0.PAE based on
the guest's CR4.PAE, i.e. CR4.PAE always follows the guest's
value when unrestricted guest is enabled.

CR4.PSE - Unrestricted guest no longer uses the identity mapped
IA32 page tables since CR0.PG can be cleared in hardware, thus
there is no need to set CR4.PSE when paging is disabled in the
guest (and EPT is enabled).

Define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST (to X86_CR4_VMXE)
and use it in lieu of KVM_*MODE_VM_CR4_ALWAYS_ON when unrestricted
guest is enabled, which removes the forcing of CR4.PAE.

Skip the manipulation of CR4.PAE/PSE for EPT when unrestricted
guest is enabled, as CR4.PAE isn't forced and so doesn't need to
be manually cleared, and CR4.PSE does not need to be set when
paging is disabled since the identity mapped IA32 page tables
are not used.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-16 22:01:35 +01:00
Sean Christopherson
1706bd0c02 KVM: VMX: remove CR0.WP from ..._ALWAYS_ON_UNRESTRICTED_GUEST
Unrestricted guest can only be enabled when EPT is enabled, and
when EPT is enabled, ept_update_paging_mode_cr0() will clear
hardware CR0.WP based on the guest's CR0.WP, i.e. CR0.WP always
follows the guest's value when unrestricted guest is enabled.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-16 22:01:35 +01:00
Sean Christopherson
e90008df16 KVM: VMX: don't configure EPT identity map for unrestricted guest
An unrestricted guest can run with hardware CR0.PG==0, i.e.
IA32 paging disabled, in which case there is no need to load
the guest's CR3 with identity mapped IA32 page tables since
hardware will effectively ignore CR3.  If unrestricted guest
is enabled, don't configure the identity mapped IA32 page
table and always load the guest's desired CR3.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-16 22:01:34 +01:00
Sean Christopherson
f7eaeb0ad8 KVM: VMX: don't configure RM TSS for unrestricted guest
An unrestricted guest can run with CR0.PG==0 and/or CR0.PE==0,
e.g. it can run in Real Mode without requiring host emulation.
The RM TSS is only used for emulating RM, i.e. it will never
be used when unrestricted guest is enabled and so doesn't need
to be configured.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-16 22:01:33 +01:00
Vitaly Kuznetsov
915e6f78bd x86/kvm/hyper-v: inject #GP only when invalid SINTx vector is unmasked
Hyper-V 2016 on KVM with SynIC enabled doesn't boot with the following
trace:

    kvm_entry:            vcpu 0
    kvm_exit:             reason MSR_WRITE rip 0xfffff8000131c1e5 info 0 0
    kvm_hv_synic_set_msr: vcpu_id 0 msr 0x40000090 data 0x10000 host 0
    kvm_msr:              msr_write 40000090 = 0x10000 (#GP)
    kvm_inj_exception:    #GP (0x0)

KVM acts according to the following statement from TLFS:

"
11.8.4 SINTx Registers
...
Valid values for vector are 16-255 inclusive. Specifying an invalid
vector number results in #GP.
"

However, I checked and genuine Hyper-V doesn't #GP when we write 0x10000
to SINTx. I checked with Microsoft and they confirmed that if either the
Masked bit (bit 16) or the Polling bit (bit 18) is set to 1, then they
ignore the value of Vector. Make KVM act accordingly.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-16 22:01:33 +01:00
Vitaly Kuznetsov
98f65ad458 x86/kvm/hyper-v: remove stale entries from vec_bitmap/auto_eoi_bitmap on vector change
When a new vector is written to SINx we update vec_bitmap/auto_eoi_bitmap
but we forget to remove old vector from these masks (in case it is not
present in some other SINTx).

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-16 22:01:32 +01:00
Vitaly Kuznetsov
a2e164e7f4 x86/kvm/hyper-v: add reenlightenment MSRs support
Nested Hyper-V/Windows guest running on top of KVM will use TSC page
clocksource in two cases:
- L0 exposes invariant TSC (CPUID.80000007H:EDX[8]).
- L0 provides Hyper-V Reenlightenment support (CPUID.40000003H:EAX[13]).

Exposing invariant TSC effectively blocks migration to hosts with different
TSC frequencies, providing reenlightenment support will be needed when we
start migrating nested workloads.

Implement rudimentary support for reenlightenment MSRs. For now, these are
just read/write MSRs with no effect.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-16 22:01:31 +01:00
KarimAllah Ahmed
ddd6f0e94d KVM: x86: Update the exit_qualification access bits while walking an address
... to avoid having a stale value when handling an EPT misconfig for MMIO
regions.

MMIO regions that are not passed-through to the guest are handled through
EPT misconfigs. The first time a certain MMIO page is touched it causes an
EPT violation, then KVM marks the EPT entry to cause an EPT misconfig
instead. Any subsequent accesses to the entry will generate an EPT
misconfig.

Things gets slightly complicated with nested guest handling for MMIO
regions that are not passed through from L0 (i.e. emulated by L0
user-space).

An EPT violation for one of these MMIO regions from L2, exits to L0
hypervisor. L0 would then look at the EPT12 mapping for L1 hypervisor and
realize it is not present (or not sufficient to serve the request). Then L0
injects an EPT violation to L1. L1 would then update its EPT mappings. The
EXIT_QUALIFICATION value for L1 would come from exit_qualification variable
in "struct vcpu". The problem is that this variable is only updated on EPT
violation and not on EPT misconfig. So if an EPT violation because of a
read happened first, then an EPT misconfig because of a write happened
afterwards. The L0 hypervisor will still contain exit_qualification value
from the previous read instead of the write and end up injecting an EPT
violation to the L1 hypervisor with an out of date EXIT_QUALIFICATION.

The EPT violation that is injected from L0 to L1 needs to have the correct
EXIT_QUALIFICATION specially for the access bits because the individual
access bits for MMIO EPTs are updated only on actual access of this
specific type. So for the example above, the L1 hypervisor will keep
updating only the read bit in the EPT then resume the L2 guest. The L2
guest would end up causing another exit where the L0 *again* will inject
another EPT violation to L1 hypervisor with *again* an out of date
exit_qualification which indicates a read and not a write. Then this
ping-pong just keeps happening without making any forward progress.

The behavior of mapping MMIO regions changed in:

   commit a340b3e229 ("kvm: Map PFN-type memory regions as writable (if possible)")

... where an EPT violation for a read would also fixup the write bits to
avoid another EPT violation which by acciddent would fix the bug mentioned
above.

This commit fixes this situation and ensures that the access bits for the
exit_qualifcation is up to date. That ensures that even L1 hypervisor
running with a KVM version before the commit mentioned above would still
work.

( The description above assumes EPT to be available and used by L1
  hypervisor + the L1 hypervisor is passing through the MMIO region to the L2
  guest while this MMIO region is emulated by the L0 user-space ).

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-16 22:01:30 +01:00
Matthias Kaehlcke
1df372f473 KVM: x86: Make enum conversion explicit in kvm_pdptr_read()
The type 'enum kvm_reg_ex' is an extension of 'enum kvm_reg', however
the extension is only semantical and the compiler doesn't know about the
relationship between the two types. In kvm_pdptr_read() a value of the
extended type is passed to kvm_x86_ops->cache_reg(), which expects a
value of the base type. Clang raises the following warning about the
type mismatch:

arch/x86/kvm/kvm_cache_regs.h:44:32: warning: implicit conversion from
  enumeration type 'enum kvm_reg_ex' to different enumeration type
  'enum kvm_reg' [-Wenum-conversion]
    kvm_x86_ops->cache_reg(vcpu, VCPU_EXREG_PDPTR);

Cast VCPU_EXREG_PDPTR to 'enum kvm_reg' to make the compiler happy.

Signed-off-by: Matthias Kaehlcke <mka@chromium.org>
Reviewed-by: Guenter Roeck <groeck@chromium.org>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-16 22:01:30 +01:00
Vitaly Kuznetsov
0bcc3fb95b KVM: lapic: stop advertising DIRECTED_EOI when in-kernel IOAPIC is in use
Devices which use level-triggered interrupts under Windows 2016 with
Hyper-V role enabled don't work: Windows disables EOI broadcast in SPIV
unconditionally. Our in-kernel IOAPIC implementation emulates an old IOAPIC
version which has no EOI register so EOI never happens.

The issue was discovered and discussed a while ago:
https://www.spinics.net/lists/kvm/msg148098.html

While this is a guest OS bug (it should check that IOAPIC has the required
capabilities before disabling EOI broadcast) we can workaround it in KVM:
advertising DIRECTED_EOI with in-kernel IOAPIC makes little sense anyway.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-16 22:01:29 +01:00