Pull powerpc updates from Ben Herrenschmidt:
"Here is the bulk of the powerpc changes for this merge window. It got
a bit delayed in part because I wasn't paying attention, and in part
because I discovered I had a core PCI change without a PCI maintainer
ack in it. Bjorn eventually agreed it was ok to merge it though we'll
probably improve it later and I didn't want to rebase to add his ack.
There is going to be a bit more next week, essentially fixes that I
still want to sort through and test.
The biggest item this time is the support to build the ppc64 LE kernel
with our new v2 ABI. We previously supported v2 userspace but the
kernel itself was a tougher nut to crack. This is now sorted mostly
thanks to Anton and Rusty.
We also have a fairly big series from Cedric that add support for
64-bit LE zImage boot wrapper. This was made harder by the fact that
traditionally our zImage wrapper was always 32-bit, but our new LE
toolchains don't really support 32-bit anymore (it's somewhat there
but not really "supported") so we didn't want to rely on it. This
meant more churn that just endian fixes.
This brings some more LE bits as well, such as the ability to run in
LE mode without a hypervisor (ie. under OPAL firmware) by doing the
right OPAL call to reinitialize the CPU to take HV interrupts in the
right mode and the usual pile of endian fixes.
There's another series from Gavin adding EEH improvements (one day we
*will* have a release with less than 20 EEH patches, I promise!).
Another highlight is the support for the "Split core" functionality on
P8 by Michael. This allows a P8 core to be split into "sub cores" of
4 threads which allows the subcores to run different guests under KVM
(the HW still doesn't support a partition per thread).
And then the usual misc bits and fixes ..."
[ Further delayed by gmail deciding that BenH is a dirty spammer.
Google knows. ]
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (155 commits)
powerpc/powernv: Add missing include to LPC code
selftests/powerpc: Test the THP bug we fixed in the previous commit
powerpc/mm: Check paca psize is up to date for huge mappings
powerpc/powernv: Pass buffer size to OPAL validate flash call
powerpc/pseries: hcall functions are exported to modules, need _GLOBAL_TOC()
powerpc: Exported functions __clear_user and copy_page use r2 so need _GLOBAL_TOC()
powerpc/powernv: Set memory_block_size_bytes to 256MB
powerpc: Allow ppc_md platform hook to override memory_block_size_bytes
powerpc/powernv: Fix endian issues in memory error handling code
powerpc/eeh: Skip eeh sysfs when eeh is disabled
powerpc: 64bit sendfile is capped at 2GB
powerpc/powernv: Provide debugfs access to the LPC bus via OPAL
powerpc/serial: Use saner flags when creating legacy ports
powerpc: Add cpu family documentation
powerpc/xmon: Fix up xmon format strings
powerpc/powernv: Add calls to support little endian host
powerpc: Document sysfs DSCR interface
powerpc: Fix regression of per-CPU DSCR setting
powerpc: Split __SYSFS_SPRSETUP macro
arch: powerpc/fadump: Cleaning up inconsistent NULL checks
...
We have a bug in our hugepage handling which exhibits as an infinite
loop of hash faults. If the fault is being taken in the kernel it will
typically trigger the softlockup detector, or the RCU stall detector.
The bug is as follows:
1. mmap(0xa0000000, ..., MAP_FIXED | MAP_HUGE_TLB | MAP_ANONYMOUS ..)
2. Slice code converts the slice psize to 16M.
3. The code on lines 539-540 of slice.c in slice_get_unmapped_area()
synchronises the mm->context with the paca->context. So the paca slice
mask is updated to include the 16M slice.
3. Either:
* mmap() fails because there are no huge pages available.
* mmap() succeeds and the mapping is then munmapped.
In both cases the slice psize remains at 16M in both the paca & mm.
4. mmap(0xa0000000, ..., MAP_FIXED | MAP_ANONYMOUS ..)
5. The slice psize is converted back to 64K. Because of the check on line 539
of slice.c we DO NOT update the paca->context. The paca slice mask is now
out of sync with the mm slice mask.
6. User/kernel accesses 0xa0000000.
7. The SLB miss handler slb_allocate_realmode() **uses the paca slice mask**
to create an SLB entry and inserts it in the SLB.
18. With the 16M SLB entry in place the hardware does a hash lookup, no entry
is found so a data access exception is generated.
19. The data access handler calls do_page_fault() -> handle_mm_fault().
10. __handle_mm_fault() creates a THP mapping with do_huge_pmd_anonymous_page().
11. The hardware retries the access, there is still nothing in the hash table
so once again a data access exception is generated.
12. hash_page() calls into __hash_page_thp() and inserts a mapping in the
hash. Although the THP mapping maps 16M the hashing is done using 64K
as the segment page size.
13. hash_page() returns immediately after calling __hash_page_thp(), skipping
over the code at line 1125. Resulting in the mismatch between the
paca->context and mm->context not being detected.
14. The hardware retries the access, the hash it generates using the 16M
SLB entry does NOT match the hash we inserted.
15. We take another data access and go into __hash_page_thp().
16. We see a valid entry in the hpte_slot_array and so we call updatepp()
which succeeds.
17. Goto 14.
We could fix this in two ways. The first would be to remove or modify
the check on line 539 of slice.c.
The second option is to cause the check of paca psize in hash_page() on
line 1125 to also be done for THP pages.
We prefer the latter, because the check & update of the paca psize is
not done until we know it's necessary. It's also done only on the
current cpu, so we don't need to IPI all other cpus.
Without further rearranging the code, the simplest fix is to pull out
the code that checks paca psize and call it in two places. Firstly for
THP/hugetlb, and secondly for other mappings as before.
Thanks to Dave Jones for trinity, which originally found this bug.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: stable@vger.kernel.org [v3.11+]
Currently hugepage migration is available for all archs which support
pmd-level hugepage, but testing is done only for x86_64 and there're
bugs for other archs. So to avoid breaking such archs, this patch
limits the availability strictly to x86_64 until developers of other
archs get interested in enabling this feature.
Simply disabling hugepage migration on non-x86_64 archs is not enough to
fix the reported problem where sys_move_pages() hits the BUG_ON() in
follow_page(FOLL_GET), so let's fix this by checking if hugepage
migration is supported in vma_migratable().
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Miller <davem@davemloft.net>
Cc: <stable@vger.kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Another round of clean-up of FDT related code in architecture code.
This removes knowledge of internal FDT details from most architectures
except powerpc.
- Conversion of kernel's custom FDT parsing code to use libfdt.
- DT based initialization for generic serial earlycon. The introduction
of generic serial earlycon support went in thru tty tree.
- Improve the platform device naming for DT probed devices to ensure
unique naming and use parent names instead of a global index.
- Fix a race condition in of_update_property.
- Unify the various linker section OF match tables and fix several
function prototype errors.
- Update platform_get_irq_byname to work in deferred probe cases.
- 2 binding doc updates
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJTjzgyAAoJEMhvYp4jgsXiFsUH/1PMTGo8CyD62VQD5ZKdAoW+
Fq6vCiRQ8assF5i5ZLcW1DqhjtoRaCKYhVbRKa5lj7cZdjlSpacI/qQPrF5Br2Ii
bTE3Ff/AQwipQaz/Bj7HqJCgGwfWK8xdfgW0abKsyXMWDN86Bov/zzeu8apmws0x
H1XjJRgnc/rzM4m9ny6+lss0iq6YL54SuTYNzHR33+Ywxls69SfHXIhCW0KpZcBl
5U3YUOomt40GfO46sxFA4xApAhypEK4oVq7asyiA2ArTZ/c2Pkc9p5CBqzhDLmlq
yioWTwHIISv0q+yMLCuQrVGIsbUDkQyy7RQ15z6U+/e/iGO/M+j3A5yxMc3qOi4=
=Onff
-----END PGP SIGNATURE-----
Merge tag 'devicetree-for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/robh/linux into next
Pull DeviceTree updates from Rob Herring:
- Another round of clean-up of FDT related code in architecture code.
This removes knowledge of internal FDT details from most
architectures except powerpc.
- Conversion of kernel's custom FDT parsing code to use libfdt.
- DT based initialization for generic serial earlycon. The
introduction of generic serial earlycon support went in through the
tty tree.
- Improve the platform device naming for DT probed devices to ensure
unique naming and use parent names instead of a global index.
- Fix a race condition in of_update_property.
- Unify the various linker section OF match tables and fix several
function prototype errors.
- Update platform_get_irq_byname to work in deferred probe cases.
- 2 binding doc updates
* tag 'devicetree-for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/robh/linux: (58 commits)
of: handle NULL node in next_child iterators
of/irq: provide more wrappers for !CONFIG_OF
devicetree: bindings: Document micrel vendor prefix
dt: bindings: dwc2: fix required value for the phy-names property
of_pci_irq: kill useless variable in of_irq_parse_pci()
of/irq: do irq resolution in platform_get_irq_byname()
of: Add a testcase for of_find_node_by_path()
of: Make of_find_node_by_path() handle /aliases
of: Create unlocked version of for_each_child_of_node()
lib: add glibc style strchrnul() variant
of: Handle memory@0 node on PPC32 only
pci/of: Remove dead code
of: fix race between search and remove in of_update_property()
of: Use NULL for pointers
of: Stop naming platform_device using dcr address
of: Ensure unique names without sacrificing determinism
tty/serial: pl011: add DT based earlycon support
of/fdt: add FDT serial scanning for earlycon
of/fdt: add FDT address translation support
serial: earlycon: add DT support
...
was a pretty active cycle for KVM. Changes include:
- a lot of s390 changes: optimizations, support for migration,
GDB support and more
- ARM changes are pretty small: support for the PSCI 0.2 hypercall
interface on both the guest and the host (the latter acked by Catalin)
- initial POWER8 and little-endian host support
- support for running u-boot on embedded POWER targets
- pretty large changes to MIPS too, completing the userspace interface
and improving the handling of virtualized timer hardware
- for x86, a larger set of changes is scheduled for 3.17. Still,
we have a few emulator bugfixes and support for running nested
fully-virtualized Xen guests (para-virtualized Xen guests have
always worked). And some optimizations too.
The only missing architecture here is ia64. It's not a coincidence
that support for KVM on ia64 is scheduled for removal in 3.17.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABAgAGBQJTjtlBAAoJEBvWZb6bTYbyMOUP/2NAePghE3IjG99ikHFdn+BX
BfrURsuR6GD0AhYQnBidBmpFbAmN/LwSJxv/M7sV7OBRWLu3qbt69DrPTU2e/FK1
j9q25peu8jRyHzJ1q9rBroo74nD9lQYuVr3uXNxxcg0DRnw14JHGlM3y8LDEknO8
W+gpWTeAQ+2AuOX98MpRbCRMuzziCSv5bP5FhBVnsWHiZfvMbcUrbeJt+zYSiDAZ
0tHm/5dFKzfj/vVrrnjD4EZcRr688Bs5rztG96hY6aoVJryjZGLtLp92wCWkRRmH
CCvZwd245NmNthuKHzcs27/duSWfU0uOlu7AMrD44QYhzeDGyB/2nbCxbGqLLoBA
nnOviXH4cC65/CnisZ79zfo979HbZcX+Lzg747EjBgCSxJmLlwgiG8yXtDvk5otB
TH6GUeGDiEEPj//JD3XtgSz0sF2NvjREWRyemjDMvhz6JC/bLytXKb3sn+NXSj8m
ujzF9eQoa4qKDcBL4IQYGTJ4z5nY3Pd68dHFIPHB7n82OxFLSQUBKxXw8/1fb5og
VVb8PL4GOcmakQlAKtTMlFPmuy4bbL2r/2iV5xJiOZKmXIu8Hs1JezBE3SFAltbl
3cAGwSM9/dDkKxUbTFblyOE9bkKbg4WYmq0LkdzsPEomb3IZWntOT25rYnX+LrBz
bAknaZpPiOrW11Et1htY
=j5Od
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm into next
Pull KVM updates from Paolo Bonzini:
"At over 200 commits, covering almost all supported architectures, this
was a pretty active cycle for KVM. Changes include:
- a lot of s390 changes: optimizations, support for migration, GDB
support and more
- ARM changes are pretty small: support for the PSCI 0.2 hypercall
interface on both the guest and the host (the latter acked by
Catalin)
- initial POWER8 and little-endian host support
- support for running u-boot on embedded POWER targets
- pretty large changes to MIPS too, completing the userspace
interface and improving the handling of virtualized timer hardware
- for x86, a larger set of changes is scheduled for 3.17. Still, we
have a few emulator bugfixes and support for running nested
fully-virtualized Xen guests (para-virtualized Xen guests have
always worked). And some optimizations too.
The only missing architecture here is ia64. It's not a coincidence
that support for KVM on ia64 is scheduled for removal in 3.17"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (203 commits)
KVM: add missing cleanup_srcu_struct
KVM: PPC: Book3S PR: Rework SLB switching code
KVM: PPC: Book3S PR: Use SLB entry 0
KVM: PPC: Book3S HV: Fix machine check delivery to guest
KVM: PPC: Book3S HV: Work around POWER8 performance monitor bugs
KVM: PPC: Book3S HV: Make sure we don't miss dirty pages
KVM: PPC: Book3S HV: Fix dirty map for hugepages
KVM: PPC: Book3S HV: Put huge-page HPTEs in rmap chain for base address
KVM: PPC: Book3S HV: Fix check for running inside guest in global_invalidates()
KVM: PPC: Book3S: Move KVM_REG_PPC_WORT to an unused register number
KVM: PPC: Book3S: Add ONE_REG register names that were missed
KVM: PPC: Add CAP to indicate hcall fixes
KVM: PPC: MPIC: Reset IRQ source private members
KVM: PPC: Graciously fail broken LE hypercalls
PPC: ePAPR: Fix hypercall on LE guest
KVM: PPC: BOOK3S: Remove open coded make_dsisr in alignment handler
KVM: PPC: BOOK3S: Always use the saved DAR value
PPC: KVM: Make NX bit available with magic page
KVM: PPC: Disable NX for old magic page using guests
KVM: PPC: BOOK3S: HV: Add mixed page-size support for guest
...
On LPAR guest systems Linux enables the shadow SLB to indicate to the
hypervisor a number of SLB entries that always have to be available.
Today we go through this shadow SLB and disable all ESID's valid bits.
However, pHyp doesn't like this approach very much and honors us with
fancy machine checks.
Fortunately the shadow SLB descriptor also has an entry that indicates
the number of valid entries following. During the lifetime of a guest
we can just swap that value to 0 and don't have to worry about the
SLB restoration magic.
While we're touching the code, let's also make it more readable (get
rid of rldicl), allow it to deal with a dynamic number of bolted
SLB entries and only do shadow SLB swizzling on LPAR systems.
Signed-off-by: Alexander Graf <agraf@suse.de>
The only way Freescale booke chips support mappings larger than 4K
is via TLB1. The only way we support (direct) TLB1 entries is via
hugetlb, which is not what map_kernel_page() does when given a large
page size.
Without this, a kernel with CONFIG_SPARSEMEM_VMEMMAP enabled crashes on
boot with messages such as:
PID hash table entries: 4096 (order: 3, 32768 bytes)
Sorting __ex_table...
BUG: Bad page state in process swapper pfn:00a2f
page:8000040000023a48 count:0 mapcount:0 mapping:0000040000ffce48 index:0x40000ffbe50
page flags: 0x40000ffda40(active|arch_1|private|private_2|head|tail|swapcache|mappedtodisk|reclaim|swapbacked|unevictable|mlocked)
page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set
bad because of flags:
page flags: 0x311840(active|private|private_2|swapcache|unevictable|mlocked)
Modules linked in:
CPU: 0 PID: 0 Comm: swapper Not tainted 3.15.0-rc1-00003-g7fa250c #299
Call Trace:
[c00000000098ba20] [c000000000008b3c] .show_stack+0x7c/0x1cc (unreliable)
[c00000000098baf0] [c00000000060aa50] .dump_stack+0x88/0xb4
[c00000000098bb70] [c0000000000c0468] .bad_page+0x144/0x1a0
[c00000000098bc10] [c0000000000c0628] .free_pages_prepare+0x164/0x17c
[c00000000098bcc0] [c0000000000c24cc] .free_hot_cold_page+0x48/0x214
[c00000000098bd60] [c00000000086c318] .free_all_bootmem+0x1fc/0x354
[c00000000098be70] [c00000000085da84] .mem_init+0xac/0xdc
[c00000000098bef0] [c0000000008547b0] .start_kernel+0x21c/0x4d4
[c00000000098bf90] [c000000000000448] .start_here_common+0x20/0x58
Signed-off-by: Scott Wood <scottwood@freescale.com>
This request includes a few bug fixes that really shouldn't wait for the next
release.
It fixes KVM on 32bit PowerPC when built as module. It also fixes the PV KVM
acceleration when NX gets honored by the host. Furthermore we fix transactional
memory support and numa support on HV KVM.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.19 (GNU/Linux)
iQIcBAABAgAGBQJTcKFaAAoJECszeR4D/txg7qYP/RX3V32i2zQYH2NpjQrDCwtY
Wur+CQrn/VA6xhtTK1rT2zH5rNFLt6ClhtxCMkZFfBdUE4sHi3OTlEdcvXBZjbls
JqQ/7lBkUPN8pTpz2NHP9gvH7g6v07EruysRQNa/JZMzlwhpzWk8D7yXakaCPNY/
JZRgVTrfKnhQ8OtXt48Bp4EmEKllbNqi9kNN7dewD2dEb3fAco3Jpk6WoeG+1f0o
jv3NmeTsp87KaRpjvDzPb7iCe6PA7GVqvJIQpir3Rpk2Kpx0yj58AfacF+f72GOf
CPlJGepiumJCaANhV6dbvtS49vaiiAnSvbqCil2USNl0LIGWQXdSjs5lztEuiMyr
tAav0YSVpnIcw0HJxXug/M31VwfRjYCX3hnCCIOd3Xj2jgAqwD+Lo95uUrRGJ9TP
75zKh8E093tOXIC9CyMaiYajpFMUrCSMgnpJ+7fpeHiyigB6yc8juFxahIHsw8q1
NgHggroJm6QNIm8JSY/tG/YET4AT7H4ZetGP8MeeRUg0TpqQXvYpkMGB8YDouaBA
XzxjwyTq57BOYgLGExnwW3Jj0kbqVY+ts0aDGQVGrl5YFzooGqrQ61CRmwG5BvI8
sou3l6TJ2ng8qrc7Maw9MHca1QB3mtXD7I26T/QEfQm9NLRTTqJyaxH5J1q9siRI
PpHVE5FKnmWPNr8JlxtC
=t2S+
-----END PGP SIGNATURE-----
Merge tag 'signed-for-3.15' of git://github.com/agraf/linux-2.6 into kvm-master
Patch queue for 3.15 - 2014-05-12
This request includes a few bug fixes that really shouldn't wait for the next
release.
It fixes KVM on 32bit PowerPC when built as module. It also fixes the PV KVM
acceleration when NX gets honored by the host. Furthermore we fix transactional
memory support and numa support on HV KVM.
This series adds support for building the powerpc 64-bit
LE kernel using the new ABI v2. We already supported
running ABI v2 userspace programs but this adds support
for building the kernel itself using the new ABI.
In case of extending the eaddr in future, use this macro
PGTABLE_EADDR_SIZE to ease the maintenance of the code.
Signed-off-by: Liu Ping Fan <pingfank@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
When we never get around to seeing an HEA ethernet adapter, there's
no point in restricting ourselves to 4k IO page size.
This speeds up IO maps when CONFIG_IBMEBUS is disabled.
[ Updated the test to also lift the restriction on arch 2.07
(Power 8) which cannot have an HEA
-- BenH ]
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
foo
Make of_get_flat_dt_prop arguments compatible with libfdt fdt_getprop
call in preparation to convert FDT code to use libfdt. Make the return
value const and the property length ptr type an int.
Signed-off-by: Rob Herring <robh@kernel.org>
Tested-by: Michal Simek <michal.simek@xilinx.com>
Tested-by: Grant Likely <grant.likely@linaro.org>
Tested-by: Stephen Chivers <schivers@csc.com>
Our PV guest patching code assembles chunks of instructions on the fly when it
encounters more complicated instructions to hijack. These instructions need
to live in a section that we don't mark as non-executable, as otherwise we
fault when jumping there.
Right now we put it into the .bss section where it automatically gets marked
as non-executable. Add a check to the NX setting function to ensure that we
leave these particular pages executable.
Signed-off-by: Alexander Graf <agraf@suse.de>
The if condition check was based on a draft ISA doc. Remove the same.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The MMU hashtable and SLB branch patching code uses function
pointers for the update sites. This creates a difference between
ABIv1 and ABIv2 because we don't have function descriptors on
ABIv2.
Get rid of the function pointer and just point at the update
sites directly. This works on both ABIs.
Signed-off-by: Anton Blanchard <anton@samba.org>
binutils is smart enough to know that a branch to a function
descriptor is actually a branch to the functions text address.
Alan tells me that binutils has been doing this for 9 years.
Signed-off-by: Anton Blanchard <anton@samba.org>
Since v1:
Edited the comment according to Srivatsa's suggestion.
During the testing, we encounter below WARN followed by Oops:
WARNING: at kernel/sched/core.c:6218
...
NIP [c000000000101660] .build_sched_domains+0x11d0/0x1200
LR [c000000000101358] .build_sched_domains+0xec8/0x1200
PACATMSCRATCH [800000000000f032]
Call Trace:
[c00000001b103850] [c000000000101358] .build_sched_domains+0xec8/0x1200
[c00000001b1039a0] [c00000000010aad4] .partition_sched_domains+0x484/0x510
[c00000001b103aa0] [c00000000016d0a8] .rebuild_sched_domains+0x68/0xa0
[c00000001b103b30] [c00000000005cbf0] .topology_work_fn+0x10/0x30
...
Oops: Kernel access of bad area, sig: 11 [#1]
...
NIP [c00000000045c000] .__bitmap_weight+0x60/0xf0
LR [c00000000010132c] .build_sched_domains+0xe9c/0x1200
PACATMSCRATCH [8000000000029032]
Call Trace:
[c00000001b1037a0] [c000000000288ff4] .kmem_cache_alloc_node_trace+0x184/0x3a0
[c00000001b103850] [c00000000010132c] .build_sched_domains+0xe9c/0x1200
[c00000001b1039a0] [c00000000010aad4] .partition_sched_domains+0x484/0x510
[c00000001b103aa0] [c00000000016d0a8] .rebuild_sched_domains+0x68/0xa0
[c00000001b103b30] [c00000000005cbf0] .topology_work_fn+0x10/0x30
...
This was caused by that 'sd->groups == NULL' after building groups, which
was caused by the empty 'sd->span'.
The cpu's domain contained nothing because the cpu was assigned to a wrong
node, due to the following unfortunate sequence of events:
1. The hypervisor sent a topology update to the guest OS, to notify changes
to the cpu-node mapping. However, the update was actually redundant - i.e.,
the "new" mapping was exactly the same as the old one.
2. Due to this, the 'updated_cpus' mask turned out to be empty after exiting
the 'for-loop' in arch_update_cpu_topology().
3. So we ended up calling stop-machine() with an empty cpumask list, which made
stop-machine internally elect cpumask_first(cpu_online_mask), i.e., CPU0 as
the cpu to run the payload (the update_cpu_topology() function).
4. This causes update_cpu_topology() to be run by CPU0. And since 'updates'
is kzalloc()'ed inside arch_update_cpu_topology(), update_cpu_topology()
finds update->cpu as well as update->new_nid to be 0. In other words, we
end up assigning CPU0 (and eventually its siblings) to node 0, incorrectly.
Along with the following wrong updating, it causes the sched-domain rebuild
code to break and crash the system.
Fix this by skipping the topology update in cases where we find that
the topology has not actually changed in reality (ie., spurious updates).
CC: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: Paul Mackerras <paulus@samba.org>
CC: Nathan Fontenot <nfont@linux.vnet.ibm.com>
CC: Stephen Rothwell <sfr@canb.auug.org.au>
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Robert Jennings <rcj@linux.vnet.ibm.com>
CC: Jesse Larrew <jlarrew@linux.vnet.ibm.com>
CC: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com>
CC: Alistair Popple <alistair@popple.id.au>
Suggested-by: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We need to handle numa pte via the slow path
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Freescale updates from Scott. Mostly support for critical
and machine check exceptions on 64-bit BookE, some new
PCI suspend/resume work and misc bits.
We have generic code like the one in get_futex_key that assume that
a local_irq_disable prevents a parallel THP split. Support that by
adding a dummy smp call function after setting _PAGE_SPLITTING. Code
paths like get_user_pages_fast still need to check for _PAGE_SPLITTING
after disabling IRQ which indicate that a parallel THP splitting is
ongoing. Now if they don't find _PAGE_SPLITTING set, then we can be
sure that parallel split will now block in pmdp_splitting flush
until we enables IRQ
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Add special state saving for critical and machine check exceptions.
Most of this code could be used to handle debug exceptions taken from
kernel space, but actually doing so is outside the scope of this patch.
The various critical and machine check exceptions now point to their
real handlers, rather than hanging the kernel.
Signed-off-by: Scott Wood <scottwood@freescale.com>
While bolted handlers (including e6500) do not need to deal with a TLB
miss recursively causing another TLB miss, nested TLB misses can still
happen with crit/mc/debug exceptions -- so we still need to honor
SPRG_TLB_EXFRAME.
We don't need to spend time modifying it in the TLB miss fastpath,
though -- the special level exception will handle that.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Cc: Mihai Caraman <mihai.caraman@freescale.com>
Cc: kvm-ppc@vger.kernel.org
Once special level interrupts are supported, we may take nested TLB
misses -- so allow the same thread to acquire the lock recursively.
The lock will not be effective against the nested TLB miss handler
trying to write the same entry as the interrupted TLB miss handler, but
that's also a problem on non-threaded CPUs that lack TLB write
conditional. This will be addressed in the patch that enables crit/mc
support by invalidating the TLB on return from level exceptions.
Signed-off-by: Scott Wood <scottwood@freescale.com>
The previous code added wrong TLBs and causes machine check errors if
a driver accessed passed the end of the linear mapping instead of
a clean page fault.
Signed-off-by: Ralph E. Bellofatto <ralphbel@us.ibm.com>
Signed-off-by: Benjamin Krill <ben@codiert.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The memory remove code for powerpc/pseries should call remove_memory()
so that we are holding the hotplug_memory lock during memory remove
operations.
This patch updates the memory node remove handler to call remove_memory()
and adds a ppc_md.remove_memory() entry to handle pseries specific work
that is called from arch_remove_memory().
During memory remove in pseries_remove_memblock() we have to stay with
removing memory one section at a time. This is needed because of how memory
resources are handled. During memory add for pseries (via the probe file in
sysfs) we add memory one section at a time which gives us a memory resource
for each section. Future patches will aim to address this so will not have
to remove memory one section at a time.
Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
pte_update() is a powerpc-ism used to change the bits of a PTE
when the access permission is being restricted (a flush is
potentially needed).
It uses atomic operations on when needed and handles the hash
synchronization on hash based processors.
It is currently only used to clear PTE bits and so the current
implementation doesn't provide a way to also set PTE bits.
The new _PAGE_NUMA bit, when set, is actually restricting access
so it must use that function too, so this change adds the ability
for pte_update() to also set bits.
We will use this later to set the _PAGE_NUMA bit.
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
On p8 systems, with relocation on exception feature enabled we are seeing
kdump kernel hang at interrupt vector 0xc*4400. The reason is, with this
feature enabled, exception are raised with MMU (IR=DR=1) ON with the
default offset of 0xc*4000. Since exception is raised in virtual mode it
requires the vector region to be executable without which it fails to
fetch and execute instruction at 0xc*4xxx. For default kernel since kernel
is loaded at real 0, the htab mappings sets the entire kernel text region
executable. But for relocatable kernel (e.g. kdump case) we only copy
interrupt vectors down to real 0 and never marked that region as
executable because in p7 and below we always get exception in real mode.
This patch fixes this issue by marking htab mapping range as executable
that overlaps with the interrupt vector region for relocatable kernel.
Thanks to Ben who helped me to debug this issue and find the root cause.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
According to Posix, if MAP_FIXED is specified mmap shall set ENOMEM if
the requested mapping exceeds the allowed range for address space of
the process. The generic code set it right, but the specific powerpc
slice_get_unmapped_area() function currently returns -EINVAL in that
case.
This patch corrects it.
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
<<
This contains a fix for a chroma_defconfig build break that was
introduced by e6500 tablewalk support, and a device tree binding patch
that missed the previous pull request due to some last-minute polishing.
>>
Pull powerpc updates from Ben Herrenschmidt:
"So here's my next branch for powerpc. A bit late as I was on vacation
last week. It's mostly the same stuff that was in next already, I
just added two patches today which are the wiring up of lockref for
powerpc, which for some reason fell through the cracks last time and
is trivial.
The highlights are, in addition to a bunch of bug fixes:
- Reworked Machine Check handling on kernels running without a
hypervisor (or acting as a hypervisor). Provides hooks to handle
some errors in real mode such as TLB errors, handle SLB errors,
etc...
- Support for retrieving memory error information from the service
processor on IBM servers running without a hypervisor and routing
them to the memory poison infrastructure.
- _PAGE_NUMA support on server processors
- 32-bit BookE relocatable kernel support
- FSL e6500 hardware tablewalk support
- A bunch of new/revived board support
- FSL e6500 deeper idle states and altivec powerdown support
You'll notice a generic mm change here, it has been acked by the
relevant authorities and is a pre-req for our _PAGE_NUMA support"
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (121 commits)
powerpc: Implement arch_spin_is_locked() using arch_spin_value_unlocked()
powerpc: Add support for the optimised lockref implementation
powerpc/powernv: Call OPAL sync before kexec'ing
powerpc/eeh: Escalate error on non-existing PE
powerpc/eeh: Handle multiple EEH errors
powerpc: Fix transactional FP/VMX/VSX unavailable handlers
powerpc: Don't corrupt transactional state when using FP/VMX in kernel
powerpc: Reclaim two unused thread_info flag bits
powerpc: Fix races with irq_work
Move precessing of MCE queued event out from syscall exit path.
pseries/cpuidle: Remove redundant call to ppc64_runlatch_off() in cpu idle routines
powerpc: Make add_system_ram_resources() __init
powerpc: add SATA_MV to ppc64_defconfig
powerpc/powernv: Increase candidate fw image size
powerpc: Add debug checks to catch invalid cpu-to-node mappings
powerpc: Fix the setup of CPU-to-Node mappings during CPU online
powerpc/iommu: Don't detach device without IOMMU group
powerpc/eeh: Hotplug improvement
powerpc/eeh: Call opal_pci_reinit() on powernv for restoring config space
powerpc/eeh: Add restore_config operation
...
...and make CONFIG_PPC_FSL_BOOK3E conflict with CONFIG_PPC_64K_PAGES.
This fixes a build break with CONFIG_PPC_64K_PAGES on 64-bit book3e,
that was introduced by commit 28efc35fe6
("powerpc/e6500: TLB miss handler with hardware tablewalk support").
Signed-off-by: Scott Wood <scottwood@freescale.com>
add_system_ram_resources() is a subsys_initcall.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
There have been some weird bugs in the past where the kernel tried to associate
threads of the same core to different NUMA nodes, and things went haywire after
that point (as expected).
But unfortunately, root-causing such issues have been quite challenging, due to
the lack of appropriate debug checks in the kernel. These bugs usually lead to
some odd soft-lockups in the scheduler's build-sched-domain code in the CPU
hotplug path, which makes it very hard to trace it back to the incorrect
cpu-to-node mappings.
So add appropriate debug checks to catch such invalid cpu-to-node mappings
as early as possible.
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
On POWER platforms, the hypervisor can notify the guest kernel about dynamic
changes in the cpu-numa associativity (VPHN topology update). Hence the
cpu-to-node mappings that we got from the firmware during boot, may no longer
be valid after such updates. This is handled using the arch_update_cpu_topology()
hook in the scheduler, and the sched-domains are rebuilt according to the new
mappings.
But unfortunately, at the moment, CPU hotplug ignores these updated mappings
and instead queries the firmware for the cpu-to-numa relationships and uses
them during CPU online. So the kernel can end up assigning wrong NUMA nodes
to CPUs during subsequent CPU hotplug online operations (after booting).
Further, a particularly problematic scenario can result from this bug:
On POWER platforms, the SMT mode can be switched between 1, 2, 4 (and even 8)
threads per core. The switch to Single-Threaded (ST) mode is performed by
offlining all except the first CPU thread in each core. Switching back to
SMT mode involves onlining those other threads back, in each core.
Now consider this scenario:
1. During boot, the kernel gets the cpu-to-node mappings from the firmware
and assigns the CPUs to NUMA nodes appropriately, during CPU online.
2. Later on, the hypervisor updates the cpu-to-node mappings dynamically and
communicates this update to the kernel. The kernel in turn updates its
cpu-to-node associations and rebuilds its sched domains. Everything is
fine so far.
3. Now, the user switches the machine from SMT to ST mode (say, by running
ppc64_cpu --smt=1). This involves offlining all except 1 thread in each
core.
4. The user then tries to switch back from ST to SMT mode (say, by running
ppc64_cpu --smt=4), and this involves onlining those threads back. Since
CPU hotplug ignores the new mappings, it queries the firmware and tries to
associate the newly onlined sibling threads to the old NUMA nodes. This
results in sibling threads within the same core getting associated with
different NUMA nodes, which is incorrect.
The scheduler's build-sched-domains code gets thoroughly confused with this
and enters an infinite loop and causes soft-lockups, as explained in detail
in commit 3be7db6ab (powerpc: VPHN topology change updates all siblings).
So to fix this, use the numa_cpu_lookup_table to remember the updated
cpu-to-node mappings, and use them during CPU hotplug online operations.
Further, we also need to ensure that all threads in a core are assigned to a
common NUMA node, irrespective of whether all those threads were online during
the topology update. To achieve this, we take care not to use cpu_sibling_mask()
since it is not hotplug invariant. Instead, we use cpu_first_sibling_thread()
and set up the mappings manually using the 'threads_per_core' value for that
particular platform. This helps us ensure that we don't hit this bug with any
combination of CPU hotplug and SMT mode switching.
Cc: stable@vger.kernel.org
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
None of these files are actually using any __init type directives
and hence don't need to include <linux/init.h>. Most are just a
left over from __devinit and __cpuinit removal, or simply due to
code getting copied from one driver to the next.
The one instance where we add an include for init.h covers off
a case where that file was implicitly getting it from another
header which itself didn't need it.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
It was branching to the cleanup part of the non-bolted handler,
which would have been bad if there were any chips with tlbsrx.
that use the bolted handler.
Signed-off-by: Scott Wood <scottwood@freescale.com>
This keeps usage coordinated for hugetlb and indirect entries, which
should make entry selection more predictable and probably improve overall
performance when mixing the two.
Signed-off-by: Scott Wood <scottwood@freescale.com>
There are a few things that make the existing hw tablewalk handlers
unsuitable for e6500:
- Indirect entries go in TLB1 (though the resulting direct entries go in
TLB0).
- It has threads, but no "tlbsrx." -- so we need a spinlock and
a normal "tlbsx". Because we need this lock, hardware tablewalk
is mandatory on e6500 unless we want to add spinlock+tlbsx to
the normal bolted TLB miss handler.
- TLB1 has no HES (nor next-victim hint) so we need software round robin
(TODO: integrate this round robin data with hugetlb/KVM)
- The existing tablewalk handlers map half of a page table at a time,
because IBM hardware has a fixed 1MiB indirect page size. e6500
has variable size indirect entries, with a minimum of 2MiB.
So we can't do the half-page indirect mapping, and even if we
could it would be less efficient than mapping the full page.
- Like on e5500, the linear mapping is bolted, so we don't need the
overhead of supporting nested tlb misses.
Note that hardware tablewalk does not work in rev1 of e6500.
We do not expect to support e6500 rev1 in mainline Linux.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Cc: Mihai Caraman <mihai.caraman@freescale.com>
There is no barrier between something like ioremap() writing to
a PTE, and returning the value to a caller that may then store the
pointer in a place that is visible to other CPUs. Such callers
generally don't perform barriers of their own.
Even if callers of ioremap() and similar things did use barriers,
the most logical choise would be smp_wmb(), which is not
architecturally sufficient when BookE hardware tablewalk is used. A
full sync is specified by the architecture.
For userspace mappings, OTOH, we generally already have an lwsync due
to locking, and if we occasionally take a spurious fault due to not
having a full sync with hardware tablewalk, it will not be fatal
because we will retry rather than oops.
Signed-off-by: Scott Wood <scottwood@freescale.com>
When booting above the 64M for a secondary cpu, we also face the
same issue as the boot cpu that the PAGE_OFFSET map two different
physical address for the init tlb and the final map. So we have to use
switch_to_as1/restore_to_as0 between the conversion of these two
maps. When restoring to as0 for a secondary cpu, we only need to
return to the caller. So add a new parameter for function
restore_to_as0 for this purpose.
Use LOAD_REG_ADDR_PIC to get the address of variables which may
be used before we set the final map in cams for the secondary cpu.
Move the setting of cams a bit earlier in order to avoid the
unnecessary using of LOAD_REG_ADDR_PIC.
Signed-off-by: Kevin Hao <haokexin@gmail.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
This is always true for a non-relocatable kernel. Otherwise the kernel
would get stuck. But for a relocatable kernel, it seems a little
complicated. When booting a relocatable kernel, we just align the
kernel start addr to 64M and map the PAGE_OFFSET from there. The
relocation will base on this virtual address. But if this address
is not the same as the memstart_addr, we will have to change the
map of PAGE_OFFSET to the real memstart_addr and do another relocation
again.
Signed-off-by: Kevin Hao <haokexin@gmail.com>
[scottwood@freescale.com: make offset long and non-negative in simple case]
Signed-off-by: Scott Wood <scottwood@freescale.com>
Introduce this function so we can set both the physical and virtual
address for the map in cams. This will be used by the relocation code.
Signed-off-by: Kevin Hao <haokexin@gmail.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
We use the tlb1 entries to map low mem to the kernel space. In the
current code, it assumes that the first tlb entry would cover the
kernel image. But this is not true for some special cases, such as
when we run a relocatable kernel above the 64M or set
CONFIG_KERNEL_START above 64M. So we choose to switch to address
space 1 before setting these tlb entries.
Signed-off-by: Kevin Hao <haokexin@gmail.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>