Maps that are read-only both from BPF program side and user space side
have their contents constant, so verifier can track referenced values
precisely and use that knowledge for dead code elimination, branch
pruning, etc. This patch teaches BPF verifier how to do this.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20191009201458.2679171-2-andriin@fb.com
Daniel Borkmann says:
====================
pull-request: bpf-next 2019-09-16
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Now that initial BPF backend for gcc has been merged upstream, enable
BPF kselftest suite for bpf-gcc. Also fix a BE issue with access to
bpf_sysctl.file_pos, from Ilya.
2) Follow-up fix for link-vmlinux.sh to remove bash-specific extensions
related to recent work on exposing BTF info through sysfs, from Andrii.
3) AF_XDP zero copy fixes for i40e and ixgbe driver which caused umem
headroom to be added twice, from Ciara.
4) Refactoring work to convert sock opt tests into test_progs framework
in BPF kselftests, from Stanislav.
5) Fix a general protection fault in dev_map_hash_update_elem(), from Toke.
6) Cleanup to use BPF_PROG_RUN() macro in KCM, from Sami.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
"ctx:file_pos sysctl:read write ok" fails on s390 with "Read value !=
nux". This is because verifier rewrites a complete 32-bit
bpf_sysctl.file_pos update to a partial update of the first 32 bits of
64-bit *bpf_sysctl_kern.ppos, which is not correct on big-endian
systems.
Fix by using an offset on big-endian systems.
Ditto for bpf_sysctl.file_pos reads. Currently the test does not detect
a problem there, since it expects to see 0, which it gets with high
probability in error cases, so change it to seek to offset 3 and expect
3 in bpf_sysctl.file_pos.
Fixes: e1550bfe0d ("bpf: Add file_pos field to bpf_sysctl ctx")
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20190816105300.49035-1-iii@linux.ibm.com/
Daniel Borkmann says:
====================
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Add the ability to use unaligned chunks in the AF_XDP umem. By
relaxing where the chunks can be placed, it allows to use an
arbitrary buffer size and place whenever there is a free
address in the umem. Helps more seamless DPDK AF_XDP driver
integration. Support for i40e, ixgbe and mlx5e, from Kevin and
Maxim.
2) Addition of a wakeup flag for AF_XDP tx and fill rings so the
application can wake up the kernel for rx/tx processing which
avoids busy-spinning of the latter, useful when app and driver
is located on the same core. Support for i40e, ixgbe and mlx5e,
from Magnus and Maxim.
3) bpftool fixes for printf()-like functions so compiler can actually
enforce checks, bpftool build system improvements for custom output
directories, and addition of 'bpftool map freeze' command, from Quentin.
4) Support attaching/detaching XDP programs from 'bpftool net' command,
from Daniel.
5) Automatic xskmap cleanup when AF_XDP socket is released, and several
barrier/{read,write}_once fixes in AF_XDP code, from Björn.
6) Relicense of bpf_helpers.h/bpf_endian.h for future libbpf
inclusion as well as libbpf versioning improvements, from Andrii.
7) Several new BPF kselftests for verifier precision tracking, from Alexei.
8) Several BPF kselftest fixes wrt endianess to run on s390x, from Ilya.
9) And more BPF kselftest improvements all over the place, from Stanislav.
10) Add simple BPF map op cache for nfp driver to batch dumps, from Jakub.
11) AF_XDP socket umem mapping improvements for 32bit archs, from Ivan.
12) Add BPF-to-BPF call and BTF line info support for s390x JIT, from Yauheni.
13) Small optimization in arm64 JIT to spare 1 insns for BPF_MOD, from Jerin.
14) Fix an error check in bpf_tcp_gen_syncookie() helper, from Petar.
15) Various minor fixes and cleanups, from Nathan, Masahiro, Masanari,
Peter, Wei, Yue.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
The problem can be seen in the following two tests:
0: (bf) r3 = r10
1: (55) if r3 != 0x7b goto pc+0
2: (7a) *(u64 *)(r3 -8) = 0
3: (79) r4 = *(u64 *)(r10 -8)
..
0: (85) call bpf_get_prandom_u32#7
1: (bf) r3 = r10
2: (55) if r3 != 0x7b goto pc+0
3: (7b) *(u64 *)(r3 -8) = r0
4: (79) r4 = *(u64 *)(r10 -8)
When backtracking need to mark R4 it will mark slot fp-8.
But ST or STX into fp-8 could belong to the same block of instructions.
When backtracing is done the parent state may have fp-8 slot
as "unallocated stack". Which will cause verifier to warn
and incorrectly reject such programs.
Writes into stack via non-R10 register are rare. llvm always
generates canonical stack spill/fill.
For such pathological case fall back to conservative precision
tracking instead of rejecting.
Reported-by: syzbot+c8d66267fd2b5955287e@syzkaller.appspotmail.com
Fixes: b5dc0163d8 ("bpf: precise scalar_value tracking")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Introduce BPF_F_TEST_STATE_FREQ flag to stress test parentage chain
and state pruning.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
While adding extra tests for precision tracking and extra infra
to adjust verifier heuristics the existing test
"calls: cross frame pruning - liveness propagation" started to fail.
The root cause is the same as described in verifer.c comment:
* Also if parent's curframe > frame where backtracking started,
* the verifier need to mark registers in both frames, otherwise callees
* may incorrectly prune callers. This is similar to
* commit 7640ead939 ("bpf: verifier: make sure callees don't prune with caller differences")
* For now backtracking falls back into conservative marking.
Turned out though that returning -ENOTSUPP from backtrack_insn() and
doing mark_all_scalars_precise() in the current parentage chain is not enough.
Depending on how is_state_visited() heuristic is creating parentage chain
it's possible that callee will incorrectly prune caller.
Fix the issue by setting precise=true earlier and more aggressively.
Before this fix the precision tracking _within_ functions that don't do
bpf2bpf calls would still work. Whereas now precision tracking is completely
disabled when bpf2bpf calls are present anywhere in the program.
No difference in cilium tests (they don't have bpf2bpf calls).
No difference in test_progs though some of them have bpf2bpf calls,
but precision tracking wasn't effective there.
Fixes: b5dc0163d8 ("bpf: precise scalar_value tracking")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Daniel Borkmann says:
====================
The following pull-request contains BPF updates for your *net-next* tree.
There is a small merge conflict in libbpf (Cc Andrii so he's in the loop
as well):
for (i = 1; i <= btf__get_nr_types(btf); i++) {
t = (struct btf_type *)btf__type_by_id(btf, i);
if (!has_datasec && btf_is_var(t)) {
/* replace VAR with INT */
t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
<<<<<<< HEAD
/*
* using size = 1 is the safest choice, 4 will be too
* big and cause kernel BTF validation failure if
* original variable took less than 4 bytes
*/
t->size = 1;
*(int *)(t+1) = BTF_INT_ENC(0, 0, 8);
} else if (!has_datasec && kind == BTF_KIND_DATASEC) {
=======
t->size = sizeof(int);
*(int *)(t + 1) = BTF_INT_ENC(0, 0, 32);
} else if (!has_datasec && btf_is_datasec(t)) {
>>>>>>> 72ef80b5ee
/* replace DATASEC with STRUCT */
Conflict is between the two commits 1d4126c4e1 ("libbpf: sanitize VAR to
conservative 1-byte INT") and b03bc6853c ("libbpf: convert libbpf code to
use new btf helpers"), so we need to pick the sanitation fixup as well as
use the new btf_is_datasec() helper and the whitespace cleanup. Looks like
the following:
[...]
if (!has_datasec && btf_is_var(t)) {
/* replace VAR with INT */
t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
/*
* using size = 1 is the safest choice, 4 will be too
* big and cause kernel BTF validation failure if
* original variable took less than 4 bytes
*/
t->size = 1;
*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
} else if (!has_datasec && btf_is_datasec(t)) {
/* replace DATASEC with STRUCT */
[...]
The main changes are:
1) Addition of core parts of compile once - run everywhere (co-re) effort,
that is, relocation of fields offsets in libbpf as well as exposure of
kernel's own BTF via sysfs and loading through libbpf, from Andrii.
More info on co-re: http://vger.kernel.org/bpfconf2019.html#session-2
and http://vger.kernel.org/lpc-bpf2018.html#session-2
2) Enable passing input flags to the BPF flow dissector to customize parsing
and allowing it to stop early similar to the C based one, from Stanislav.
3) Add a BPF helper function that allows generating SYN cookies from XDP and
tc BPF, from Petar.
4) Add devmap hash-based map type for more flexibility in device lookup for
redirects, from Toke.
5) Improvements to XDP forwarding sample code now utilizing recently enabled
devmap lookups, from Jesper.
6) Add support for reporting the effective cgroup progs in bpftool, from Jakub
and Takshak.
7) Fix reading kernel config from bpftool via /proc/config.gz, from Peter.
8) Fix AF_XDP umem pages mapping for 32 bit architectures, from Ivan.
9) Follow-up to add two more BPF loop tests for the selftest suite, from Alexei.
10) Add perf event output helper also for other skb-based program types, from Allan.
11) Fix a co-re related compilation error in selftests, from Yonghong.
====================
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
A common pattern when using xdp_redirect_map() is to create a device map
where the lookup key is simply ifindex. Because device maps are arrays,
this leaves holes in the map, and the map has to be sized to fit the
largest ifindex, regardless of how many devices actually are actually
needed in the map.
This patch adds a second type of device map where the key is looked up
using a hashmap, instead of being used as an array index. This allows maps
to be densely packed, so they can be smaller.
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The very first check in test_pkt_md_access is failing on s390, which
happens because loading a part of a struct __sk_buff field produces
an incorrect result.
The preprocessed code of the check is:
{
__u8 tmp = *((volatile __u8 *)&skb->len +
((sizeof(skb->len) - sizeof(__u8)) / sizeof(__u8)));
if (tmp != ((*(volatile __u32 *)&skb->len) & 0xFF)) return 2;
};
clang generates the following code for it:
0: 71 21 00 03 00 00 00 00 r2 = *(u8 *)(r1 + 3)
1: 61 31 00 00 00 00 00 00 r3 = *(u32 *)(r1 + 0)
2: 57 30 00 00 00 00 00 ff r3 &= 255
3: 5d 23 00 1d 00 00 00 00 if r2 != r3 goto +29 <LBB0_10>
Finally, verifier transforms it to:
0: (61) r2 = *(u32 *)(r1 +104)
1: (bc) w2 = w2
2: (74) w2 >>= 24
3: (bc) w2 = w2
4: (54) w2 &= 255
5: (bc) w2 = w2
The problem is that when verifier emits the code to replace a partial
load of a struct __sk_buff field (*(u8 *)(r1 + 3)) with a full load of
struct sk_buff field (*(u32 *)(r1 + 104)), an optional shift and a
bitwise AND, it assumes that the machine is little endian and
incorrectly decides to use a shift.
Adjust shift count calculation to account for endianness.
Fixes: 31fd85816d ("bpf: permits narrower load from bpf program context fields")
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In preparation to enabling -Wimplicit-fallthrough, this patch silences
the following warning:
kernel/bpf/verifier.c: In function ‘check_return_code’:
kernel/bpf/verifier.c:6106:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
^
kernel/bpf/verifier.c:6109:2: note: here
case BPF_PROG_TYPE_CGROUP_SKB:
^~~~
Warning level 3 was used: -Wimplicit-fallthrough=3
Notice that is much clearer to explicitly add breaks in each case
statement (that actually contains some code), rather than letting
the code to fall through.
This patch is part of the ongoing efforts to enable
-Wimplicit-fallthrough.
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
When backtracking instructions to propagate precision bit for registers
and stack slots, one class of instructions (BPF_ST) weren't handled
causing extra stack slots to be propagated into parent state. Parent
state might not have that much stack allocated, though, which causes
warning on invalid stack slot usage.
This patch adds handling of BPF_ST instructions:
BPF_MEM | <size> | BPF_ST: *(size *) (dst_reg + off) = imm32
Reported-by: syzbot+4da3ff23081bafe74fc2@syzkaller.appspotmail.com
Fixes: b5dc0163d8 ("bpf: precise scalar_value tracking")
Cc: Alexei Starovoitov <ast@fb.com>
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
When equivalent state is found the current state needs to propagate precision marks.
Otherwise the verifier will prune the search incorrectly.
There is a price for correctness:
before before broken fixed
cnst spill precise precise
bpf_lb-DLB_L3.o 1923 8128 1863 1898
bpf_lb-DLB_L4.o 3077 6707 2468 2666
bpf_lb-DUNKNOWN.o 1062 1062 544 544
bpf_lxc-DDROP_ALL.o 166729 380712 22629 36823
bpf_lxc-DUNKNOWN.o 174607 440652 28805 45325
bpf_netdev.o 8407 31904 6801 7002
bpf_overlay.o 5420 23569 4754 4858
bpf_lxc_jit.o 39389 359445 50925 69631
Overall precision tracking is still very effective.
Fixes: b5dc0163d8 ("bpf: precise scalar_value tracking")
Reported-by: Lawrence Brakmo <brakmo@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Tested-by: Lawrence Brakmo <brakmo@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
We don't currently allow lookups into a devmap from eBPF, because the map
lookup returns a pointer directly to the dev->ifindex, which shouldn't be
modifiable from eBPF.
However, being able to do lookups in devmaps is useful to know (e.g.)
whether forwarding to a specific interface is enabled. Currently, programs
work around this by keeping a shadow map of another type which indicates
whether a map index is valid.
Since we now have a flag to make maps read-only from the eBPF side, we can
simply lift the lookup restriction if we make sure this flag is always set.
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Implement new BPF_PROG_TYPE_CGROUP_SOCKOPT program type and
BPF_CGROUP_{G,S}ETSOCKOPT cgroup hooks.
BPF_CGROUP_SETSOCKOPT can modify user setsockopt arguments before
passing them down to the kernel or bypass kernel completely.
BPF_CGROUP_GETSOCKOPT can can inspect/modify getsockopt arguments that
kernel returns.
Both hooks reuse existing PTR_TO_PACKET{,_END} infrastructure.
The buffer memory is pre-allocated (because I don't think there is
a precedent for working with __user memory from bpf). This might be
slow to do for each {s,g}etsockopt call, that's why I've added
__cgroup_bpf_prog_array_is_empty that exits early if there is nothing
attached to a cgroup. Note, however, that there is a race between
__cgroup_bpf_prog_array_is_empty and BPF_PROG_RUN_ARRAY where cgroup
program layout might have changed; this should not be a problem
because in general there is a race between multiple calls to
{s,g}etsocktop and user adding/removing bpf progs from a cgroup.
The return code of the BPF program is handled as follows:
* 0: EPERM
* 1: success, continue with next BPF program in the cgroup chain
v9:
* allow overwriting setsockopt arguments (Alexei Starovoitov):
* use set_fs (same as kernel_setsockopt)
* buffer is always kzalloc'd (no small on-stack buffer)
v8:
* use s32 for optlen (Andrii Nakryiko)
v7:
* return only 0 or 1 (Alexei Starovoitov)
* always run all progs (Alexei Starovoitov)
* use optval=0 as kernel bypass in setsockopt (Alexei Starovoitov)
(decided to use optval=-1 instead, optval=0 might be a valid input)
* call getsockopt hook after kernel handlers (Alexei Starovoitov)
v6:
* rework cgroup chaining; stop as soon as bpf program returns
0 or 2; see patch with the documentation for the details
* drop Andrii's and Martin's Acked-by (not sure they are comfortable
with the new state of things)
v5:
* skip copy_to_user() and put_user() when ret == 0 (Martin Lau)
v4:
* don't export bpf_sk_fullsock helper (Martin Lau)
* size != sizeof(__u64) for uapi pointers (Martin Lau)
* offsetof instead of bpf_ctx_range when checking ctx access (Martin Lau)
v3:
* typos in BPF_PROG_CGROUP_SOCKOPT_RUN_ARRAY comments (Andrii Nakryiko)
* reverse christmas tree in BPF_PROG_CGROUP_SOCKOPT_RUN_ARRAY (Andrii
Nakryiko)
* use __bpf_md_ptr instead of __u32 for optval{,_end} (Martin Lau)
* use BPF_FIELD_SIZEOF() for consistency (Martin Lau)
* new CG_SOCKOPT_ACCESS macro to wrap repeated parts
v2:
* moved bpf_sockopt_kern fields around to remove a hole (Martin Lau)
* aligned bpf_sockopt_kern->buf to 8 bytes (Martin Lau)
* bpf_prog_array_is_empty instead of bpf_prog_array_length (Martin Lau)
* added [0,2] return code check to verifier (Martin Lau)
* dropped unused buf[64] from the stack (Martin Lau)
* use PTR_TO_SOCKET for bpf_sockopt->sk (Martin Lau)
* dropped bpf_target_off from ctx rewrites (Martin Lau)
* use return code for kernel bypass (Martin Lau & Andrii Nakryiko)
Cc: Andrii Nakryiko <andriin@fb.com>
Cc: Martin Lau <kafai@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Alexei Starovoitov says:
====================
pull-request: bpf-next 2019-06-19
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) new SO_REUSEPORT_DETACH_BPF setsocktopt, from Martin.
2) BTF based map definition, from Andrii.
3) support bpf_map_lookup_elem for xskmap, from Jonathan.
4) bounded loops and scalar precision logic in the verifier, from Alexei.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduce precision tracking logic that
helps cilium programs the most:
old clang old clang new clang new clang
with all patches with all patches
bpf_lb-DLB_L3.o 1838 2283 1923 1863
bpf_lb-DLB_L4.o 3218 2657 3077 2468
bpf_lb-DUNKNOWN.o 1064 545 1062 544
bpf_lxc-DDROP_ALL.o 26935 23045 166729 22629
bpf_lxc-DUNKNOWN.o 34439 35240 174607 28805
bpf_netdev.o 9721 8753 8407 6801
bpf_overlay.o 6184 7901 5420 4754
bpf_lxc_jit.o 39389 50925 39389 50925
Consider code:
654: (85) call bpf_get_hash_recalc#34
655: (bf) r7 = r0
656: (15) if r8 == 0x0 goto pc+29
657: (bf) r2 = r10
658: (07) r2 += -48
659: (18) r1 = 0xffff8881e41e1b00
661: (85) call bpf_map_lookup_elem#1
662: (15) if r0 == 0x0 goto pc+23
663: (69) r1 = *(u16 *)(r0 +0)
664: (15) if r1 == 0x0 goto pc+21
665: (bf) r8 = r7
666: (57) r8 &= 65535
667: (bf) r2 = r8
668: (3f) r2 /= r1
669: (2f) r2 *= r1
670: (bf) r1 = r8
671: (1f) r1 -= r2
672: (57) r1 &= 255
673: (25) if r1 > 0x1e goto pc+12
R0=map_value(id=0,off=0,ks=20,vs=64,imm=0) R1_w=inv(id=0,umax_value=30,var_off=(0x0; 0x1f))
674: (67) r1 <<= 1
675: (0f) r0 += r1
At this point the verifier will notice that scalar R1 is used in map pointer adjustment.
R1 has to be precise for later operations on R0 to be validated properly.
The verifier will backtrack the above code in the following way:
last_idx 675 first_idx 664
regs=2 stack=0 before 675: (0f) r0 += r1 // started backtracking R1 regs=2 is a bitmask
regs=2 stack=0 before 674: (67) r1 <<= 1
regs=2 stack=0 before 673: (25) if r1 > 0x1e goto pc+12
regs=2 stack=0 before 672: (57) r1 &= 255
regs=2 stack=0 before 671: (1f) r1 -= r2 // now both R1 and R2 has to be precise -> regs=6 mask
regs=6 stack=0 before 670: (bf) r1 = r8 // after this insn R8 and R2 has to be precise
regs=104 stack=0 before 669: (2f) r2 *= r1 // after this one R8, R2, and R1
regs=106 stack=0 before 668: (3f) r2 /= r1
regs=106 stack=0 before 667: (bf) r2 = r8
regs=102 stack=0 before 666: (57) r8 &= 65535
regs=102 stack=0 before 665: (bf) r8 = r7
regs=82 stack=0 before 664: (15) if r1 == 0x0 goto pc+21
// this is the end of verifier state. The following regs will be marked precised:
R1_rw=invP(id=0,umax_value=65535,var_off=(0x0; 0xffff)) R7_rw=invP(id=0)
parent didn't have regs=82 stack=0 marks // so backtracking continues into parent state
last_idx 663 first_idx 655
regs=82 stack=0 before 663: (69) r1 = *(u16 *)(r0 +0) // R1 was assigned no need to track it further
regs=80 stack=0 before 662: (15) if r0 == 0x0 goto pc+23 // keep tracking R7
regs=80 stack=0 before 661: (85) call bpf_map_lookup_elem#1 // keep tracking R7
regs=80 stack=0 before 659: (18) r1 = 0xffff8881e41e1b00
regs=80 stack=0 before 658: (07) r2 += -48
regs=80 stack=0 before 657: (bf) r2 = r10
regs=80 stack=0 before 656: (15) if r8 == 0x0 goto pc+29
regs=80 stack=0 before 655: (bf) r7 = r0 // here the assignment into R7
// mark R0 to be precise:
R0_rw=invP(id=0)
parent didn't have regs=1 stack=0 marks // regs=1 -> tracking R0
last_idx 654 first_idx 644
regs=1 stack=0 before 654: (85) call bpf_get_hash_recalc#34 // and in the parent frame it was a return value
// nothing further to backtrack
Two scalar registers not marked precise are equivalent from state pruning point of view.
More details in the patch comments.
It doesn't support bpf2bpf calls yet and enabled for root only.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
The commit 7640ead939 partially resolved the issue of callees
incorrectly pruning the callers.
With introduction of bounded loops and jmps_processed heuristic
single verifier state may contain multiple branches and calls.
It's possible that new verifier state (for future pruning) will be
allocated inside callee. Then callee will exit (still within the same
verifier state). It will go back to the caller and there R6-R9 registers
will be read and will trigger mark_reg_read. But the reg->live for all frames
but the top frame is not set to LIVE_NONE. Hence mark_reg_read will fail
to propagate liveness into parent and future walking will incorrectly
conclude that the states are equivalent because LIVE_READ is not set.
In other words the rule for parent/live should be:
whenever register parentage chain is set the reg->live should be set to LIVE_NONE.
is_state_visited logic already follows this rule for spilled registers.
Fixes: 7640ead939 ("bpf: verifier: make sure callees don't prune with caller differences")
Fixes: f4d7e40a5b ("bpf: introduce function calls (verification)")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Allow the verifier to validate the loops by simulating their execution.
Exisiting programs have used '#pragma unroll' to unroll the loops
by the compiler. Instead let the verifier simulate all iterations
of the loop.
In order to do that introduce parentage chain of bpf_verifier_state and
'branches' counter for the number of branches left to explore.
See more detailed algorithm description in bpf_verifier.h
This algorithm borrows the key idea from Edward Cree approach:
https://patchwork.ozlabs.org/patch/877222/
Additional state pruning heuristics make such brute force loop walk
practical even for large loops.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This patch extends is_branch_taken() logic from JMP+K instructions
to JMP+X instructions.
Conditional branches are often done when src and dst registers
contain known scalars. In such case the verifier can follow
the branch that is going to be taken when program executes.
That speeds up the verification and is essential feature to support
bounded loops.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Compilers often spill induction variables into the stack,
hence it is necessary for the verifier to track scalar values
of the registers through stack slots.
Also few bpf programs were incorrectly rejected in the past,
since the verifier was not able to track such constants while
they were used to compute offsets into packet headers.
Tracking constants through the stack significantly decreases
the chances of state pruning, since two different constants
are considered to be different by state equivalency.
End result that cilium tests suffer serious degradation in the number
of states processed and corresponding verification time increase.
before after
bpf_lb-DLB_L3.o 1838 6441
bpf_lb-DLB_L4.o 3218 5908
bpf_lb-DUNKNOWN.o 1064 1064
bpf_lxc-DDROP_ALL.o 26935 93790
bpf_lxc-DUNKNOWN.o 34439 123886
bpf_netdev.o 9721 31413
bpf_overlay.o 6184 18561
bpf_lxc_jit.o 39389 359445
After further debugging turned out that cillium progs are
getting hurt by clang due to the same constant tracking issue.
Newer clang generates better code by spilling less to the stack.
Instead it keeps more constants in the registers which
hurts state pruning since the verifier already tracks constants
in the registers:
old clang new clang
(no spill/fill tracking introduced by this patch)
bpf_lb-DLB_L3.o 1838 1923
bpf_lb-DLB_L4.o 3218 3077
bpf_lb-DUNKNOWN.o 1064 1062
bpf_lxc-DDROP_ALL.o 26935 166729
bpf_lxc-DUNKNOWN.o 34439 174607
bpf_netdev.o 9721 8407
bpf_overlay.o 6184 5420
bpf_lcx_jit.o 39389 39389
The final table is depressing:
old clang old clang new clang new clang
const spill/fill const spill/fill
bpf_lb-DLB_L3.o 1838 6441 1923 8128
bpf_lb-DLB_L4.o 3218 5908 3077 6707
bpf_lb-DUNKNOWN.o 1064 1064 1062 1062
bpf_lxc-DDROP_ALL.o 26935 93790 166729 380712
bpf_lxc-DUNKNOWN.o 34439 123886 174607 440652
bpf_netdev.o 9721 31413 8407 31904
bpf_overlay.o 6184 18561 5420 23569
bpf_lxc_jit.o 39389 359445 39389 359445
Tracking constants in the registers hurts state pruning already.
Adding tracking of constants through stack hurts pruning even more.
The later patch address this general constant tracking issue
with coarse/precise logic.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Pull networking fixes from David Miller:
"Lots of bug fixes here:
1) Out of bounds access in __bpf_skc_lookup, from Lorenz Bauer.
2) Fix rate reporting in cfg80211_calculate_bitrate_he(), from John
Crispin.
3) Use after free in psock backlog workqueue, from John Fastabend.
4) Fix source port matching in fdb peer flow rule of mlx5, from Raed
Salem.
5) Use atomic_inc_not_zero() in fl6_sock_lookup(), from Eric Dumazet.
6) Network header needs to be set for packet redirect in nfp, from
John Hurley.
7) Fix udp zerocopy refcnt, from Willem de Bruijn.
8) Don't assume linear buffers in vxlan and geneve error handlers,
from Stefano Brivio.
9) Fix TOS matching in mlxsw, from Jiri Pirko.
10) More SCTP cookie memory leak fixes, from Neil Horman.
11) Fix VLAN filtering in rtl8366, from Linus Walluij.
12) Various TCP SACK payload size and fragmentation memory limit fixes
from Eric Dumazet.
13) Use after free in pneigh_get_next(), also from Eric Dumazet.
14) LAPB control block leak fix from Jeremy Sowden"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (145 commits)
lapb: fixed leak of control-blocks.
tipc: purge deferredq list for each grp member in tipc_group_delete
ax25: fix inconsistent lock state in ax25_destroy_timer
neigh: fix use-after-free read in pneigh_get_next
tcp: fix compile error if !CONFIG_SYSCTL
hv_sock: Suppress bogus "may be used uninitialized" warnings
be2net: Fix number of Rx queues used for flow hashing
net: handle 802.1P vlan 0 packets properly
tcp: enforce tcp_min_snd_mss in tcp_mtu_probing()
tcp: add tcp_min_snd_mss sysctl
tcp: tcp_fragment() should apply sane memory limits
tcp: limit payload size of sacked skbs
Revert "net: phylink: set the autoneg state in phylink_phy_change"
bpf: fix nested bpf tracepoints with per-cpu data
bpf: Fix out of bounds memory access in bpf_sk_storage
vsock/virtio: set SOCK_DONE on peer shutdown
net: dsa: rtl8366: Fix up VLAN filtering
net: phylink: set the autoneg state in phylink_phy_change
net: add high_order_alloc_disable sysctl/static key
tcp: add tcp_tx_skb_cache sysctl
...
Currently, the AF_XDP code uses a separate map in order to
determine if an xsk is bound to a queue. Instead of doing this,
have bpf_map_lookup_elem() return a xdp_sock.
Rearrange some xdp_sock members to eliminate structure holes.
Remove selftest - will be added back in later patch.
Signed-off-by: Jonathan Lemon <jonathan.lemon@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Intention of cgroup bind/connect/sendmsg BPF hooks is to act transparently
to applications as also stated in original motivation in 7828f20e37 ("Merge
branch 'bpf-cgroup-bind-connect'"). When recently integrating the latter
two hooks into Cilium to enable host based load-balancing with Kubernetes,
I ran into the issue that pods couldn't start up as DNS got broken. Kubernetes
typically sets up DNS as a service and is thus subject to load-balancing.
Upon further debugging, it turns out that the cgroupv2 sendmsg BPF hooks API
is currently insufficient and thus not usable as-is for standard applications
shipped with most distros. To break down the issue we ran into with a simple
example:
# cat /etc/resolv.conf
nameserver 147.75.207.207
nameserver 147.75.207.208
For the purpose of a simple test, we set up above IPs as service IPs and
transparently redirect traffic to a different DNS backend server for that
node:
# cilium service list
ID Frontend Backend
1 147.75.207.207:53 1 => 8.8.8.8:53
2 147.75.207.208:53 1 => 8.8.8.8:53
The attached BPF program is basically selecting one of the backends if the
service IP/port matches on the cgroup hook. DNS breaks here, because the
hooks are not transparent enough to applications which have built-in msg_name
address checks:
# nslookup 1.1.1.1
;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.207#53
;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.208#53
;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.207#53
[...]
;; connection timed out; no servers could be reached
# dig 1.1.1.1
;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.207#53
;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.208#53
;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.207#53
[...]
; <<>> DiG 9.11.3-1ubuntu1.7-Ubuntu <<>> 1.1.1.1
;; global options: +cmd
;; connection timed out; no servers could be reached
For comparison, if none of the service IPs is used, and we tell nslookup
to use 8.8.8.8 directly it works just fine, of course:
# nslookup 1.1.1.1 8.8.8.8
1.1.1.1.in-addr.arpa name = one.one.one.one.
In order to fix this and thus act more transparent to the application,
this needs reverse translation on recvmsg() side. A minimal fix for this
API is to add similar recvmsg() hooks behind the BPF cgroups static key
such that the program can track state and replace the current sockaddr_in{,6}
with the original service IP. From BPF side, this basically tracks the
service tuple plus socket cookie in an LRU map where the reverse NAT can
then be retrieved via map value as one example. Side-note: the BPF cgroups
static key should be converted to a per-hook static key in future.
Same example after this fix:
# cilium service list
ID Frontend Backend
1 147.75.207.207:53 1 => 8.8.8.8:53
2 147.75.207.208:53 1 => 8.8.8.8:53
Lookups work fine now:
# nslookup 1.1.1.1
1.1.1.1.in-addr.arpa name = one.one.one.one.
Authoritative answers can be found from:
# dig 1.1.1.1
; <<>> DiG 9.11.3-1ubuntu1.7-Ubuntu <<>> 1.1.1.1
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 51550
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
;; QUESTION SECTION:
;1.1.1.1. IN A
;; AUTHORITY SECTION:
. 23426 IN SOA a.root-servers.net. nstld.verisign-grs.com. 2019052001 1800 900 604800 86400
;; Query time: 17 msec
;; SERVER: 147.75.207.207#53(147.75.207.207)
;; WHEN: Tue May 21 12:59:38 UTC 2019
;; MSG SIZE rcvd: 111
And from an actual packet level it shows that we're using the back end
server when talking via 147.75.207.20{7,8} front end:
# tcpdump -i any udp
[...]
12:59:52.698732 IP foo.42011 > google-public-dns-a.google.com.domain: 18803+ PTR? 1.1.1.1.in-addr.arpa. (38)
12:59:52.698735 IP foo.42011 > google-public-dns-a.google.com.domain: 18803+ PTR? 1.1.1.1.in-addr.arpa. (38)
12:59:52.701208 IP google-public-dns-a.google.com.domain > foo.42011: 18803 1/0/0 PTR one.one.one.one. (67)
12:59:52.701208 IP google-public-dns-a.google.com.domain > foo.42011: 18803 1/0/0 PTR one.one.one.one. (67)
[...]
In order to be flexible and to have same semantics as in sendmsg BPF
programs, we only allow return codes in [1,1] range. In the sendmsg case
the program is called if msg->msg_name is present which can be the case
in both, connected and unconnected UDP.
The former only relies on the sockaddr_in{,6} passed via connect(2) if
passed msg->msg_name was NULL. Therefore, on recvmsg side, we act in similar
way to call into the BPF program whenever a non-NULL msg->msg_name was
passed independent of sk->sk_state being TCP_ESTABLISHED or not. Note
that for TCP case, the msg->msg_name is ignored in the regular recvmsg
path and therefore not relevant.
For the case of ip{,v6}_recv_error() paths, picked up via MSG_ERRQUEUE,
the hook is not called. This is intentional as it aligns with the same
semantics as in case of TCP cgroup BPF hooks right now. This might be
better addressed in future through a different bpf_attach_type such
that this case can be distinguished from the regular recvmsg paths,
for example.
Fixes: 1cedee13d2 ("bpf: Hooks for sys_sendmsg")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrey Ignatov <rdna@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Martynas Pumputis <m@lambda.lt>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of version 2 of the gnu general public license as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 64 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141901.894819585@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Allows cgroup inet skb programs to return values in the range [0, 3].
The second bit is used to deterine if congestion occurred and higher
level protocol should decrease rate. E.g. TCP would call tcp_enter_cwr()
The bpf_prog must set expected_attach_type to BPF_CGROUP_INET_EGRESS
at load time if it uses the new return values (i.e. 2 or 3).
The expected_attach_type is currently not enforced for
BPF_PROG_TYPE_CGROUP_SKB. e.g Meaning the current bpf_prog with
expected_attach_type setting to BPF_CGROUP_INET_EGRESS can attach to
BPF_CGROUP_INET_INGRESS. Blindly enforcing expected_attach_type will
break backward compatibility.
This patch adds a enforce_expected_attach_type bit to only
enforce the expected_attach_type when it uses the new
return value.
Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch randomizes high 32-bit of a definition when BPF_F_TEST_RND_HI32
is set.
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
After previous patches, verifier will mark a insn if it really needs zero
extension on dst_reg.
It is then for back-ends to decide how to use such information to eliminate
unnecessary zero extension code-gen during JIT compilation.
One approach is verifier insert explicit zero extension for those insns
that need zero extension in a generic way, JIT back-ends then do not
generate zero extension for sub-register write at default.
However, only those back-ends which do not have hardware zero extension
want this optimization. Back-ends like x86_64 and AArch64 have hardware
zero extension support that the insertion should be disabled.
This patch introduces new target hook "bpf_jit_needs_zext" which returns
false at default, meaning verifier zero extension insertion is disabled at
default. A back-end could override this hook to return true if it doesn't
have hardware support and want verifier insert zero extension explicitly.
Offload targets do not use this native target hook, instead, they could
get the optimization results using bpf_prog_offload_ops.finalize.
NOTE: arches could have diversified features, it is possible for one arch
to have hardware zero extension support for some sub-register write insns
but not for all. For example, PowerPC, SPARC have zero extended loads, but
not for alu32. So when verifier zero extension insertion enabled, these JIT
back-ends need to peephole insns to remove those zero extension inserted
for insn that actually has hardware zero extension support. The peephole
could be as simple as looking the next insn, if it is a special zero
extension insn then it is safe to eliminate it if the current insn has
hardware zero extension support.
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Patched insns do not go through generic verification, therefore doesn't has
zero extension information collected during insn walking.
We don't bother analyze them at the moment, for any sub-register def comes
from them, just conservatively mark it as needing zero extension.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
eBPF ISA specification requires high 32-bit cleared when low 32-bit
sub-register is written. This applies to destination register of ALU32 etc.
JIT back-ends must guarantee this semantic when doing code-gen. x86_64 and
AArch64 ISA has the same semantics, so the corresponding JIT back-end
doesn't need to do extra work.
However, 32-bit arches (arm, x86, nfp etc.) and some other 64-bit arches
(PowerPC, SPARC etc) need to do explicit zero extension to meet this
requirement, otherwise code like the following will fail.
u64_value = (u64) u32_value
... other uses of u64_value
This is because compiler could exploit the semantic described above and
save those zero extensions for extending u32_value to u64_value, these JIT
back-ends are expected to guarantee this through inserting extra zero
extensions which however could be a significant increase on the code size.
Some benchmarks show there could be ~40% sub-register writes out of total
insns, meaning at least ~40% extra code-gen.
One observation is these extra zero extensions are not always necessary.
Take above code snippet for example, it is possible u32_value will never be
casted into a u64, the value of high 32-bit of u32_value then could be
ignored and extra zero extension could be eliminated.
This patch implements this idea, insns defining sub-registers will be
marked when the high 32-bit of the defined sub-register matters. For
those unmarked insns, it is safe to eliminate high 32-bit clearnace for
them.
Algo:
- Split read flags into READ32 and READ64.
- Record index of insn that does sub-register write. Keep the index inside
reg state and update it during verifier insn walking.
- A full register read on a sub-register marks its definition insn as
needing zero extension on dst register.
A new sub-register write overrides the old one.
- When propagating read64 during path pruning, also mark any insn defining
a sub-register that is read in the pruned path as full-register.
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
All prune points inside a callee bpf function most likely will have
different callsites. For example, if function foo() is called from
two callsites the half of explored states in all prune points in foo()
will be useless for subsequent walking of one of those callsites.
Fortunately explored_states pruning heuristics keeps the number of states
per prune point small, but walking these states is still a waste of cpu
time when the callsite of the current state is different from the callsite
of the explored state.
To improve pruning logic convert explored_states into hash table and
use simple insn_idx ^ callsite hash to select hash bucket.
This optimization has no effect on programs without bpf2bpf calls
and drastically improves programs with calls.
In the later case it reduces total memory consumption in 1M scale tests
by almost 3 times (peak_states drops from 5752 to 2016).
Care should be taken when comparing the states for equivalency.
Since the same hash bucket can now contain states with different indices
the insn_idx has to be part of verifier_state and compared.
Different hash table sizes and different hash functions were explored,
but the results were not significantly better vs this patch.
They can be improved in the future.
Hit/miss heuristic is not counting index miscompare as a miss.
Otherwise verifier stats become unstable when experimenting
with different hash functions.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
split explored_states into prune_point boolean mark
and link list of explored states.
This removes STATE_LIST_MARK hack and allows marks to be separate from states.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
clean up explored_states to prep for introduction of hashtable
No functional changes.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
The limit of 1024 subsequent jumps was causing otherwise valid
programs to be rejected. Bump it to 8192 and make the error more verbose.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Commit 31fd85816d ("bpf: permits narrower load from bpf program
context fields") made the verifier add AND instructions to clear the
unwanted bits with a mask when doing a narrow load. The mask is
computed with
(1 << size * 8) - 1
where "size" is the size of the narrow load. When doing a 4 byte load
of a an 8 byte field the verifier shifts the literal 1 by 32 places to
the left. This results in an overflow of a signed integer, which is an
undefined behavior. Typically, the computed mask was zero, so the
result of the narrow load ended up being zero too.
Cast the literal to long long to avoid overflows. Note that narrow
load of the 4 byte fields does not have the undefined behavior,
because the load size can only be either 1 or 2 bytes, so shifting 1
by 8 or 16 places will not overflow it. And reading 4 bytes would not
be a narrow load of a 4 bytes field.
Fixes: 31fd85816d ("bpf: permits narrower load from bpf program context fields")
Reviewed-by: Alban Crequy <alban@kinvolk.io>
Reviewed-by: Iago López Galeiras <iago@kinvolk.io>
Signed-off-by: Krzesimir Nowak <krzesimir@kinvolk.io>
Cc: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
After allowing a bpf prog to
- directly read the skb->sk ptr
- get the fullsock bpf_sock by "bpf_sk_fullsock()"
- get the bpf_tcp_sock by "bpf_tcp_sock()"
- get the listener sock by "bpf_get_listener_sock()"
- avoid duplicating the fields of "(bpf_)sock" and "(bpf_)tcp_sock"
into different bpf running context.
this patch is another effort to make bpf's network programming
more intuitive to do (together with memory and performance benefit).
When bpf prog needs to store data for a sk, the current practice is to
define a map with the usual 4-tuples (src/dst ip/port) as the key.
If multiple bpf progs require to store different sk data, multiple maps
have to be defined. Hence, wasting memory to store the duplicated
keys (i.e. 4 tuples here) in each of the bpf map.
[ The smallest key could be the sk pointer itself which requires
some enhancement in the verifier and it is a separate topic. ]
Also, the bpf prog needs to clean up the elem when sk is freed.
Otherwise, the bpf map will become full and un-usable quickly.
The sk-free tracking currently could be done during sk state
transition (e.g. BPF_SOCK_OPS_STATE_CB).
The size of the map needs to be predefined which then usually ended-up
with an over-provisioned map in production. Even the map was re-sizable,
while the sk naturally come and go away already, this potential re-size
operation is arguably redundant if the data can be directly connected
to the sk itself instead of proxy-ing through a bpf map.
This patch introduces sk->sk_bpf_storage to provide local storage space
at sk for bpf prog to use. The space will be allocated when the first bpf
prog has created data for this particular sk.
The design optimizes the bpf prog's lookup (and then optionally followed by
an inline update). bpf_spin_lock should be used if the inline update needs
to be protected.
BPF_MAP_TYPE_SK_STORAGE:
-----------------------
To define a bpf "sk-local-storage", a BPF_MAP_TYPE_SK_STORAGE map (new in
this patch) needs to be created. Multiple BPF_MAP_TYPE_SK_STORAGE maps can
be created to fit different bpf progs' needs. The map enforces
BTF to allow printing the sk-local-storage during a system-wise
sk dump (e.g. "ss -ta") in the future.
The purpose of a BPF_MAP_TYPE_SK_STORAGE map is not for lookup/update/delete
a "sk-local-storage" data from a particular sk.
Think of the map as a meta-data (or "type") of a "sk-local-storage". This
particular "type" of "sk-local-storage" data can then be stored in any sk.
The main purposes of this map are mostly:
1. Define the size of a "sk-local-storage" type.
2. Provide a similar syscall userspace API as the map (e.g. lookup/update,
map-id, map-btf...etc.)
3. Keep track of all sk's storages of this "type" and clean them up
when the map is freed.
sk->sk_bpf_storage:
------------------
The main lookup/update/delete is done on sk->sk_bpf_storage (which
is a "struct bpf_sk_storage"). When doing a lookup,
the "map" pointer is now used as the "key" to search on the
sk_storage->list. The "map" pointer is actually serving
as the "type" of the "sk-local-storage" that is being
requested.
To allow very fast lookup, it should be as fast as looking up an
array at a stable-offset. At the same time, it is not ideal to
set a hard limit on the number of sk-local-storage "type" that the
system can have. Hence, this patch takes a cache approach.
The last search result from sk_storage->list is cached in
sk_storage->cache[] which is a stable sized array. Each
"sk-local-storage" type has a stable offset to the cache[] array.
In the future, a map's flag could be introduced to do cache
opt-out/enforcement if it became necessary.
The cache size is 16 (i.e. 16 types of "sk-local-storage").
Programs can share map. On the program side, having a few bpf_progs
running in the networking hotpath is already a lot. The bpf_prog
should have already consolidated the existing sock-key-ed map usage
to minimize the map lookup penalty. 16 has enough runway to grow.
All sk-local-storage data will be removed from sk->sk_bpf_storage
during sk destruction.
bpf_sk_storage_get() and bpf_sk_storage_delete():
------------------------------------------------
Instead of using bpf_map_(lookup|update|delete)_elem(),
the bpf prog needs to use the new helper bpf_sk_storage_get() and
bpf_sk_storage_delete(). The verifier can then enforce the
ARG_PTR_TO_SOCKET argument. The bpf_sk_storage_get() also allows to
"create" new elem if one does not exist in the sk. It is done by
the new BPF_SK_STORAGE_GET_F_CREATE flag. An optional value can also be
provided as the initial value during BPF_SK_STORAGE_GET_F_CREATE.
The BPF_MAP_TYPE_SK_STORAGE also supports bpf_spin_lock. Together,
it has eliminated the potential use cases for an equivalent
bpf_map_update_elem() API (for bpf_prog) in this patch.
Misc notes:
----------
1. map_get_next_key is not supported. From the userspace syscall
perspective, the map has the socket fd as the key while the map
can be shared by pinned-file or map-id.
Since btf is enforced, the existing "ss" could be enhanced to pretty
print the local-storage.
Supporting a kernel defined btf with 4 tuples as the return key could
be explored later also.
2. The sk->sk_lock cannot be acquired. Atomic operations is used instead.
e.g. cmpxchg is done on the sk->sk_bpf_storage ptr.
Please refer to the source code comments for the details in
synchronization cases and considerations.
3. The mem is charged to the sk->sk_omem_alloc as the sk filter does.
Benchmark:
---------
Here is the benchmark data collected by turning on
the "kernel.bpf_stats_enabled" sysctl.
Two bpf progs are tested:
One bpf prog with the usual bpf hashmap (max_entries = 8192) with the
sk ptr as the key. (verifier is modified to support sk ptr as the key
That should have shortened the key lookup time.)
Another bpf prog is with the new BPF_MAP_TYPE_SK_STORAGE.
Both are storing a "u32 cnt", do a lookup on "egress_skb/cgroup" for
each egress skb and then bump the cnt. netperf is used to drive
data with 4096 connected UDP sockets.
BPF_MAP_TYPE_HASH with a modifier verifier (152ns per bpf run)
27: cgroup_skb name egress_sk_map tag 74f56e832918070b run_time_ns 58280107540 run_cnt 381347633
loaded_at 2019-04-15T13:46:39-0700 uid 0
xlated 344B jited 258B memlock 4096B map_ids 16
btf_id 5
BPF_MAP_TYPE_SK_STORAGE in this patch (66ns per bpf run)
30: cgroup_skb name egress_sk_stora tag d4aa70984cc7bbf6 run_time_ns 25617093319 run_cnt 390989739
loaded_at 2019-04-15T13:47:54-0700 uid 0
xlated 168B jited 156B memlock 4096B map_ids 17
btf_id 6
Here is a high-level picture on how are the objects organized:
sk
┌──────┐
│ │
│ │
│ │
│*sk_bpf_storage─────▶ bpf_sk_storage
└──────┘ ┌───────┐
┌───────────┤ list │
│ │ │
│ │ │
│ │ │
│ └───────┘
│
│ elem
│ ┌────────┐
├─▶│ snode │
│ ├────────┤
│ │ data │ bpf_map
│ ├────────┤ ┌─────────┐
│ │map_node│◀─┬─────┤ list │
│ └────────┘ │ │ │
│ │ │ │
│ elem │ │ │
│ ┌────────┐ │ └─────────┘
└─▶│ snode │ │
├────────┤ │
bpf_map │ data │ │
┌─────────┐ ├────────┤ │
│ list ├───────▶│map_node│ │
│ │ └────────┘ │
│ │ │
│ │ elem │
└─────────┘ ┌────────┐ │
┌─▶│ snode │ │
│ ├────────┤ │
│ │ data │ │
│ ├────────┤ │
│ │map_node│◀─┘
│ └────────┘
│
│
│ ┌───────┐
sk └──────────│ list │
┌──────┐ │ │
│ │ │ │
│ │ │ │
│ │ └───────┘
│*sk_bpf_storage───────▶bpf_sk_storage
└──────┘
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This is an opt-in interface that allows a tracepoint to provide a safe
buffer that can be written from a BPF_PROG_TYPE_RAW_TRACEPOINT program.
The size of the buffer must be a compile-time constant, and is checked
before allowing a BPF program to attach to a tracepoint that uses this
feature.
The pointer to this buffer will be the first argument of tracepoints
that opt in; the pointer is valid and can be bpf_probe_read() by both
BPF_PROG_TYPE_RAW_TRACEPOINT and BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE
programs that attach to such a tracepoint, but the buffer to which it
points may only be written by the latter.
Signed-off-by: Matt Mullins <mmullins@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In case of a null check on a pointer inside a subprog, we should mark all
registers with this pointer as either safe or unknown, in both the current
and previous frames. Currently, only spilled registers and registers in
the current frame are marked. Packet bound checks in subprogs have the
same issue. This patch fixes it to mark registers in previous frames as
well.
A good reproducer for null checks looks as follow:
1: ptr = bpf_map_lookup_elem(map, &key);
2: ret = subprog(ptr) {
3: return ptr != NULL;
4: }
5: if (ret)
6: value = *ptr;
With the above, the verifier will complain on line 6 because it sees ptr
as map_value_or_null despite the null check in subprog 1.
Note that this patch fixes another resulting bug when using
bpf_sk_release():
1: sk = bpf_sk_lookup_tcp(...);
2: subprog(sk) {
3: if (sk)
4: bpf_sk_release(sk);
5: }
6: if (!sk)
7: return 0;
8: return 1;
In the above, mark_ptr_or_null_regs will warn on line 6 because it will
try to free the reference state, even though it was already freed on
line 3.
Fixes: f4d7e40a5b ("bpf: introduce function calls (verification)")
Signed-off-by: Paul Chaignon <paul.chaignon@orange.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Drop bpf_verifier_lock for root to avoid being DoS-ed by unprivileged.
The BPF verifier is now fully parallel.
All unpriv users are still serialized by bpf_verifier_lock to avoid
exhausting kernel memory by running N parallel verifications.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Move three global variables protected by bpf_verifier_lock into
'struct bpf_verifier_env' to allow parallel verification.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
verifier.c uses BPF_CAST_CALL for casting bpf call except at one
place in jit_subprogs(). Let's use the macro for consistency.
Signed-off-by: Prashant Bhole <bhole_prashant_q7@lab.ntt.co.jp>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
There are a few "regs[regno]" here are there across "check_reg_arg", this
patch factor it out into a simple "reg" pointer. The intention is to
simplify code indentation and make the later patches in this set look
cleaner.
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
After code refactor in previous patches, the propagation logic inside the
for loop in "propagate_liveness" becomes clear that they are good enough to
be factored out into a common function "propagate_liveness_reg".
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Access to reg states were not factored out, the consequence is long code
for dereferencing them which made the indentation not good for reading.
This patch factor out these code so the core code in the loop could be
easier to follow.
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Propagation for register and stack slot are finished in separate for loop,
while they are perfect to be put into a single loop.
This could also let them share some common variables in later patches.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently the way to pass result from BPF helper to BPF program is to
provide memory area defined by pointer and size: func(void *, size_t).
It works great for generic use-case, but for simple types, such as int,
it's overkill and consumes two arguments when it could use just one.
Introduce new argument types ARG_PTR_TO_INT and ARG_PTR_TO_LONG to be
able to pass result from helper to program via pointer to int and long
correspondingly: func(int *) or func(long *).
New argument types are similar to ARG_PTR_TO_MEM with the following
differences:
* they don't require corresponding ARG_CONST_SIZE argument, predefined
access sizes are used instead (32bit for int, 64bit for long);
* it's possible to use more than one such an argument in a helper;
* provided pointers have to be aligned.
It's easy to introduce similar ARG_PTR_TO_CHAR and ARG_PTR_TO_SHORT
argument types. It's not done due to lack of use-case though.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Containerized applications may run as root and it may create problems
for whole host. Specifically such applications may change a sysctl and
affect applications in other containers.
Furthermore in existing infrastructure it may not be possible to just
completely disable writing to sysctl, instead such a process should be
gradual with ability to log what sysctl are being changed by a
container, investigate, limit the set of writable sysctl to currently
used ones (so that new ones can not be changed) and eventually reduce
this set to zero.
The patch introduces new program type BPF_PROG_TYPE_CGROUP_SYSCTL and
attach type BPF_CGROUP_SYSCTL to solve these problems on cgroup basis.
New program type has access to following minimal context:
struct bpf_sysctl {
__u32 write;
};
Where @write indicates whether sysctl is being read (= 0) or written (=
1).
Helpers to access sysctl name and value will be introduced separately.
BPF_CGROUP_SYSCTL attach point is added to sysctl code right before
passing control to ctl_table->proc_handler so that BPF program can
either allow or deny access to sysctl.
Suggested-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Daniel Borkmann says:
====================
pull-request: bpf-next 2019-04-12
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Improve BPF verifier scalability for large programs through two
optimizations: i) remove verifier states that are not useful in pruning,
ii) stop walking parentage chain once first LIVE_READ is seen. Combined
gives approx 20x speedup. Increase limits for accepting large programs
under root, and add various stress tests, from Alexei.
2) Implement global data support in BPF. This enables static global variables
for .data, .rodata and .bss sections to be properly handled which allows
for more natural program development. This also opens up the possibility
to optimize program workflow by compiling ELFs only once and later only
rewriting section data before reload, from Daniel and with test cases and
libbpf refactoring from Joe.
3) Add config option to generate BTF type info for vmlinux as part of the
kernel build process. DWARF debug info is converted via pahole to BTF.
Latter relies on libbpf and makes use of BTF deduplication algorithm which
results in 100x savings compared to DWARF data. Resulting .BTF section is
typically about 2MB in size, from Andrii.
4) Add BPF verifier support for stack access with variable offset from
helpers and add various test cases along with it, from Andrey.
5) Extend bpf_skb_adjust_room() growth BPF helper to mark inner MAC header
so that L2 encapsulation can be used for tc tunnels, from Alan.
6) Add support for input __sk_buff context in BPF_PROG_TEST_RUN so that
users can define a subset of allowed __sk_buff fields that get fed into
the test program, from Stanislav.
7) Add bpf fs multi-dimensional array tests for BTF test suite and fix up
various UBSAN warnings in bpftool, from Yonghong.
8) Generate a pkg-config file for libbpf, from Luca.
9) Dump program's BTF id in bpftool, from Prashant.
10) libbpf fix to use smaller BPF log buffer size for AF_XDP's XDP
program, from Magnus.
11) kallsyms related fixes for the case when symbols are not present in
BPF selftests and samples, from Daniel
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
This work adds two new map creation flags BPF_F_RDONLY_PROG
and BPF_F_WRONLY_PROG in order to allow for read-only or
write-only BPF maps from a BPF program side.
Today we have BPF_F_RDONLY and BPF_F_WRONLY, but this only
applies to system call side, meaning the BPF program has full
read/write access to the map as usual while bpf(2) calls with
map fd can either only read or write into the map depending
on the flags. BPF_F_RDONLY_PROG and BPF_F_WRONLY_PROG allows
for the exact opposite such that verifier is going to reject
program loads if write into a read-only map or a read into a
write-only map is detected. For read-only map case also some
helpers are forbidden for programs that would alter the map
state such as map deletion, update, etc. As opposed to the two
BPF_F_RDONLY / BPF_F_WRONLY flags, BPF_F_RDONLY_PROG as well
as BPF_F_WRONLY_PROG really do correspond to the map lifetime.
We've enabled this generic map extension to various non-special
maps holding normal user data: array, hash, lru, lpm, local
storage, queue and stack. Further generic map types could be
followed up in future depending on use-case. Main use case
here is to forbid writes into .rodata map values from verifier
side.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This generic extension to BPF maps allows for directly loading
an address residing inside a BPF map value as a single BPF
ldimm64 instruction!
The idea is similar to what BPF_PSEUDO_MAP_FD does today, which
is a special src_reg flag for ldimm64 instruction that indicates
that inside the first part of the double insns's imm field is a
file descriptor which the verifier then replaces as a full 64bit
address of the map into both imm parts. For the newly added
BPF_PSEUDO_MAP_VALUE src_reg flag, the idea is the following:
the first part of the double insns's imm field is again a file
descriptor corresponding to the map, and the second part of the
imm field is an offset into the value. The verifier will then
replace both imm parts with an address that points into the BPF
map value at the given value offset for maps that support this
operation. Currently supported is array map with single entry.
It is possible to support more than just single map element by
reusing both 16bit off fields of the insns as a map index, so
full array map lookup could be expressed that way. It hasn't
been implemented here due to lack of concrete use case, but
could easily be done so in future in a compatible way, since
both off fields right now have to be 0 and would correctly
denote a map index 0.
The BPF_PSEUDO_MAP_VALUE is a distinct flag as otherwise with
BPF_PSEUDO_MAP_FD we could not differ offset 0 between load of
map pointer versus load of map's value at offset 0, and changing
BPF_PSEUDO_MAP_FD's encoding into off by one to differ between
regular map pointer and map value pointer would add unnecessary
complexity and increases barrier for debugability thus less
suitable. Using the second part of the imm field as an offset
into the value does /not/ come with limitations since maximum
possible value size is in u32 universe anyway.
This optimization allows for efficiently retrieving an address
to a map value memory area without having to issue a helper call
which needs to prepare registers according to calling convention,
etc, without needing the extra NULL test, and without having to
add the offset in an additional instruction to the value base
pointer. The verifier then treats the destination register as
PTR_TO_MAP_VALUE with constant reg->off from the user passed
offset from the second imm field, and guarantees that this is
within bounds of the map value. Any subsequent operations are
normally treated as typical map value handling without anything
extra needed from verification side.
The two map operations for direct value access have been added to
array map for now. In future other types could be supported as
well depending on the use case. The main use case for this commit
is to allow for BPF loader support for global variables that
reside in .data/.rodata/.bss sections such that we can directly
load the address of them with minimal additional infrastructure
required. Loader support has been added in subsequent commits for
libbpf library.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Minor comment merge conflict in mlx5.
Staging driver has a fixup due to the skb->xmit_more changes
in 'net-next', but was removed in 'net'.
Signed-off-by: David S. Miller <davem@davemloft.net>
check_stack_access() that prints verbose log is used in
adjust_ptr_min_max_vals() that prints its own verbose log and now they
stick together, e.g.:
variable stack access var_off=(0xfffffffffffffff0; 0x4) off=-16
size=1R2 stack pointer arithmetic goes out of range, prohibited for
!root
Add missing newline so that log is more readable:
variable stack access var_off=(0xfffffffffffffff0; 0x4) off=-16 size=1
R2 stack pointer arithmetic goes out of range, prohibited for !root
Fixes: f1174f77b5 ("bpf/verifier: rework value tracking")
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
As discussed in [1] max value of variable offset has to be checked for
overflow on stack access otherwise verifier would accept code like this:
0: (b7) r2 = 6
1: (b7) r3 = 28
2: (7a) *(u64 *)(r10 -16) = 0
3: (7a) *(u64 *)(r10 -8) = 0
4: (79) r4 = *(u64 *)(r1 +168)
5: (c5) if r4 s< 0x0 goto pc+4
R1=ctx(id=0,off=0,imm=0) R2=inv6 R3=inv28
R4=inv(id=0,umax_value=9223372036854775807,var_off=(0x0;
0x7fffffffffffffff)) R10=fp0,call_-1 fp-8=mmmmmmmm fp-16=mmmmmmmm
6: (17) r4 -= 16
7: (0f) r4 += r10
8: (b7) r5 = 8
9: (85) call bpf_getsockopt#57
10: (b7) r0 = 0
11: (95) exit
, where R4 obviosly has unbounded max value.
Fix it by checking that reg->smax_value is inside (-BPF_MAX_VAR_OFF;
BPF_MAX_VAR_OFF) range.
reg->smax_value is used instead of reg->umax_value because stack
pointers are calculated using negative offset from fp. This is opposite
to e.g. map access where offset must be non-negative and where
umax_value is used.
Also dedicated verbose logs are added for both min and max bound check
failures to have diagnostics consistent with variable offset handling in
check_map_access().
[1] https://marc.info/?l=linux-netdev&m=155433357510597&w=2
Fixes: 2011fccfb6 ("bpf: Support variable offset stack access from helpers")
Reported-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Proper support of indirect stack access with variable offset in
unprivileged mode (!root) requires corresponding support in Spectre
masking for stack ALU in retrieve_ptr_limit().
There are no use-case for variable offset in unprivileged mode though so
make verifier reject such accesses for simplicity.
Pointer arithmetics is one (and only?) way to cause variable offset and
it's already rejected in unpriv mode so that verifier won't even get to
helper function whose argument contains variable offset, e.g.:
0: (7a) *(u64 *)(r10 -16) = 0
1: (7a) *(u64 *)(r10 -8) = 0
2: (61) r2 = *(u32 *)(r1 +0)
3: (57) r2 &= 4
4: (17) r2 -= 16
5: (0f) r2 += r10
variable stack access var_off=(0xfffffffffffffff0; 0x4) off=-16 size=1R2
stack pointer arithmetic goes out of range, prohibited for !root
Still it looks like a good idea to reject variable offset indirect stack
access for unprivileged mode in check_stack_boundary() explicitly.
Fixes: 2011fccfb6 ("bpf: Support variable offset stack access from helpers")
Reported-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
It's hard to guarantee that whole memory is marked as initialized on
helper return if uninitialized stack is accessed with variable offset
since specific bounds are unknown to verifier. This may cause
uninitialized stack leaking.
Reject such an access in check_stack_boundary to prevent possible
leaking.
There are no known use-cases for indirect uninitialized stack access
with variable offset so it shouldn't break anything.
Fixes: 2011fccfb6 ("bpf: Support variable offset stack access from helpers")
Reported-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
The existing 16Mbyte verifier log limit is not enough for log_level=2
even for small programs. Increase it to 1Gbyte.
Note it's not a kernel memory limit.
It's an amount of memory user space provides to store
the verifier log. The kernel populates it 1k at a time.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Large verifier speed improvements allow to increase
verifier complexity limit.
Now regardless of the program composition and its size it takes
little time for the verifier to hit insn_processed limit.
On typical x86 machine non-debug kernel processes 1M instructions
in 1/10 of a second.
(before these speed improvements specially crafted programs
could be hitting multi-second verification times)
Full kasan kernel with debug takes ~1 second for the same 1M insns.
Hence bump the BPF_COMPLEXITY_LIMIT_INSNS limit to 1M.
Also increase the number of instructions per program
from 4k to internal BPF_COMPLEXITY_LIMIT_INSNS limit.
4k limit was confusing to users, since small programs with hundreds
of insns could be hitting BPF_COMPLEXITY_LIMIT_INSNS limit.
Sometimes adding more insns and bpf_trace_printk debug statements
would make the verifier accept the program while removing
code would make the verifier reject it.
Some user space application started to add #define MAX_FOO to
their programs and do:
MAX_FOO=100;
again:
compile with MAX_FOO;
try to load;
if (fails_to_load) { reduce MAX_FOO; goto again; }
to be able to fit maximum amount of processing into single program.
Other users artificially split their single program into a set of programs
and use all 32 iterations of tail_calls to increase compute limits.
And the most advanced folks used unlimited tc-bpf filter list
to execute many bpf programs.
Essentially the users managed to workaround 4k insn limit.
This patch removes the limit for root programs from uapi.
BPF_COMPLEXITY_LIMIT_INSNS is the kernel internal limit
and success to load the program no longer depends on program size,
but on 'smartness' of the verifier only.
The verifier will continue to get smarter with every kernel release.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Larger programs may trigger 16-bit jump offset overflow check
during instruction patching. Make this error verbose otherwise
users cannot decipher error code without printks in the verifier.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Temporary arrays used during program verification need to be vmalloc-ed
to support large bpf programs.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
With large verifier speed improvement brought by the previous patch
mark_reg_read() becomes the hottest function during verification.
On a typical program it consumes 40% of cpu.
mark_reg_read() walks parentage chain of registers to mark parents as LIVE_READ.
Once the register is marked there is no need to remark it again in the future.
Hence stop walking the chain once first LIVE_READ is seen.
This optimization drops mark_reg_read() time from 40% of cpu to <1%
and overall 2x improvement of verification speed.
For some programs the longest_mark_read_walk counter improves from ~500 to ~5
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Branch instructions, branch targets and calls in a bpf program are
the places where the verifier remembers states that led to successful
verification of the program.
These states are used to prune brute force program analysis.
For unprivileged programs there is a limit of 64 states per such
'branching' instructions (maximum length is tracked by max_states_per_insn
counter introduced in the previous patch).
Simply reducing this threshold to 32 or lower increases insn_processed
metric to the point that small valid programs get rejected.
For root programs there is no limit and cilium programs can have
max_states_per_insn to be 100 or higher.
Walking 100+ states multiplied by number of 'branching' insns during
verification consumes significant amount of cpu time.
Turned out simple LRU-like mechanism can be used to remove states
that unlikely will be helpful in future search pruning.
This patch introduces hit_cnt and miss_cnt counters:
hit_cnt - this many times this state successfully pruned the search
miss_cnt - this many times this state was not equivalent to other states
(and that other states were added to state list)
The heuristic introduced in this patch is:
if (sl->miss_cnt > sl->hit_cnt * 3 + 3)
/* drop this state from future considerations */
Higher numbers increase max_states_per_insn (allow more states to be
considered for pruning) and slow verification speed, but do not meaningfully
reduce insn_processed metric.
Lower numbers drop too many states and insn_processed increases too much.
Many different formulas were considered.
This one is simple and works well enough in practice.
(the analysis was done on selftests/progs/* and on cilium programs)
The end result is this heuristic improves verification speed by 10 times.
Large synthetic programs that used to take a second more now take
1/10 of a second.
In cases where max_states_per_insn used to be 100 or more, now it's ~10.
There is a slight increase in insn_processed for cilium progs:
before after
bpf_lb-DLB_L3.o 1831 1838
bpf_lb-DLB_L4.o 3029 3218
bpf_lb-DUNKNOWN.o 1064 1064
bpf_lxc-DDROP_ALL.o 26309 26935
bpf_lxc-DUNKNOWN.o 33517 34439
bpf_netdev.o 9713 9721
bpf_overlay.o 6184 6184
bpf_lcx_jit.o 37335 39389
And 2-3 times improvement in the verification speed.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
In order to understand the verifier bottlenecks add various stats
and extend log_level:
log_level 1 and 2 are kept as-is:
bit 0 - level=1 - print every insn and verifier state at branch points
bit 1 - level=2 - print every insn and verifier state at every insn
bit 2 - level=4 - print verifier error and stats at the end of verification
When verifier rejects the program the libbpf is trying to load the program twice.
Once with log_level=0 (no messages, only error code is reported to user space)
and second time with log_level=1 to tell the user why the verifier rejected it.
With introduction of bit 2 - level=4 the libbpf can choose to always use that
level and load programs once, since the verification speed is not affected and
in case of error the verbose message will be available.
Note that the verifier stats are not part of uapi just like all other
verbose messages. They're expected to change in the future.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Currently there is a difference in how verifier checks memory access for
helper arguments for PTR_TO_MAP_VALUE and PTR_TO_STACK with regard to
variable part of offset.
check_map_access, that is used for PTR_TO_MAP_VALUE, can handle variable
offsets just fine, so that BPF program can call a helper like this:
some_helper(map_value_ptr + off, size);
, where offset is unknown at load time, but is checked by program to be
in a safe rage (off >= 0 && off + size < map_value_size).
But it's not the case for check_stack_boundary, that is used for
PTR_TO_STACK, and same code with pointer to stack is rejected by
verifier:
some_helper(stack_value_ptr + off, size);
For example:
0: (7a) *(u64 *)(r10 -16) = 0
1: (7a) *(u64 *)(r10 -8) = 0
2: (61) r2 = *(u32 *)(r1 +0)
3: (57) r2 &= 4
4: (17) r2 -= 16
5: (0f) r2 += r10
6: (18) r1 = 0xffff888111343a80
8: (85) call bpf_map_lookup_elem#1
invalid variable stack read R2 var_off=(0xfffffffffffffff0; 0x4)
Add support for variable offset access to check_stack_boundary so that
if offset is checked by program to be in a safe range it's accepted by
verifier.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The BPF verifier checks the maximum number of call stack frames twice,
first in the main CFG traversal (do_check) and then in a subsequent
traversal (check_max_stack_depth). If the second check fails, it logs a
'verifier bug' warning and errors out, as the number of call stack frames
should have been verified already.
However, the second check may fail without indicating a verifier bug: if
the excessive function calls reside in dead code, the main CFG traversal
may not visit them; the subsequent traversal visits all instructions,
including dead code.
This case raises the question of how invalid dead code should be treated.
This patch implements the conservative option and rejects such code.
Signed-off-by: Paul Chaignon <paul.chaignon@orange.com>
Tested-by: Xiao Han <xiao.han@orange.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Commit 7640ead939 ("bpf: verifier: make sure callees don't prune
with caller differences") connected up parentage chains of all
frames of the stack. It didn't, however, ensure propagate_liveness()
propagates all liveness information along those chains.
This means pruning happening in the callee may generate explored
states with incomplete liveness for the chains in lower frames
of the stack.
The included selftest is similar to the prior one from commit
7640ead939 ("bpf: verifier: make sure callees don't prune with
caller differences"), where callee would prune regardless of the
difference in r8 state.
Now we also initialize r9 to 0 or 1 based on a result from get_random().
r9 is never read so the walk with r9 = 0 gets pruned (correctly) after
the walk with r9 = 1 completes.
The selftest is so arranged that the pruning will happen in the
callee. Since callee does not propagate read marks of r8, the
explored state at the pruning point prior to the callee will
now ignore r8.
Propagate liveness on all frames of the stack when pruning.
Fixes: f4d7e40a5b ("bpf: introduce function calls (verification)")
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Allow looking up a sock_common. This gives eBPF programs
access to timewait and request sockets.
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
It's currently not possible to access timewait or request sockets
from eBPF, since there is no way to return a PTR_TO_SOCK_COMMON
from a helper. Introduce RET_PTR_TO_SOCK_COMMON to enable this
behaviour.
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
So far, the verifier only acquires reference tracking state for
RET_PTR_TO_SOCKET_OR_NULL. Instead of extending this for every
new return type which desires these semantics, acquire reference
tracking state iff the called helper is an acquire function.
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Syzkaller hit 'KASAN: use-after-free Write in sanitize_ptr_alu' bug.
Call trace:
dump_stack+0xbf/0x12e
print_address_description+0x6a/0x280
kasan_report+0x237/0x360
sanitize_ptr_alu+0x85a/0x8d0
adjust_ptr_min_max_vals+0x8f2/0x1ca0
adjust_reg_min_max_vals+0x8ed/0x22e0
do_check+0x1ca6/0x5d00
bpf_check+0x9ca/0x2570
bpf_prog_load+0xc91/0x1030
__se_sys_bpf+0x61e/0x1f00
do_syscall_64+0xc8/0x550
entry_SYSCALL_64_after_hwframe+0x49/0xbe
Fault injection trace:
kfree+0xea/0x290
free_func_state+0x4a/0x60
free_verifier_state+0x61/0xe0
push_stack+0x216/0x2f0 <- inject failslab
sanitize_ptr_alu+0x2b1/0x8d0
adjust_ptr_min_max_vals+0x8f2/0x1ca0
adjust_reg_min_max_vals+0x8ed/0x22e0
do_check+0x1ca6/0x5d00
bpf_check+0x9ca/0x2570
bpf_prog_load+0xc91/0x1030
__se_sys_bpf+0x61e/0x1f00
do_syscall_64+0xc8/0x550
entry_SYSCALL_64_after_hwframe+0x49/0xbe
When kzalloc() fails in push_stack(), free_verifier_state() will free
current verifier state. As push_stack() returns, dst_reg was restored
if ptr_is_dst_reg is false. However, as member of the cur_state,
dst_reg is also freed, and error occurs when dereferencing dst_reg.
Simply fix it by testing ret of push_stack() before restoring dst_reg.
Fixes: 979d63d50c ("bpf: prevent out of bounds speculation on pointer arithmetic")
Signed-off-by: Xu Yu <xuyu@linux.alibaba.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Naresh reported that test_align fails because of the mismatch at the
verbose printout of the register states. The reason is due to the newly
added ref_obj_id.
ref_obj_id is only useful for refcounted reg. Thus, this patch fixes it
by only printing ref_obj_id for refcounted reg. While at it, it also uses
comma instead of space to separate between "id" and "ref_obj_id".
Fixes: 1b98658968 ("bpf: Fix bpf_tcp_sock and bpf_sk_fullsock issue related to bpf_sk_release")
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Lorenz Bauer [thanks!] reported that a ptr returned by bpf_tcp_sock(sk)
can still be accessed after bpf_sk_release(sk).
Both bpf_tcp_sock() and bpf_sk_fullsock() have the same issue.
This patch addresses them together.
A simple reproducer looks like this:
sk = bpf_sk_lookup_tcp();
/* if (!sk) ... */
tp = bpf_tcp_sock(sk);
/* if (!tp) ... */
bpf_sk_release(sk);
snd_cwnd = tp->snd_cwnd; /* oops! The verifier does not complain. */
The problem is the verifier did not scrub the register's states of
the tcp_sock ptr (tp) after bpf_sk_release(sk).
[ Note that when calling bpf_tcp_sock(sk), the sk is not always
refcount-acquired. e.g. bpf_tcp_sock(skb->sk). The verifier works
fine for this case. ]
Currently, the verifier does not track if a helper's return ptr (in REG_0)
is "carry"-ing one of its argument's refcount status. To carry this info,
the reg1->id needs to be stored in reg0.
One approach was tried, like "reg0->id = reg1->id", when calling
"bpf_tcp_sock()". The main idea was to avoid adding another "ref_obj_id"
for the same reg. However, overlapping the NULL marking and ref
tracking purpose in one "id" does not work well:
ref_sk = bpf_sk_lookup_tcp();
fullsock = bpf_sk_fullsock(ref_sk);
tp = bpf_tcp_sock(ref_sk);
if (!fullsock) {
bpf_sk_release(ref_sk);
return 0;
}
/* fullsock_reg->id is marked for NOT-NULL.
* Same for tp_reg->id because they have the same id.
*/
/* oops. verifier did not complain about the missing !tp check */
snd_cwnd = tp->snd_cwnd;
Hence, a new "ref_obj_id" is needed in "struct bpf_reg_state".
With a new ref_obj_id, when bpf_sk_release(sk) is called, the verifier can
scrub all reg states which has a ref_obj_id match. It is done with the
changes in release_reg_references() in this patch.
While fixing it, sk_to_full_sk() is removed from bpf_tcp_sock() and
bpf_sk_fullsock() to avoid these helpers from returning
another ptr. It will make bpf_sk_release(tp) possible:
sk = bpf_sk_lookup_tcp();
/* if (!sk) ... */
tp = bpf_tcp_sock(sk);
/* if (!tp) ... */
bpf_sk_release(tp);
A separate helper "bpf_get_listener_sock()" will be added in a later
patch to do sk_to_full_sk().
Misc change notes:
- To allow bpf_sk_release(tp), the arg of bpf_sk_release() is changed
from ARG_PTR_TO_SOCKET to ARG_PTR_TO_SOCK_COMMON. ARG_PTR_TO_SOCKET
is removed from bpf.h since no helper is using it.
- arg_type_is_refcounted() is renamed to arg_type_may_be_refcounted()
because ARG_PTR_TO_SOCK_COMMON is the only one and skb->sk is not
refcounted. All bpf_sk_release(), bpf_sk_fullsock() and bpf_tcp_sock()
take ARG_PTR_TO_SOCK_COMMON.
- check_refcount_ok() ensures is_acquire_function() cannot take
arg_type_may_be_refcounted() as its argument.
- The check_func_arg() can only allow one refcount-ed arg. It is
guaranteed by check_refcount_ok() which ensures at most one arg can be
refcounted. Hence, it is a verifier internal error if >1 refcount arg
found in check_func_arg().
- In release_reference(), release_reference_state() is called
first to ensure a match on "reg->ref_obj_id" can be found before
scrubbing the reg states with release_reg_references().
- reg_is_refcounted() is no longer needed.
1. In mark_ptr_or_null_regs(), its usage is replaced by
"ref_obj_id && ref_obj_id == id" because,
when is_null == true, release_reference_state() should only be
called on the ref_obj_id obtained by a acquire helper (i.e.
is_acquire_function() == true). Otherwise, the following
would happen:
sk = bpf_sk_lookup_tcp();
/* if (!sk) { ... } */
fullsock = bpf_sk_fullsock(sk);
if (!fullsock) {
/*
* release_reference_state(fullsock_reg->ref_obj_id)
* where fullsock_reg->ref_obj_id == sk_reg->ref_obj_id.
*
* Hence, the following bpf_sk_release(sk) will fail
* because the ref state has already been released in the
* earlier release_reference_state(fullsock_reg->ref_obj_id).
*/
bpf_sk_release(sk);
}
2. In release_reg_references(), the current reg_is_refcounted() call
is unnecessary because the id check is enough.
- The type_is_refcounted() and type_is_refcounted_or_null()
are no longer needed also because reg_is_refcounted() is removed.
Fixes: 655a51e536 ("bpf: Add struct bpf_tcp_sock and BPF_FUNC_tcp_sock")
Reported-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Non-zero imm value in the second part of the ldimm64 instruction for
BPF_PSEUDO_MAP_FD is invalid, and thus must be rejected. The map fd
only ever sits in the first instructions' imm field. None of the BPF
loaders known to us are using it, so risk of regression is minimal.
For clarity and consistency, the few insn->{src_reg,imm} occurrences
are rewritten into insn[0].{src_reg,imm}. Add a test case to the BPF
selftest suite as well.
Fixes: 0246e64d9a ("bpf: handle pseudo BPF_LD_IMM64 insn")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Daniel Borkmann says:
====================
pull-request: bpf-next 2019-03-04
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Add AF_XDP support to libbpf. Rationale is to facilitate writing
AF_XDP applications by offering higher-level APIs that hide many
of the details of the AF_XDP uapi. Sample programs are converted
over to this new interface as well, from Magnus.
2) Introduce a new cant_sleep() macro for annotation of functions
that cannot sleep and use it in BPF_PROG_RUN() to assert that
BPF programs run under preemption disabled context, from Peter.
3) Introduce per BPF prog stats in order to monitor the usage
of BPF; this is controlled by kernel.bpf_stats_enabled sysctl
knob where monitoring tools can make use of this to efficiently
determine the average cost of programs, from Alexei.
4) Split up BPF selftest's test_progs similarly as we already
did with test_verifier. This allows to further reduce merge
conflicts in future and to get more structure into our
quickly growing BPF selftest suite, from Stanislav.
5) Fix a bug in BTF's dedup algorithm which can cause an infinite
loop in some circumstances; also various BPF doc fixes and
improvements, from Andrii.
6) Various BPF sample cleanups and migration to libbpf in order
to further isolate the old sample loader code (so we can get
rid of it at some point), from Jakub.
7) Add a new BPF helper for BPF cgroup skb progs that allows
to set ECN CE code point and a Host Bandwidth Manager (HBM)
sample program for limiting the bandwidth used by v2 cgroups,
from Lawrence.
8) Enable write access to skb->queue_mapping from tc BPF egress
programs in order to let BPF pick TX queue, from Jesper.
9) Fix a bug in BPF spinlock handling for map-in-map which did
not propagate spin_lock_off to the meta map, from Yonghong.
10) Fix a bug in the new per-CPU BPF prog counters to properly
initialize stats for each CPU, from Eric.
11) Add various BPF helper prototypes to selftest's bpf_helpers.h,
from Willem.
12) Fix various BPF samples bugs in XDP and tracing progs,
from Toke, Daniel and Yonghong.
13) Silence preemption splat in test_bpf after BPF_PROG_RUN()
enforces it now everywhere, from Anders.
14) Fix a signedness bug in libbpf's btf_dedup_ref_type() to
get error handling working, from Dan.
15) Fix bpftool documentation and auto-completion with regards
to stream_{verdict,parser} attach types, from Alban.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Marek reported that he saw an issue with the below snippet in that
timing measurements where off when loaded as unpriv while results
were reasonable when loaded as privileged:
[...]
uint64_t a = bpf_ktime_get_ns();
uint64_t b = bpf_ktime_get_ns();
uint64_t delta = b - a;
if ((int64_t)delta > 0) {
[...]
Turns out there is a bug where a corner case is missing in the fix
d3bd7413e0 ("bpf: fix sanitation of alu op with pointer / scalar
type from different paths"), namely fixup_bpf_calls() only checks
whether aux has a non-zero alu_state, but it also needs to test for
the case of BPF_ALU_NON_POINTER since in both occasions we need to
skip the masking rewrite (as there is nothing to mask).
Fixes: d3bd7413e0 ("bpf: fix sanitation of alu op with pointer / scalar type from different paths")
Reported-by: Marek Majkowski <marek@cloudflare.com>
Reported-by: Arthur Fabre <afabre@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/netdev/CAJPywTJqP34cK20iLM5YmUMz9KXQOdu1-+BZrGMAGgLuBWz7fg@mail.gmail.com/T/
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
JITed BPF programs are indistinguishable from kernel functions, but unlike
kernel code BPF code can be changed often.
Typical approach of "perf record" + "perf report" profiling and tuning of
kernel code works just as well for BPF programs, but kernel code doesn't
need to be monitored whereas BPF programs do.
Users load and run large amount of BPF programs.
These BPF stats allow tools monitor the usage of BPF on the server.
The monitoring tools will turn sysctl kernel.bpf_stats_enabled
on and off for few seconds to sample average cost of the programs.
Aggregated data over hours and days will provide an insight into cost of BPF
and alarms can trigger in case given program suddenly gets more expensive.
The cost of two sched_clock() per program invocation adds ~20 nsec.
Fast BPF progs (like selftests/bpf/progs/test_pkt_access.c) will slow down
from ~10 nsec to ~30 nsec.
static_key minimizes the cost of the stats collection.
There is no measurable difference before/after this patch
with kernel.bpf_stats_enabled=0
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This patch adds a helper function BPF_FUNC_tcp_sock and it
is currently available for cg_skb and sched_(cls|act):
struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk);
int cg_skb_foo(struct __sk_buff *skb) {
struct bpf_tcp_sock *tp;
struct bpf_sock *sk;
__u32 snd_cwnd;
sk = skb->sk;
if (!sk)
return 1;
tp = bpf_tcp_sock(sk);
if (!tp)
return 1;
snd_cwnd = tp->snd_cwnd;
/* ... */
return 1;
}
A 'struct bpf_tcp_sock' is also added to the uapi bpf.h to provide
read-only access. bpf_tcp_sock has all the existing tcp_sock's fields
that has already been exposed by the bpf_sock_ops.
i.e. no new tcp_sock's fields are exposed in bpf.h.
This helper returns a pointer to the tcp_sock. If it is not a tcp_sock
or it cannot be traced back to a tcp_sock by sk_to_full_sk(), it
returns NULL. Hence, the caller needs to check for NULL before
accessing it.
The current use case is to expose members from tcp_sock
to allow a cg_skb_bpf_prog to provide per cgroup traffic
policing/shaping.
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In kernel, it is common to check "skb->sk && sk_fullsock(skb->sk)"
before accessing the fields in sock. For example, in __netdev_pick_tx:
static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
struct net_device *sb_dev)
{
/* ... */
struct sock *sk = skb->sk;
if (queue_index != new_index && sk &&
sk_fullsock(sk) &&
rcu_access_pointer(sk->sk_dst_cache))
sk_tx_queue_set(sk, new_index);
/* ... */
return queue_index;
}
This patch adds a "struct bpf_sock *sk" pointer to the "struct __sk_buff"
where a few of the convert_ctx_access() in filter.c has already been
accessing the skb->sk sock_common's fields,
e.g. sock_ops_convert_ctx_access().
"__sk_buff->sk" is a PTR_TO_SOCK_COMMON_OR_NULL in the verifier.
Some of the fileds in "bpf_sock" will not be directly
accessible through the "__sk_buff->sk" pointer. It is limited
by the new "bpf_sock_common_is_valid_access()".
e.g. The existing "type", "protocol", "mark" and "priority" in bpf_sock
are not allowed.
The newly added "struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)"
can be used to get a sk with all accessible fields in "bpf_sock".
This helper is added to both cg_skb and sched_(cls|act).
int cg_skb_foo(struct __sk_buff *skb) {
struct bpf_sock *sk;
sk = skb->sk;
if (!sk)
return 1;
sk = bpf_sk_fullsock(sk);
if (!sk)
return 1;
if (sk->family != AF_INET6 || sk->protocol != IPPROTO_TCP)
return 1;
/* some_traffic_shaping(); */
return 1;
}
(1) The sk is read only
(2) There is no new "struct bpf_sock_common" introduced.
(3) Future kernel sock's members could be added to bpf_sock only
instead of repeatedly adding at multiple places like currently
in bpf_sock_ops_md, bpf_sock_addr_md, sk_reuseport_md...etc.
(4) After "sk = skb->sk", the reg holding sk is in type
PTR_TO_SOCK_COMMON_OR_NULL.
(5) After bpf_sk_fullsock(), the return type will be in type
PTR_TO_SOCKET_OR_NULL which is the same as the return type of
bpf_sk_lookup_xxx().
However, bpf_sk_fullsock() does not take refcnt. The
acquire_reference_state() is only depending on the return type now.
To avoid it, a new is_acquire_function() is checked before calling
acquire_reference_state().
(6) The WARN_ON in "release_reference_state()" is no longer an
internal verifier bug.
When reg->id is not found in state->refs[], it means the
bpf_prog does something wrong like
"bpf_sk_release(bpf_sk_fullsock(skb->sk))" where reference has
never been acquired by calling "bpf_sk_fullsock(skb->sk)".
A -EINVAL and a verbose are done instead of WARN_ON. A test is
added to the test_verifier in a later patch.
Since the WARN_ON in "release_reference_state()" is no longer
needed, "__release_reference_state()" is folded into
"release_reference_state()" also.
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Introduce 'struct bpf_spin_lock' and bpf_spin_lock/unlock() helpers to let
bpf program serialize access to other variables.
Example:
struct hash_elem {
int cnt;
struct bpf_spin_lock lock;
};
struct hash_elem * val = bpf_map_lookup_elem(&hash_map, &key);
if (val) {
bpf_spin_lock(&val->lock);
val->cnt++;
bpf_spin_unlock(&val->lock);
}
Restrictions and safety checks:
- bpf_spin_lock is only allowed inside HASH and ARRAY maps.
- BTF description of the map is mandatory for safety analysis.
- bpf program can take one bpf_spin_lock at a time, since two or more can
cause dead locks.
- only one 'struct bpf_spin_lock' is allowed per map element.
It drastically simplifies implementation yet allows bpf program to use
any number of bpf_spin_locks.
- when bpf_spin_lock is taken the calls (either bpf2bpf or helpers) are not allowed.
- bpf program must bpf_spin_unlock() before return.
- bpf program can access 'struct bpf_spin_lock' only via
bpf_spin_lock()/bpf_spin_unlock() helpers.
- load/store into 'struct bpf_spin_lock lock;' field is not allowed.
- to use bpf_spin_lock() helper the BTF description of map value must be
a struct and have 'struct bpf_spin_lock anyname;' field at the top level.
Nested lock inside another struct is not allowed.
- syscall map_lookup doesn't copy bpf_spin_lock field to user space.
- syscall map_update and program map_update do not update bpf_spin_lock field.
- bpf_spin_lock cannot be on the stack or inside networking packet.
bpf_spin_lock can only be inside HASH or ARRAY map value.
- bpf_spin_lock is available to root only and to all program types.
- bpf_spin_lock is not allowed in inner maps of map-in-map.
- ld_abs is not allowed inside spin_lock-ed region.
- tracing progs and socket filter progs cannot use bpf_spin_lock due to
insufficient preemption checks
Implementation details:
- cgroup-bpf class of programs can nest with xdp/tc programs.
Hence bpf_spin_lock is equivalent to spin_lock_irqsave.
Other solutions to avoid nested bpf_spin_lock are possible.
Like making sure that all networking progs run with softirq disabled.
spin_lock_irqsave is the simplest and doesn't add overhead to the
programs that don't use it.
- arch_spinlock_t is used when its implemented as queued_spin_lock
- archs can force their own arch_spinlock_t
- on architectures where queued_spin_lock is not available and
sizeof(arch_spinlock_t) != sizeof(__u32) trivial lock is used.
- presence of bpf_spin_lock inside map value could have been indicated via
extra flag during map_create, but specifying it via BTF is cleaner.
It provides introspection for map key/value and reduces user mistakes.
Next steps:
- allow bpf_spin_lock in other map types (like cgroup local storage)
- introduce BPF_F_LOCK flag for bpf_map_update() syscall and helper
to request kernel to grab bpf_spin_lock before rewriting the value.
That will serialize access to map elements.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This patch teach verifier about the new BPF_JMP32 instruction class.
Verifier need to treat it similar as the existing BPF_JMP class.
A BPF_JMP32 insn needs to go through all checks that have been done on
BPF_JMP.
Also, verifier is doing runtime optimizations based on the extra info
conditional jump instruction could offer, especially when the comparison is
between constant and register that the value range of the register could be
improved based on the comparison results. These code are updated
accordingly.
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The current min/max code does both signed and unsigned comparisons against
the input argument "val" which is "u64" and there is explicit type casting
when the comparison is signed.
As we will need slightly more complexer type casting when JMP32 introduced,
it is better to host the signed type casting. This makes the code more
clean with ignorable runtime overhead.
Also, code for J*GE/GT/LT/LE and JEQ/JNE are very similar, this patch
combine them.
The main purpose for this refactor is to make sure the min/max code will
still be readable and with minimum code duplication after JMP32 introduced.
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Let offload JITs know when instructions are replaced and optimized
out, so they can update their state appropriately. The optimizations
are best effort, if JIT returns an error from any callback verifier
will stop notifying it as state may now be out of sync, but the
verifier continues making progress.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The communication between the verifier and advanced JITs is based
on instruction indexes. We have to keep them stable throughout
the optimizations otherwise referring to a particular instruction
gets messy quickly.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Unconditional branches by 0 instructions are basically noops
but they can result from earlier optimizations, e.g. a conditional
jumps which would never be taken or a conditional jump around
dead code.
Remove those branches.
v0.2:
- s/opt_remove_dead_branches/opt_remove_nops/ (Jiong).
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Instead of overwriting dead code with jmp -1 instructions
remove it completely for root. Adjust verifier state and
line info appropriately.
v2:
- adjust func_info (Alexei);
- make sure first instruction retains line info (Alexei).
v4: (Yonghong)
- remove unnecessary if (!insn to remove) checks;
- always keep last line info if first live instruction lacks one.
v5: (Martin Lau)
- improve and clarify comments.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Loading programs with dead code becomes more and more
common, as people begin to patch constants at load time.
Turn conditional jumps to unconditional ones, to avoid
potential branch misprediction penalty.
This optimization is enabled for privileged users only.
For branches which just fall through we could just mark
them as not seen and have dead code removal take care of
them, but that seems less clean.
v0.2:
- don't call capable(CAP_SYS_ADMIN) twice (Jiong).
v3:
- fix GCC warning;
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
An older GCC compiler complains:
kernel/bpf/verifier.c: In function 'bpf_check':
kernel/bpf/verifier.c:4***:13: error: 'prev_offset' may be used uninitialized
in this function [-Werror=maybe-uninitialized]
} else if (krecord[i].insn_offset <= prev_offset) {
^
kernel/bpf/verifier.c:4***:38: note: 'prev_offset' was declared here
u32 i, nfuncs, urec_size, min_size, prev_offset;
Although the compiler is wrong here, the patch makes sure
that prev_offset is always initialized, just to silence the warning.
v2: fix a spelling error in the commit message.
Signed-off-by: Peter Oskolkov <posk@google.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
While 979d63d50c ("bpf: prevent out of bounds speculation on pointer
arithmetic") took care of rejecting alu op on pointer when e.g. pointer
came from two different map values with different map properties such as
value size, Jann reported that a case was not covered yet when a given
alu op is used in both "ptr_reg += reg" and "numeric_reg += reg" from
different branches where we would incorrectly try to sanitize based
on the pointer's limit. Catch this corner case and reject the program
instead.
Fixes: 979d63d50c ("bpf: prevent out of bounds speculation on pointer arithmetic")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Jann reported that the original commit back in b2157399cc
("bpf: prevent out-of-bounds speculation") was not sufficient
to stop CPU from speculating out of bounds memory access:
While b2157399cc only focussed on masking array map access
for unprivileged users for tail calls and data access such
that the user provided index gets sanitized from BPF program
and syscall side, there is still a more generic form affected
from BPF programs that applies to most maps that hold user
data in relation to dynamic map access when dealing with
unknown scalars or "slow" known scalars as access offset, for
example:
- Load a map value pointer into R6
- Load an index into R7
- Do a slow computation (e.g. with a memory dependency) that
loads a limit into R8 (e.g. load the limit from a map for
high latency, then mask it to make the verifier happy)
- Exit if R7 >= R8 (mispredicted branch)
- Load R0 = R6[R7]
- Load R0 = R6[R0]
For unknown scalars there are two options in the BPF verifier
where we could derive knowledge from in order to guarantee
safe access to the memory: i) While </>/<=/>= variants won't
allow to derive any lower or upper bounds from the unknown
scalar where it would be safe to add it to the map value
pointer, it is possible through ==/!= test however. ii) another
option is to transform the unknown scalar into a known scalar,
for example, through ALU ops combination such as R &= <imm>
followed by R |= <imm> or any similar combination where the
original information from the unknown scalar would be destroyed
entirely leaving R with a constant. The initial slow load still
precedes the latter ALU ops on that register, so the CPU
executes speculatively from that point. Once we have the known
scalar, any compare operation would work then. A third option
only involving registers with known scalars could be crafted
as described in [0] where a CPU port (e.g. Slow Int unit)
would be filled with many dependent computations such that
the subsequent condition depending on its outcome has to wait
for evaluation on its execution port and thereby executing
speculatively if the speculated code can be scheduled on a
different execution port, or any other form of mistraining
as described in [1], for example. Given this is not limited
to only unknown scalars, not only map but also stack access
is affected since both is accessible for unprivileged users
and could potentially be used for out of bounds access under
speculation.
In order to prevent any of these cases, the verifier is now
sanitizing pointer arithmetic on the offset such that any
out of bounds speculation would be masked in a way where the
pointer arithmetic result in the destination register will
stay unchanged, meaning offset masked into zero similar as
in array_index_nospec() case. With regards to implementation,
there are three options that were considered: i) new insn
for sanitation, ii) push/pop insn and sanitation as inlined
BPF, iii) reuse of ax register and sanitation as inlined BPF.
Option i) has the downside that we end up using from reserved
bits in the opcode space, but also that we would require
each JIT to emit masking as native arch opcodes meaning
mitigation would have slow adoption till everyone implements
it eventually which is counter-productive. Option ii) and iii)
have both in common that a temporary register is needed in
order to implement the sanitation as inlined BPF since we
are not allowed to modify the source register. While a push /
pop insn in ii) would be useful to have in any case, it
requires once again that every JIT needs to implement it
first. While possible, amount of changes needed would also
be unsuitable for a -stable patch. Therefore, the path which
has fewer changes, less BPF instructions for the mitigation
and does not require anything to be changed in the JITs is
option iii) which this work is pursuing. The ax register is
already mapped to a register in all JITs (modulo arm32 where
it's mapped to stack as various other BPF registers there)
and used in constant blinding for JITs-only so far. It can
be reused for verifier rewrites under certain constraints.
The interpreter's tmp "register" has therefore been remapped
into extending the register set with hidden ax register and
reusing that for a number of instructions that needed the
prior temporary variable internally (e.g. div, mod). This
allows for zero increase in stack space usage in the interpreter,
and enables (restricted) generic use in rewrites otherwise as
long as such a patchlet does not make use of these instructions.
The sanitation mask is dynamic and relative to the offset the
map value or stack pointer currently holds.
There are various cases that need to be taken under consideration
for the masking, e.g. such operation could look as follows:
ptr += val or val += ptr or ptr -= val. Thus, the value to be
sanitized could reside either in source or in destination
register, and the limit is different depending on whether
the ALU op is addition or subtraction and depending on the
current known and bounded offset. The limit is derived as
follows: limit := max_value_size - (smin_value + off). For
subtraction: limit := umax_value + off. This holds because
we do not allow any pointer arithmetic that would
temporarily go out of bounds or would have an unknown
value with mixed signed bounds where it is unclear at
verification time whether the actual runtime value would
be either negative or positive. For example, we have a
derived map pointer value with constant offset and bounded
one, so limit based on smin_value works because the verifier
requires that statically analyzed arithmetic on the pointer
must be in bounds, and thus it checks if resulting
smin_value + off and umax_value + off is still within map
value bounds at time of arithmetic in addition to time of
access. Similarly, for the case of stack access we derive
the limit as follows: MAX_BPF_STACK + off for subtraction
and -off for the case of addition where off := ptr_reg->off +
ptr_reg->var_off.value. Subtraction is a special case for
the masking which can be in form of ptr += -val, ptr -= -val,
or ptr -= val. In the first two cases where we know that
the value is negative, we need to temporarily negate the
value in order to do the sanitation on a positive value
where we later swap the ALU op, and restore original source
register if the value was in source.
The sanitation of pointer arithmetic alone is still not fully
sufficient as is, since a scenario like the following could
happen ...
PTR += 0x1000 (e.g. K-based imm)
PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON
PTR += 0x1000
PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON
[...]
... which under speculation could end up as ...
PTR += 0x1000
PTR -= 0 [ truncated by mitigation ]
PTR += 0x1000
PTR -= 0 [ truncated by mitigation ]
[...]
... and therefore still access out of bounds. To prevent such
case, the verifier is also analyzing safety for potential out
of bounds access under speculative execution. Meaning, it is
also simulating pointer access under truncation. We therefore
"branch off" and push the current verification state after the
ALU operation with known 0 to the verification stack for later
analysis. Given the current path analysis succeeded it is
likely that the one under speculation can be pruned. In any
case, it is also subject to existing complexity limits and
therefore anything beyond this point will be rejected. In
terms of pruning, it needs to be ensured that the verification
state from speculative execution simulation must never prune
a non-speculative execution path, therefore, we mark verifier
state accordingly at the time of push_stack(). If verifier
detects out of bounds access under speculative execution from
one of the possible paths that includes a truncation, it will
reject such program.
Given we mask every reg-based pointer arithmetic for
unprivileged programs, we've been looking into how it could
affect real-world programs in terms of size increase. As the
majority of programs are targeted for privileged-only use
case, we've unconditionally enabled masking (with its alu
restrictions on top of it) for privileged programs for the
sake of testing in order to check i) whether they get rejected
in its current form, and ii) by how much the number of
instructions and size will increase. We've tested this by
using Katran, Cilium and test_l4lb from the kernel selftests.
For Katran we've evaluated balancer_kern.o, Cilium bpf_lxc.o
and an older test object bpf_lxc_opt_-DUNKNOWN.o and l4lb
we've used test_l4lb.o as well as test_l4lb_noinline.o. We
found that none of the programs got rejected by the verifier
with this change, and that impact is rather minimal to none.
balancer_kern.o had 13,904 bytes (1,738 insns) xlated and
7,797 bytes JITed before and after the change. Most complex
program in bpf_lxc.o had 30,544 bytes (3,817 insns) xlated
and 18,538 bytes JITed before and after and none of the other
tail call programs in bpf_lxc.o had any changes either. For
the older bpf_lxc_opt_-DUNKNOWN.o object we found a small
increase from 20,616 bytes (2,576 insns) and 12,536 bytes JITed
before to 20,664 bytes (2,582 insns) and 12,558 bytes JITed
after the change. Other programs from that object file had
similar small increase. Both test_l4lb.o had no change and
remained at 6,544 bytes (817 insns) xlated and 3,401 bytes
JITed and for test_l4lb_noinline.o constant at 5,080 bytes
(634 insns) xlated and 3,313 bytes JITed. This can be explained
in that LLVM typically optimizes stack based pointer arithmetic
by using K-based operations and that use of dynamic map access
is not overly frequent. However, in future we may decide to
optimize the algorithm further under known guarantees from
branch and value speculation. Latter seems also unclear in
terms of prediction heuristics that today's CPUs apply as well
as whether there could be collisions in e.g. the predictor's
Value History/Pattern Table for triggering out of bounds access,
thus masking is performed unconditionally at this point but could
be subject to relaxation later on. We were generally also
brainstorming various other approaches for mitigation, but the
blocker was always lack of available registers at runtime and/or
overhead for runtime tracking of limits belonging to a specific
pointer. Thus, we found this to be minimally intrusive under
given constraints.
With that in place, a simple example with sanitized access on
unprivileged load at post-verification time looks as follows:
# bpftool prog dump xlated id 282
[...]
28: (79) r1 = *(u64 *)(r7 +0)
29: (79) r2 = *(u64 *)(r7 +8)
30: (57) r1 &= 15
31: (79) r3 = *(u64 *)(r0 +4608)
32: (57) r3 &= 1
33: (47) r3 |= 1
34: (2d) if r2 > r3 goto pc+19
35: (b4) (u32) r11 = (u32) 20479 |
36: (1f) r11 -= r2 | Dynamic sanitation for pointer
37: (4f) r11 |= r2 | arithmetic with registers
38: (87) r11 = -r11 | containing bounded or known
39: (c7) r11 s>>= 63 | scalars in order to prevent
40: (5f) r11 &= r2 | out of bounds speculation.
41: (0f) r4 += r11 |
42: (71) r4 = *(u8 *)(r4 +0)
43: (6f) r4 <<= r1
[...]
For the case where the scalar sits in the destination register
as opposed to the source register, the following code is emitted
for the above example:
[...]
16: (b4) (u32) r11 = (u32) 20479
17: (1f) r11 -= r2
18: (4f) r11 |= r2
19: (87) r11 = -r11
20: (c7) r11 s>>= 63
21: (5f) r2 &= r11
22: (0f) r2 += r0
23: (61) r0 = *(u32 *)(r2 +0)
[...]
JIT blinding example with non-conflicting use of r10:
[...]
d5: je 0x0000000000000106 _
d7: mov 0x0(%rax),%edi |
da: mov $0xf153246,%r10d | Index load from map value and
e0: xor $0xf153259,%r10 | (const blinded) mask with 0x1f.
e7: and %r10,%rdi |_
ea: mov $0x2f,%r10d |
f0: sub %rdi,%r10 | Sanitized addition. Both use r10
f3: or %rdi,%r10 | but do not interfere with each
f6: neg %r10 | other. (Neither do these instructions
f9: sar $0x3f,%r10 | interfere with the use of ax as temp
fd: and %r10,%rdi | in interpreter.)
100: add %rax,%rdi |_
103: mov 0x0(%rdi),%eax
[...]
Tested that it fixes Jann's reproducer, and also checked that test_verifier
and test_progs suite with interpreter, JIT and JIT with hardening enabled
on x86-64 and arm64 runs successfully.
[0] Speculose: Analyzing the Security Implications of Speculative
Execution in CPUs, Giorgi Maisuradze and Christian Rossow,
https://arxiv.org/pdf/1801.04084.pdf
[1] A Systematic Evaluation of Transient Execution Attacks and
Defenses, Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens,
Dmitry Evtyushkin, Daniel Gruss,
https://arxiv.org/pdf/1811.05441.pdf
Fixes: b2157399cc ("bpf: prevent out-of-bounds speculation")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In check_map_access() we probe actual bounds through __check_map_access()
with offset of reg->smin_value + off for lower bound and offset of
reg->umax_value + off for the upper bound. However, even though the
reg->smin_value could have a negative value, the final result of the
sum with off could be positive when pointer arithmetic with known and
unknown scalars is combined. In this case we reject the program with
an error such as "R<x> min value is negative, either use unsigned index
or do a if (index >=0) check." even though the access itself would be
fine. Therefore extend the check to probe whether the actual resulting
reg->smin_value + off is less than zero.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For unknown scalars of mixed signed bounds, meaning their smin_value is
negative and their smax_value is positive, we need to reject arithmetic
with pointer to map value. For unprivileged the goal is to mask every
map pointer arithmetic and this cannot reliably be done when it is
unknown at verification time whether the scalar value is negative or
positive. Given this is a corner case, the likelihood of breaking should
be very small.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Restrict stack pointer arithmetic for unprivileged users in that
arithmetic itself must not go out of bounds as opposed to the actual
access later on. Therefore after each adjust_ptr_min_max_vals() with
a stack pointer as a destination we simulate a check_stack_access()
of 1 byte on the destination and once that fails the program is
rejected for unprivileged program loads. This is analog to map
value pointer arithmetic and needed for masking later on.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>