Now that we depend on rcu_call() and synchronize_rcu() to also wait
for preempt_disabled region to complete the rcu read critical section
in __dev_map_flush() is no longer required. Except in a few special
cases in drivers that need it for other reasons.
These originally ensured the map reference was safe while a map was
also being free'd. And additionally that bpf program updates via
ndo_bpf did not happen while flush updates were in flight. But flush
by new rules can only be called from preempt-disabled NAPI context.
The synchronize_rcu from the map free path and the rcu_call from the
delete path will ensure the reference there is safe. So lets remove
the rcu_read_lock and rcu_read_unlock pair to avoid any confusion
around how this is being protected.
If the rcu_read_lock was required it would mean errors in the above
logic and the original patch would also be wrong.
Now that we have done above we put the rcu_read_lock in the driver
code where it is needed in a driver dependent way. I think this
helps readability of the code so we know where and why we are
taking read locks. Most drivers will not need rcu_read_locks here
and further XDP drivers already have rcu_read_locks in their code
paths for reading xdp programs on RX side so this makes it symmetric
where we don't have half of rcu critical sections define in driver
and the other half in devmap.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Link: https://lore.kernel.org/bpf/1580084042-11598-4-git-send-email-john.fastabend@gmail.com
Now that we rely on synchronize_rcu and call_rcu waiting to
exit perempt-disable regions (NAPI) lets update the comments
to reflect this.
Fixes: 0536b85239 ("xdp: Simplify devmap cleanup")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Björn Töpel <bjorn.topel@intel.com>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/1580084042-11598-2-git-send-email-john.fastabend@gmail.com
When unwinding the stack we need to identify each address
to successfully continue. Adding latch tree to keep trampolines
for quick lookup during the unwind.
The patch uses first 48 bytes for latch tree node, leaving 4048
bytes from the rest of the page for trampoline or dispatcher
generated code.
It's still enough not to affect trampoline and dispatcher progs
maximum counts.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200123161508.915203-3-jolsa@kernel.org
When accessing the context we allow access to arguments with
scalar type and pointer to struct. But we deny access for
pointer to scalar type, which is the case for many functions.
Alexei suggested to take conservative approach and allow
currently only string pointer access, which is the case
for most functions now:
Adding check if the pointer is to string type and allow access to it.
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200123161508.915203-2-jolsa@kernel.org
head is traversed using hlist_for_each_entry_rcu outside an RCU
read-side critical section but under the protection of dtab->index_lock.
Hence, add corresponding lockdep expression to silence false-positive
lockdep warnings, and harden RCU lists.
Fixes: 6f9d451ab1 ("xdp: Add devmap_hash map type for looking up devices by hashed index")
Signed-off-by: Amol Grover <frextrite@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200123120437.26506-1-frextrite@gmail.com
Alexei Starovoitov says:
====================
pull-request: bpf-next 2020-01-22
The following pull-request contains BPF updates for your *net-next* tree.
We've added 92 non-merge commits during the last 16 day(s) which contain
a total of 320 files changed, 7532 insertions(+), 1448 deletions(-).
The main changes are:
1) function by function verification and program extensions from Alexei.
2) massive cleanup of selftests/bpf from Toke and Andrii.
3) batched bpf map operations from Brian and Yonghong.
4) tcp congestion control in bpf from Martin.
5) bulking for non-map xdp_redirect form Toke.
6) bpf_send_signal_thread helper from Yonghong.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds a helper to read the 64bit jiffies. It will be used
in a later patch to implement the bpf_cubic.c.
The helper is inlined for jit_requested and 64 BITS_PER_LONG
as the map_gen_lookup(). Other cases could be considered together
with map_gen_lookup() if needed.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200122233646.903260-1-kafai@fb.com
Introduce dynamic program extensions. The users can load additional BPF
functions and replace global functions in previously loaded BPF programs while
these programs are executing.
Global functions are verified individually by the verifier based on their types only.
Hence the global function in the new program which types match older function can
safely replace that corresponding function.
This new function/program is called 'an extension' of old program. At load time
the verifier uses (attach_prog_fd, attach_btf_id) pair to identify the function
to be replaced. The BPF program type is derived from the target program into
extension program. Technically bpf_verifier_ops is copied from target program.
The BPF_PROG_TYPE_EXT program type is a placeholder. It has empty verifier_ops.
The extension program can call the same bpf helper functions as target program.
Single BPF_PROG_TYPE_EXT type is used to extend XDP, SKB and all other program
types. The verifier allows only one level of replacement. Meaning that the
extension program cannot recursively extend an extension. That also means that
the maximum stack size is increasing from 512 to 1024 bytes and maximum
function nesting level from 8 to 16. The programs don't always consume that
much. The stack usage is determined by the number of on-stack variables used by
the program. The verifier could have enforced 512 limit for combined original
plus extension program, but it makes for difficult user experience. The main
use case for extensions is to provide generic mechanism to plug external
programs into policy program or function call chaining.
BPF trampoline is used to track both fentry/fexit and program extensions
because both are using the same nop slot at the beginning of every BPF
function. Attaching fentry/fexit to a function that was replaced is not
allowed. The opposite is true as well. Replacing a function that currently
being analyzed with fentry/fexit is not allowed. The executable page allocated
by BPF trampoline is not used by program extensions. This inefficiency will be
optimized in future patches.
Function by function verification of global function supports scalars and
pointer to context only. Hence program extensions are supported for such class
of global functions only. In the future the verifier will be extended with
support to pointers to structures, arrays with sizes, etc.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200121005348.2769920-2-ast@kernel.org
Restore the 'if (env->cur_state)' check that was incorrectly removed during
code move. Under memory pressure env->cur_state can be freed and zeroed inside
do_check(). Hence the check is necessary.
Fixes: 51c39bb1d5 ("bpf: Introduce function-by-function verification")
Reported-by: syzbot+b296579ba5015704d9fa@syzkaller.appspotmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200122024138.3385590-1-ast@kernel.org
Though the second half of trampoline page is unused a task could be
preempted in the middle of the first half of trampoline and two
updates to trampoline would change the code from underneath the
preempted task. Hence wait for tasks to voluntarily schedule or go
to userspace. Add similar wait before freeing the trampoline.
Fixes: fec56f5890 ("bpf: Introduce BPF trampoline")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/bpf/20200121032231.3292185-1-ast@kernel.org
kernel/bpf/inode.c misuses kern_path...() - it's much simpler (and
more efficient, on top of that) to use user_path...() counterparts
rather than bothering with doing getname() manually.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200120232858.GF8904@ZenIV.linux.org.uk
Generic update/delete batch ops functions were using __bpf_copy_key
without properly freeing the memory. Handle the memory allocation and
copy_from_user separately.
Fixes: aa2e93b8e5 ("bpf: Add generic support for update and delete batch ops")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Brian Vazquez <brianvv@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200119194040.128369-1-brianvv@google.com
kernel/bpf/syscall.c: In function generic_map_lookup_batch:
kernel/bpf/syscall.c:1339:7: warning: variable first_key set but not used [-Wunused-but-set-variable]
It is never used, so remove it.
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Brian Vazquez <brianvv@google.com>
Link: https://lore.kernel.org/bpf/20200116145300.59056-1-yuehaibing@huawei.com
Now that we don't have a reference to a devmap when flushing the device
bulk queue, let's change the the devmap_xmit tracepoint to remote the
map_id and map_index fields entirely. Rearrange the fields so 'drops' and
'sent' stay in the same position in the tracepoint struct, to make it
possible for the xdp_monitor utility to read both the old and the new
format.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/157918768613.1458396.9165902403373826572.stgit@toke.dk
Since the bulk queue used by XDP_REDIRECT now lives in struct net_device,
we can re-use the bulking for the non-map version of the bpf_redirect()
helper. This is a simple matter of having xdp_do_redirect_slow() queue the
frame on the bulk queue instead of sending it out with __bpf_tx_xdp().
Unfortunately we can't make the bpf_redirect() helper return an error if
the ifindex doesn't exit (as bpf_redirect_map() does), because we don't
have a reference to the network namespace of the ingress device at the time
the helper is called. So we have to leave it as-is and keep the device
lookup in xdp_do_redirect_slow().
Since this leaves less reason to have the non-map redirect code in a
separate function, so we get rid of the xdp_do_redirect_slow() function
entirely. This does lose us the tracepoint disambiguation, but fortunately
the xdp_redirect and xdp_redirect_map tracepoints use the same tracepoint
entry structures. This means both can contain a map index, so we can just
amend the tracepoint definitions so we always emit the xdp_redirect(_err)
tracepoints, but with the map ID only populated if a map is present. This
means we retire the xdp_redirect_map(_err) tracepoints entirely, but keep
the definitions around in case someone is still listening for them.
With this change, the performance of the xdp_redirect sample program goes
from 5Mpps to 8.4Mpps (a 68% increase).
Since the flush functions are no longer map-specific, rename the flush()
functions to drop _map from their names. One of the renamed functions is
the xdp_do_flush_map() callback used in all the xdp-enabled drivers. To
keep from having to update all drivers, use a #define to keep the old name
working, and only update the virtual drivers in this patch.
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/157918768505.1458396.17518057312953572912.stgit@toke.dk
Commit 96360004b8 ("xdp: Make devmap flush_list common for all map
instances"), changed devmap flushing to be a global operation instead of a
per-map operation. However, the queue structure used for bulking was still
allocated as part of the containing map.
This patch moves the devmap bulk queue into struct net_device. The
motivation for this is reusing it for the non-map variant of XDP_REDIRECT,
which will be changed in a subsequent commit. To avoid other fields of
struct net_device moving to different cache lines, we also move a couple of
other members around.
We defer the actual allocation of the bulk queue structure until the
NETDEV_REGISTER notification devmap.c. This makes it possible to check for
ndo_xdp_xmit support before allocating the structure, which is not possible
at the time struct net_device is allocated. However, we keep the freeing in
free_netdev() to avoid adding another RCU callback on NETDEV_UNREGISTER.
Because of this change, we lose the reference back to the map that
originated the redirect, so change the tracepoint to always return 0 as the
map ID and index. Otherwise no functional change is intended with this
patch.
After this patch, the relevant part of struct net_device looks like this,
according to pahole:
/* --- cacheline 14 boundary (896 bytes) --- */
struct netdev_queue * _tx __attribute__((__aligned__(64))); /* 896 8 */
unsigned int num_tx_queues; /* 904 4 */
unsigned int real_num_tx_queues; /* 908 4 */
struct Qdisc * qdisc; /* 912 8 */
unsigned int tx_queue_len; /* 920 4 */
spinlock_t tx_global_lock; /* 924 4 */
struct xdp_dev_bulk_queue * xdp_bulkq; /* 928 8 */
struct xps_dev_maps * xps_cpus_map; /* 936 8 */
struct xps_dev_maps * xps_rxqs_map; /* 944 8 */
struct mini_Qdisc * miniq_egress; /* 952 8 */
/* --- cacheline 15 boundary (960 bytes) --- */
struct hlist_head qdisc_hash[16]; /* 960 128 */
/* --- cacheline 17 boundary (1088 bytes) --- */
struct timer_list watchdog_timer; /* 1088 40 */
/* XXX last struct has 4 bytes of padding */
int watchdog_timeo; /* 1128 4 */
/* XXX 4 bytes hole, try to pack */
struct list_head todo_list; /* 1136 16 */
/* --- cacheline 18 boundary (1152 bytes) --- */
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Björn Töpel <bjorn.topel@intel.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/157918768397.1458396.12673224324627072349.stgit@toke.dk
htab can't use generic batch support due some problematic behaviours
inherent to the data structre, i.e. while iterating the bpf map a
concurrent program might delete the next entry that batch was about to
use, in that case there's no easy solution to retrieve the next entry,
the issue has been discussed multiple times (see [1] and [2]).
The only way hmap can be traversed without the problem previously
exposed is by making sure that the map is traversing entire buckets.
This commit implements those strict requirements for hmap, the
implementation follows the same interaction that generic support with
some exceptions:
- If keys/values buffer are not big enough to traverse a bucket,
ENOSPC will be returned.
- out_batch contains the value of the next bucket in the iteration, not
the next key, but this is transparent for the user since the user
should never use out_batch for other than bpf batch syscalls.
This commits implements BPF_MAP_LOOKUP_BATCH and adds support for new
command BPF_MAP_LOOKUP_AND_DELETE_BATCH. Note that for update/delete
batch ops it is possible to use the generic implementations.
[1] https://lore.kernel.org/bpf/20190724165803.87470-1-brianvv@google.com/
[2] https://lore.kernel.org/bpf/20190906225434.3635421-1-yhs@fb.com/
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Brian Vazquez <brianvv@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200115184308.162644-6-brianvv@google.com
This adds the generic batch ops functionality to bpf arraymap, note that
since deletion is not a valid operation for arraymap, only batch and
lookup are added.
Signed-off-by: Brian Vazquez <brianvv@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200115184308.162644-5-brianvv@google.com
This commit adds generic support for update and delete batch ops that
can be used for almost all the bpf maps. These commands share the same
UAPI attr that lookup and lookup_and_delete batch ops use and the
syscall commands are:
BPF_MAP_UPDATE_BATCH
BPF_MAP_DELETE_BATCH
The main difference between update/delete and lookup batch ops is that
for update/delete keys/values must be specified for userspace and
because of that, neither in_batch nor out_batch are used.
Suggested-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Brian Vazquez <brianvv@google.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200115184308.162644-4-brianvv@google.com
This commit introduces generic support for the bpf_map_lookup_batch.
This implementation can be used by almost all the bpf maps since its core
implementation is relying on the existing map_get_next_key and
map_lookup_elem. The bpf syscall subcommand introduced is:
BPF_MAP_LOOKUP_BATCH
The UAPI attribute is:
struct { /* struct used by BPF_MAP_*_BATCH commands */
__aligned_u64 in_batch; /* start batch,
* NULL to start from beginning
*/
__aligned_u64 out_batch; /* output: next start batch */
__aligned_u64 keys;
__aligned_u64 values;
__u32 count; /* input/output:
* input: # of key/value
* elements
* output: # of filled elements
*/
__u32 map_fd;
__u64 elem_flags;
__u64 flags;
} batch;
in_batch/out_batch are opaque values use to communicate between
user/kernel space, in_batch/out_batch must be of key_size length.
To start iterating from the beginning in_batch must be null,
count is the # of key/value elements to retrieve. Note that the 'keys'
buffer must be a buffer of key_size * count size and the 'values' buffer
must be value_size * count, where value_size must be aligned to 8 bytes
by userspace if it's dealing with percpu maps. 'count' will contain the
number of keys/values successfully retrieved. Note that 'count' is an
input/output variable and it can contain a lower value after a call.
If there's no more entries to retrieve, ENOENT will be returned. If error
is ENOENT, count might be > 0 in case it copied some values but there were
no more entries to retrieve.
Note that if the return code is an error and not -EFAULT,
count indicates the number of elements successfully processed.
Suggested-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Brian Vazquez <brianvv@google.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200115184308.162644-3-brianvv@google.com
This commit moves reusable code from map_lookup_elem and map_update_elem
to avoid code duplication in kernel/bpf/syscall.c.
Signed-off-by: Brian Vazquez <brianvv@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200115184308.162644-2-brianvv@google.com
Anatoly has been fuzzing with kBdysch harness and reported a hang in one
of the outcomes:
0: R1=ctx(id=0,off=0,imm=0) R10=fp0
0: (85) call bpf_get_socket_cookie#46
1: R0_w=invP(id=0) R10=fp0
1: (57) r0 &= 808464432
2: R0_w=invP(id=0,umax_value=808464432,var_off=(0x0; 0x30303030)) R10=fp0
2: (14) w0 -= 810299440
3: R0_w=invP(id=0,umax_value=4294967295,var_off=(0xcf800000; 0x3077fff0)) R10=fp0
3: (c4) w0 s>>= 1
4: R0_w=invP(id=0,umin_value=1740636160,umax_value=2147221496,var_off=(0x67c00000; 0x183bfff8)) R10=fp0
4: (76) if w0 s>= 0x30303030 goto pc+216
221: R0_w=invP(id=0,umin_value=1740636160,umax_value=2147221496,var_off=(0x67c00000; 0x183bfff8)) R10=fp0
221: (95) exit
processed 6 insns (limit 1000000) [...]
Taking a closer look, the program was xlated as follows:
# ./bpftool p d x i 12
0: (85) call bpf_get_socket_cookie#7800896
1: (bf) r6 = r0
2: (57) r6 &= 808464432
3: (14) w6 -= 810299440
4: (c4) w6 s>>= 1
5: (76) if w6 s>= 0x30303030 goto pc+216
6: (05) goto pc-1
7: (05) goto pc-1
8: (05) goto pc-1
[...]
220: (05) goto pc-1
221: (05) goto pc-1
222: (95) exit
Meaning, the visible effect is very similar to f54c7898ed ("bpf: Fix
precision tracking for unbounded scalars"), that is, the fall-through
branch in the instruction 5 is considered to be never taken given the
conclusion from the min/max bounds tracking in w6, and therefore the
dead-code sanitation rewrites it as goto pc-1. However, real-life input
disagrees with verification analysis since a soft-lockup was observed.
The bug sits in the analysis of the ARSH. The definition is that we shift
the target register value right by K bits through shifting in copies of
its sign bit. In adjust_scalar_min_max_vals(), we do first coerce the
register into 32 bit mode, same happens after simulating the operation.
However, for the case of simulating the actual ARSH, we don't take the
mode into account and act as if it's always 64 bit, but location of sign
bit is different:
dst_reg->smin_value >>= umin_val;
dst_reg->smax_value >>= umin_val;
dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
Consider an unknown R0 where bpf_get_socket_cookie() (or others) would
for example return 0xffff. With the above ARSH simulation, we'd see the
following results:
[...]
1: R1=ctx(id=0,off=0,imm=0) R2_w=invP65535 R10=fp0
1: (85) call bpf_get_socket_cookie#46
2: R0_w=invP(id=0) R10=fp0
2: (57) r0 &= 808464432
-> R0_runtime = 0x3030
3: R0_w=invP(id=0,umax_value=808464432,var_off=(0x0; 0x30303030)) R10=fp0
3: (14) w0 -= 810299440
-> R0_runtime = 0xcfb40000
4: R0_w=invP(id=0,umax_value=4294967295,var_off=(0xcf800000; 0x3077fff0)) R10=fp0
(0xffffffff)
4: (c4) w0 s>>= 1
-> R0_runtime = 0xe7da0000
5: R0_w=invP(id=0,umin_value=1740636160,umax_value=2147221496,var_off=(0x67c00000; 0x183bfff8)) R10=fp0
(0x67c00000) (0x7ffbfff8)
[...]
In insn 3, we have a runtime value of 0xcfb40000, which is '1100 1111 1011
0100 0000 0000 0000 0000', the result after the shift has 0xe7da0000 that
is '1110 0111 1101 1010 0000 0000 0000 0000', where the sign bit is correctly
retained in 32 bit mode. In insn4, the umax was 0xffffffff, and changed into
0x7ffbfff8 after the shift, that is, '0111 1111 1111 1011 1111 1111 1111 1000'
and means here that the simulation didn't retain the sign bit. With above
logic, the updates happen on the 64 bit min/max bounds and given we coerced
the register, the sign bits of the bounds are cleared as well, meaning, we
need to force the simulation into s32 space for 32 bit alu mode.
Verification after the fix below. We're first analyzing the fall-through branch
on 32 bit signed >= test eventually leading to rejection of the program in this
specific case:
0: R1=ctx(id=0,off=0,imm=0) R10=fp0
0: (b7) r2 = 808464432
1: R1=ctx(id=0,off=0,imm=0) R2_w=invP808464432 R10=fp0
1: (85) call bpf_get_socket_cookie#46
2: R0_w=invP(id=0) R10=fp0
2: (bf) r6 = r0
3: R0_w=invP(id=0) R6_w=invP(id=0) R10=fp0
3: (57) r6 &= 808464432
4: R0_w=invP(id=0) R6_w=invP(id=0,umax_value=808464432,var_off=(0x0; 0x30303030)) R10=fp0
4: (14) w6 -= 810299440
5: R0_w=invP(id=0) R6_w=invP(id=0,umax_value=4294967295,var_off=(0xcf800000; 0x3077fff0)) R10=fp0
5: (c4) w6 s>>= 1
6: R0_w=invP(id=0) R6_w=invP(id=0,umin_value=3888119808,umax_value=4294705144,var_off=(0xe7c00000; 0x183bfff8)) R10=fp0
(0x67c00000) (0xfffbfff8)
6: (76) if w6 s>= 0x30303030 goto pc+216
7: R0_w=invP(id=0) R6_w=invP(id=0,umin_value=3888119808,umax_value=4294705144,var_off=(0xe7c00000; 0x183bfff8)) R10=fp0
7: (30) r0 = *(u8 *)skb[808464432]
BPF_LD_[ABS|IND] uses reserved fields
processed 8 insns (limit 1000000) [...]
Fixes: 9cbe1f5a32 ("bpf/verifier: improve register value range tracking with ARSH")
Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200115204733.16648-1-daniel@iogearbox.net
Instead of using bpf_struct_ops_map_lookup_elem() which is
not implemented, bpf_struct_ops_map_seq_show_elem() should
also use bpf_struct_ops_map_sys_lookup_elem() which does
an inplace update to the value. The change allocates
a value to pass to bpf_struct_ops_map_sys_lookup_elem().
[root@arch-fb-vm1 bpf]# cat /sys/fs/bpf/dctcp
{{{1}},BPF_STRUCT_OPS_STATE_INUSE,{{00000000df93eebc,00000000df93eebc},0,2, ...
Fixes: 85d33df357 ("bpf: Introduce BPF_MAP_TYPE_STRUCT_OPS")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200114072647.3188298-1-kafai@fb.com
New llvm and old llvm with libbpf help produce BTF that distinguish global and
static functions. Unlike arguments of static function the arguments of global
functions cannot be removed or optimized away by llvm. The compiler has to use
exactly the arguments specified in a function prototype. The argument type
information allows the verifier validate each global function independently.
For now only supported argument types are pointer to context and scalars. In
the future pointers to structures, sizes, pointer to packet data can be
supported as well. Consider the following example:
static int f1(int ...)
{
...
}
int f3(int b);
int f2(int a)
{
f1(a) + f3(a);
}
int f3(int b)
{
...
}
int main(...)
{
f1(...) + f2(...) + f3(...);
}
The verifier will start its safety checks from the first global function f2().
It will recursively descend into f1() because it's static. Then it will check
that arguments match for the f3() invocation inside f2(). It will not descend
into f3(). It will finish f2() that has to be successfully verified for all
possible values of 'a'. Then it will proceed with f3(). That function also has
to be safe for all possible values of 'b'. Then it will start subprog 0 (which
is main() function). It will recursively descend into f1() and will skip full
check of f2() and f3(), since they are global. The order of processing global
functions doesn't affect safety, since all global functions must be proven safe
based on their arguments only.
Such function by function verification can drastically improve speed of the
verification and reduce complexity.
Note that the stack limit of 512 still applies to the call chain regardless whether
functions were static or global. The nested level of 8 also still applies. The
same recursion prevention checks are in place as well.
The type information and static/global kind is preserved after the verification
hence in the above example global function f2() and f3() can be replaced later
by equivalent functions with the same types that are loaded and verified later
without affecting safety of this main() program. Such replacement (re-linking)
of global functions is a subject of future patches.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
The ungrafting from PRIO bug fixes in net, when merged into net-next,
merge cleanly but create a build failure. The resolution used here is
from Petr Machata.
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch makes "struct tcp_congestion_ops" to be the first user
of BPF STRUCT_OPS. It allows implementing a tcp_congestion_ops
in bpf.
The BPF implemented tcp_congestion_ops can be used like
regular kernel tcp-cc through sysctl and setsockopt. e.g.
[root@arch-fb-vm1 bpf]# sysctl -a | egrep congestion
net.ipv4.tcp_allowed_congestion_control = reno cubic bpf_cubic
net.ipv4.tcp_available_congestion_control = reno bic cubic bpf_cubic
net.ipv4.tcp_congestion_control = bpf_cubic
There has been attempt to move the TCP CC to the user space
(e.g. CCP in TCP). The common arguments are faster turn around,
get away from long-tail kernel versions in production...etc,
which are legit points.
BPF has been the continuous effort to join both kernel and
userspace upsides together (e.g. XDP to gain the performance
advantage without bypassing the kernel). The recent BPF
advancements (in particular BTF-aware verifier, BPF trampoline,
BPF CO-RE...) made implementing kernel struct ops (e.g. tcp cc)
possible in BPF. It allows a faster turnaround for testing algorithm
in the production while leveraging the existing (and continue growing)
BPF feature/framework instead of building one specifically for
userspace TCP CC.
This patch allows write access to a few fields in tcp-sock
(in bpf_tcp_ca_btf_struct_access()).
The optional "get_info" is unsupported now. It can be added
later. One possible way is to output the info with a btf-id
to describe the content.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003508.3856115-1-kafai@fb.com
The patch introduces BPF_MAP_TYPE_STRUCT_OPS. The map value
is a kernel struct with its func ptr implemented in bpf prog.
This new map is the interface to register/unregister/introspect
a bpf implemented kernel struct.
The kernel struct is actually embedded inside another new struct
(or called the "value" struct in the code). For example,
"struct tcp_congestion_ops" is embbeded in:
struct bpf_struct_ops_tcp_congestion_ops {
refcount_t refcnt;
enum bpf_struct_ops_state state;
struct tcp_congestion_ops data; /* <-- kernel subsystem struct here */
}
The map value is "struct bpf_struct_ops_tcp_congestion_ops".
The "bpftool map dump" will then be able to show the
state ("inuse"/"tobefree") and the number of subsystem's refcnt (e.g.
number of tcp_sock in the tcp_congestion_ops case). This "value" struct
is created automatically by a macro. Having a separate "value" struct
will also make extending "struct bpf_struct_ops_XYZ" easier (e.g. adding
"void (*init)(void)" to "struct bpf_struct_ops_XYZ" to do some
initialization works before registering the struct_ops to the kernel
subsystem). The libbpf will take care of finding and populating the
"struct bpf_struct_ops_XYZ" from "struct XYZ".
Register a struct_ops to a kernel subsystem:
1. Load all needed BPF_PROG_TYPE_STRUCT_OPS prog(s)
2. Create a BPF_MAP_TYPE_STRUCT_OPS with attr->btf_vmlinux_value_type_id
set to the btf id "struct bpf_struct_ops_tcp_congestion_ops" of the
running kernel.
Instead of reusing the attr->btf_value_type_id,
btf_vmlinux_value_type_id s added such that attr->btf_fd can still be
used as the "user" btf which could store other useful sysadmin/debug
info that may be introduced in the furture,
e.g. creation-date/compiler-details/map-creator...etc.
3. Create a "struct bpf_struct_ops_tcp_congestion_ops" object as described
in the running kernel btf. Populate the value of this object.
The function ptr should be populated with the prog fds.
4. Call BPF_MAP_UPDATE with the object created in (3) as
the map value. The key is always "0".
During BPF_MAP_UPDATE, the code that saves the kernel-func-ptr's
args as an array of u64 is generated. BPF_MAP_UPDATE also allows
the specific struct_ops to do some final checks in "st_ops->init_member()"
(e.g. ensure all mandatory func ptrs are implemented).
If everything looks good, it will register this kernel struct
to the kernel subsystem. The map will not allow further update
from this point.
Unregister a struct_ops from the kernel subsystem:
BPF_MAP_DELETE with key "0".
Introspect a struct_ops:
BPF_MAP_LOOKUP_ELEM with key "0". The map value returned will
have the prog _id_ populated as the func ptr.
The map value state (enum bpf_struct_ops_state) will transit from:
INIT (map created) =>
INUSE (map updated, i.e. reg) =>
TOBEFREE (map value deleted, i.e. unreg)
The kernel subsystem needs to call bpf_struct_ops_get() and
bpf_struct_ops_put() to manage the "refcnt" in the
"struct bpf_struct_ops_XYZ". This patch uses a separate refcnt
for the purose of tracking the subsystem usage. Another approach
is to reuse the map->refcnt and then "show" (i.e. during map_lookup)
the subsystem's usage by doing map->refcnt - map->usercnt to filter out
the map-fd/pinned-map usage. However, that will also tie down the
future semantics of map->refcnt and map->usercnt.
The very first subsystem's refcnt (during reg()) holds one
count to map->refcnt. When the very last subsystem's refcnt
is gone, it will also release the map->refcnt. All bpf_prog will be
freed when the map->refcnt reaches 0 (i.e. during map_free()).
Here is how the bpftool map command will look like:
[root@arch-fb-vm1 bpf]# bpftool map show
6: struct_ops name dctcp flags 0x0
key 4B value 256B max_entries 1 memlock 4096B
btf_id 6
[root@arch-fb-vm1 bpf]# bpftool map dump id 6
[{
"value": {
"refcnt": {
"refs": {
"counter": 1
}
},
"state": 1,
"data": {
"list": {
"next": 0,
"prev": 0
},
"key": 0,
"flags": 2,
"init": 24,
"release": 0,
"ssthresh": 25,
"cong_avoid": 30,
"set_state": 27,
"cwnd_event": 28,
"in_ack_event": 26,
"undo_cwnd": 29,
"pkts_acked": 0,
"min_tso_segs": 0,
"sndbuf_expand": 0,
"cong_control": 0,
"get_info": 0,
"name": [98,112,102,95,100,99,116,99,112,0,0,0,0,0,0,0
],
"owner": 0
}
}
}
]
Misc Notes:
* bpf_struct_ops_map_sys_lookup_elem() is added for syscall lookup.
It does an inplace update on "*value" instead returning a pointer
to syscall.c. Otherwise, it needs a separate copy of "zero" value
for the BPF_STRUCT_OPS_STATE_INIT to avoid races.
* The bpf_struct_ops_map_delete_elem() is also called without
preempt_disable() from map_delete_elem(). It is because
the "->unreg()" may requires sleepable context, e.g.
the "tcp_unregister_congestion_control()".
* "const" is added to some of the existing "struct btf_func_model *"
function arg to avoid a compiler warning caused by this patch.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003505.3855919-1-kafai@fb.com
This patch allows the kernel's struct ops (i.e. func ptr) to be
implemented in BPF. The first use case in this series is the
"struct tcp_congestion_ops" which will be introduced in a
latter patch.
This patch introduces a new prog type BPF_PROG_TYPE_STRUCT_OPS.
The BPF_PROG_TYPE_STRUCT_OPS prog is verified against a particular
func ptr of a kernel struct. The attr->attach_btf_id is the btf id
of a kernel struct. The attr->expected_attach_type is the member
"index" of that kernel struct. The first member of a struct starts
with member index 0. That will avoid ambiguity when a kernel struct
has multiple func ptrs with the same func signature.
For example, a BPF_PROG_TYPE_STRUCT_OPS prog is written
to implement the "init" func ptr of the "struct tcp_congestion_ops".
The attr->attach_btf_id is the btf id of the "struct tcp_congestion_ops"
of the _running_ kernel. The attr->expected_attach_type is 3.
The ctx of BPF_PROG_TYPE_STRUCT_OPS is an array of u64 args saved
by arch_prepare_bpf_trampoline that will be done in the next
patch when introducing BPF_MAP_TYPE_STRUCT_OPS.
"struct bpf_struct_ops" is introduced as a common interface for the kernel
struct that supports BPF_PROG_TYPE_STRUCT_OPS prog. The supporting kernel
struct will need to implement an instance of the "struct bpf_struct_ops".
The supporting kernel struct also needs to implement a bpf_verifier_ops.
During BPF_PROG_LOAD, bpf_struct_ops_find() will find the right
bpf_verifier_ops by searching the attr->attach_btf_id.
A new "btf_struct_access" is also added to the bpf_verifier_ops such
that the supporting kernel struct can optionally provide its own specific
check on accessing the func arg (e.g. provide limited write access).
After btf_vmlinux is parsed, the new bpf_struct_ops_init() is called
to initialize some values (e.g. the btf id of the supporting kernel
struct) and it can only be done once the btf_vmlinux is available.
The R0 checks at BPF_EXIT is excluded for the BPF_PROG_TYPE_STRUCT_OPS prog
if the return type of the prog->aux->attach_func_proto is "void".
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003503.3855825-1-kafai@fb.com
This patch allows bitfield access as a scalar.
It checks "off + size > t->size" to avoid accessing bitfield
end up accessing beyond the struct. This check is done
outside of the loop since it is applicable to all access.
It also takes this chance to break early on the "off < moff" case.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003501.3855427-1-kafai@fb.com
It allows bpf prog (e.g. tracing) to attach
to a kernel function that takes enum argument.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003459.3855366-1-kafai@fb.com
info->btf_id expects the btf_id of a struct, so it should
store the final result after skipping modifiers (if any).
It also takes this chanace to add a missing newline in one of the
bpf_log() messages.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003456.3855176-1-kafai@fb.com
This patch makes the verifier save the PTR_TO_BTF_ID register state when
spilling to the stack.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003454.3854870-1-kafai@fb.com
Before commit 4bfc0bb2c6 ("bpf: decouple the lifetime of cgroup_bpf from cgroup itself")
cgroup bpf structures were released with
corresponding cgroup structures. It guaranteed the hierarchical order
of destruction: children were always first. It preserved attached
programs from being released before their propagated copies.
But with cgroup auto-detachment there are no such guarantees anymore:
cgroup bpf is released as soon as the cgroup is offline and there are
no live associated sockets. It means that an attached program can be
detached and released, while its propagated copy is still living
in the cgroup subtree. This will obviously lead to an use-after-free
bug.
To reproduce the issue the following script can be used:
#!/bin/bash
CGROOT=/sys/fs/cgroup
mkdir -p ${CGROOT}/A ${CGROOT}/B ${CGROOT}/A/C
sleep 1
./test_cgrp2_attach ${CGROOT}/A egress &
A_PID=$!
./test_cgrp2_attach ${CGROOT}/B egress &
B_PID=$!
echo $$ > ${CGROOT}/A/C/cgroup.procs
iperf -s &
S_PID=$!
iperf -c localhost -t 100 &
C_PID=$!
sleep 1
echo $$ > ${CGROOT}/B/cgroup.procs
echo ${S_PID} > ${CGROOT}/B/cgroup.procs
echo ${C_PID} > ${CGROOT}/B/cgroup.procs
sleep 1
rmdir ${CGROOT}/A/C
rmdir ${CGROOT}/A
sleep 1
kill -9 ${S_PID} ${C_PID} ${A_PID} ${B_PID}
On the unpatched kernel the following stacktrace can be obtained:
[ 33.619799] BUG: unable to handle page fault for address: ffffbdb4801ab002
[ 33.620677] #PF: supervisor read access in kernel mode
[ 33.621293] #PF: error_code(0x0000) - not-present page
[ 33.622754] Oops: 0000 [#1] SMP NOPTI
[ 33.623202] CPU: 0 PID: 601 Comm: iperf Not tainted 5.5.0-rc2+ #23
[ 33.625545] RIP: 0010:__cgroup_bpf_run_filter_skb+0x29f/0x3d0
[ 33.635809] Call Trace:
[ 33.636118] ? __cgroup_bpf_run_filter_skb+0x2bf/0x3d0
[ 33.636728] ? __switch_to_asm+0x40/0x70
[ 33.637196] ip_finish_output+0x68/0xa0
[ 33.637654] ip_output+0x76/0xf0
[ 33.638046] ? __ip_finish_output+0x1c0/0x1c0
[ 33.638576] __ip_queue_xmit+0x157/0x410
[ 33.639049] __tcp_transmit_skb+0x535/0xaf0
[ 33.639557] tcp_write_xmit+0x378/0x1190
[ 33.640049] ? _copy_from_iter_full+0x8d/0x260
[ 33.640592] tcp_sendmsg_locked+0x2a2/0xdc0
[ 33.641098] ? sock_has_perm+0x10/0xa0
[ 33.641574] tcp_sendmsg+0x28/0x40
[ 33.641985] sock_sendmsg+0x57/0x60
[ 33.642411] sock_write_iter+0x97/0x100
[ 33.642876] new_sync_write+0x1b6/0x1d0
[ 33.643339] vfs_write+0xb6/0x1a0
[ 33.643752] ksys_write+0xa7/0xe0
[ 33.644156] do_syscall_64+0x5b/0x1b0
[ 33.644605] entry_SYSCALL_64_after_hwframe+0x44/0xa9
Fix this by grabbing a reference to the bpf structure of each ancestor
on the initialization of the cgroup bpf structure, and dropping the
reference at the end of releasing the cgroup bpf structure.
This will restore the hierarchical order of cgroup bpf releasing,
without adding any operations on hot paths.
Thanks to Josef Bacik for the debugging and the initial analysis of
the problem.
Fixes: 4bfc0bb2c6 ("bpf: decouple the lifetime of cgroup_bpf from cgroup itself")
Reported-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Daniel Borkmann says:
====================
pull-request: bpf-next 2019-12-27
The following pull-request contains BPF updates for your *net-next* tree.
We've added 127 non-merge commits during the last 17 day(s) which contain
a total of 110 files changed, 6901 insertions(+), 2721 deletions(-).
There are three merge conflicts. Conflicts and resolution looks as follows:
1) Merge conflict in net/bpf/test_run.c:
There was a tree-wide cleanup c593642c8b ("treewide: Use sizeof_field() macro")
which gets in the way with b590cb5f80 ("bpf: Switch to offsetofend in
BPF_PROG_TEST_RUN"):
<<<<<<< HEAD
if (!range_is_zero(__skb, offsetof(struct __sk_buff, priority) +
sizeof_field(struct __sk_buff, priority),
=======
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, priority),
>>>>>>> 7c8dce4b16
There are a few occasions that look similar to this. Always take the chunk with
offsetofend(). Note that there is one where the fields differ in here:
<<<<<<< HEAD
if (!range_is_zero(__skb, offsetof(struct __sk_buff, tstamp) +
sizeof_field(struct __sk_buff, tstamp),
=======
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, gso_segs),
>>>>>>> 7c8dce4b16
Just take the one with offsetofend() /and/ gso_segs. Latter is correct due to
850a88cc40 ("bpf: Expose __sk_buff wire_len/gso_segs to BPF_PROG_TEST_RUN").
2) Merge conflict in arch/riscv/net/bpf_jit_comp.c:
(I'm keeping Bjorn in Cc here for a double-check in case I got it wrong.)
<<<<<<< HEAD
if (is_13b_check(off, insn))
return -1;
emit(rv_blt(tcc, RV_REG_ZERO, off >> 1), ctx);
=======
emit_branch(BPF_JSLT, RV_REG_T1, RV_REG_ZERO, off, ctx);
>>>>>>> 7c8dce4b16
Result should look like:
emit_branch(BPF_JSLT, tcc, RV_REG_ZERO, off, ctx);
3) Merge conflict in arch/riscv/include/asm/pgtable.h:
<<<<<<< HEAD
=======
#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
#define VMALLOC_END (PAGE_OFFSET - 1)
#define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
#define BPF_JIT_REGION_SIZE (SZ_128M)
#define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
#define BPF_JIT_REGION_END (VMALLOC_END)
/*
* Roughly size the vmemmap space to be large enough to fit enough
* struct pages to map half the virtual address space. Then
* position vmemmap directly below the VMALLOC region.
*/
#define VMEMMAP_SHIFT \
(CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
#define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
#define VMEMMAP_END (VMALLOC_START - 1)
#define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
#define vmemmap ((struct page *)VMEMMAP_START)
>>>>>>> 7c8dce4b16
Only take the BPF_* defines from there and move them higher up in the
same file. Remove the rest from the chunk. The VMALLOC_* etc defines
got moved via 01f52e16b8 ("riscv: define vmemmap before pfn_to_page
calls"). Result:
[...]
#define __S101 PAGE_READ_EXEC
#define __S110 PAGE_SHARED_EXEC
#define __S111 PAGE_SHARED_EXEC
#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
#define VMALLOC_END (PAGE_OFFSET - 1)
#define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
#define BPF_JIT_REGION_SIZE (SZ_128M)
#define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
#define BPF_JIT_REGION_END (VMALLOC_END)
/*
* Roughly size the vmemmap space to be large enough to fit enough
* struct pages to map half the virtual address space. Then
* position vmemmap directly below the VMALLOC region.
*/
#define VMEMMAP_SHIFT \
(CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
#define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
#define VMEMMAP_END (VMALLOC_START - 1)
#define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
[...]
Let me know if there are any other issues.
Anyway, the main changes are:
1) Extend bpftool to produce a struct (aka "skeleton") tailored and specific
to a provided BPF object file. This provides an alternative, simplified API
compared to standard libbpf interaction. Also, add libbpf extern variable
resolution for .kconfig section to import Kconfig data, from Andrii Nakryiko.
2) Add BPF dispatcher for XDP which is a mechanism to avoid indirect calls by
generating a branch funnel as discussed back in bpfconf'19 at LSF/MM. Also,
add various BPF riscv JIT improvements, from Björn Töpel.
3) Extend bpftool to allow matching BPF programs and maps by name,
from Paul Chaignon.
4) Support for replacing cgroup BPF programs attached with BPF_F_ALLOW_MULTI
flag for allowing updates without service interruption, from Andrey Ignatov.
5) Cleanup and simplification of ring access functions for AF_XDP with a
bonus of 0-5% performance improvement, from Magnus Karlsson.
6) Enable BPF JITs for x86-64 and arm64 by default. Also, final version of
audit support for BPF, from Daniel Borkmann and latter with Jiri Olsa.
7) Move and extend test_select_reuseport into BPF program tests under
BPF selftests, from Jakub Sitnicki.
8) Various BPF sample improvements for xdpsock for customizing parameters
to set up and benchmark AF_XDP, from Jay Jayatheerthan.
9) Improve libbpf to provide a ulimit hint on permission denied errors.
Also change XDP sample programs to attach in driver mode by default,
from Toke Høiland-Jørgensen.
10) Extend BPF test infrastructure to allow changing skb mark from tc BPF
programs, from Nikita V. Shirokov.
11) Optimize prologue code sequence in BPF arm32 JIT, from Russell King.
12) Fix xdp_redirect_cpu BPF sample to manually attach to tracepoints after
libbpf conversion, from Jesper Dangaard Brouer.
13) Minor misc improvements from various others.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Anatoly has been fuzzing with kBdysch harness and reported a hang in one
of the outcomes. Upon closer analysis, it turns out that precise scalar
value tracking is missing a few precision markings for unknown scalars:
0: R1=ctx(id=0,off=0,imm=0) R10=fp0
0: (b7) r0 = 0
1: R0_w=invP0 R1=ctx(id=0,off=0,imm=0) R10=fp0
1: (35) if r0 >= 0xf72e goto pc+0
--> only follow fallthrough
2: R0_w=invP0 R1=ctx(id=0,off=0,imm=0) R10=fp0
2: (35) if r0 >= 0x80fe0000 goto pc+0
--> only follow fallthrough
3: R0_w=invP0 R1=ctx(id=0,off=0,imm=0) R10=fp0
3: (14) w0 -= -536870912
4: R0_w=invP536870912 R1=ctx(id=0,off=0,imm=0) R10=fp0
4: (0f) r1 += r0
5: R0_w=invP536870912 R1_w=inv(id=0) R10=fp0
5: (55) if r1 != 0x104c1500 goto pc+0
--> push other branch for later analysis
R0_w=invP536870912 R1_w=inv273421568 R10=fp0
6: R0_w=invP536870912 R1_w=inv273421568 R10=fp0
6: (b7) r0 = 0
7: R0=invP0 R1=inv273421568 R10=fp0
7: (76) if w1 s>= 0xffffff00 goto pc+3
--> only follow goto
11: R0=invP0 R1=inv273421568 R10=fp0
11: (95) exit
6: R0_w=invP536870912 R1_w=inv(id=0) R10=fp0
6: (b7) r0 = 0
propagating r0
7: safe
processed 11 insns [...]
In the analysis of the second path coming after the successful exit above,
the path is being pruned at line 7. Pruning analysis found that both r0 are
precise P0 and both R1 are non-precise scalars and given prior path with
R1 as non-precise scalar succeeded, this one is therefore safe as well.
However, problem is that given condition at insn 7 in the first run, we only
followed goto and didn't push the other branch for later analysis, we've
never walked the few insns in there and therefore dead-code sanitation
rewrites it as goto pc-1, causing the hang depending on the skb address
hitting these conditions. The issue is that R1 should have been marked as
precise as well such that pruning enforces range check and conluded that new
R1 is not in range of old R1. In insn 4, we mark R1 (skb) as unknown scalar
via __mark_reg_unbounded() but not mark_reg_unbounded() and therefore
regs->precise remains as false.
Back in b5dc0163d8 ("bpf: precise scalar_value tracking"), this was not
the case since marking out of __mark_reg_unbounded() had this covered as well.
Once in both are set as precise in 4 as they should have been, we conclude
that given R1 was in prior fall-through path 0x104c1500 and now is completely
unknown, the check at insn 7 concludes that we need to continue walking.
Analysis after the fix:
0: R1=ctx(id=0,off=0,imm=0) R10=fp0
0: (b7) r0 = 0
1: R0_w=invP0 R1=ctx(id=0,off=0,imm=0) R10=fp0
1: (35) if r0 >= 0xf72e goto pc+0
2: R0_w=invP0 R1=ctx(id=0,off=0,imm=0) R10=fp0
2: (35) if r0 >= 0x80fe0000 goto pc+0
3: R0_w=invP0 R1=ctx(id=0,off=0,imm=0) R10=fp0
3: (14) w0 -= -536870912
4: R0_w=invP536870912 R1=ctx(id=0,off=0,imm=0) R10=fp0
4: (0f) r1 += r0
5: R0_w=invP536870912 R1_w=invP(id=0) R10=fp0
5: (55) if r1 != 0x104c1500 goto pc+0
R0_w=invP536870912 R1_w=invP273421568 R10=fp0
6: R0_w=invP536870912 R1_w=invP273421568 R10=fp0
6: (b7) r0 = 0
7: R0=invP0 R1=invP273421568 R10=fp0
7: (76) if w1 s>= 0xffffff00 goto pc+3
11: R0=invP0 R1=invP273421568 R10=fp0
11: (95) exit
6: R0_w=invP536870912 R1_w=invP(id=0) R10=fp0
6: (b7) r0 = 0
7: R0_w=invP0 R1_w=invP(id=0) R10=fp0
7: (76) if w1 s>= 0xffffff00 goto pc+3
R0_w=invP0 R1_w=invP(id=0) R10=fp0
8: R0_w=invP0 R1_w=invP(id=0) R10=fp0
8: (a5) if r0 < 0x2007002a goto pc+0
9: R0_w=invP0 R1_w=invP(id=0) R10=fp0
9: (57) r0 &= -16316416
10: R0_w=invP0 R1_w=invP(id=0) R10=fp0
10: (a6) if w0 < 0x1201 goto pc+0
11: R0_w=invP0 R1_w=invP(id=0) R10=fp0
11: (95) exit
11: R0=invP0 R1=invP(id=0) R10=fp0
11: (95) exit
processed 16 insns [...]
Fixes: 6754172c20 ("bpf: fix precision tracking in presence of bpf2bpf calls")
Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191222223740.25297-1-daniel@iogearbox.net
Pull networking fixes from David Miller:
1) Several nf_flow_table_offload fixes from Pablo Neira Ayuso,
including adding a missing ipv6 match description.
2) Several heap overflow fixes in mwifiex from qize wang and Ganapathi
Bhat.
3) Fix uninit value in bond_neigh_init(), from Eric Dumazet.
4) Fix non-ACPI probing of nxp-nci, from Stephan Gerhold.
5) Fix use after free in tipc_disc_rcv(), from Tuong Lien.
6) Enforce limit of 33 tail calls in mips and riscv JIT, from Paul
Chaignon.
7) Multicast MAC limit test is off by one in qede, from Manish Chopra.
8) Fix established socket lookup race when socket goes from
TCP_ESTABLISHED to TCP_LISTEN, because there lacks an intervening
RCU grace period. From Eric Dumazet.
9) Don't send empty SKBs from tcp_write_xmit(), also from Eric Dumazet.
10) Fix active backup transition after link failure in bonding, from
Mahesh Bandewar.
11) Avoid zero sized hash table in gtp driver, from Taehee Yoo.
12) Fix wrong interface passed to ->mac_link_up(), from Russell King.
13) Fix DSA egress flooding settings in b53, from Florian Fainelli.
14) Memory leak in gmac_setup_txqs(), from Navid Emamdoost.
15) Fix double free in dpaa2-ptp code, from Ioana Ciornei.
16) Reject invalid MTU values in stmmac, from Jose Abreu.
17) Fix refcount leak in error path of u32 classifier, from Davide
Caratti.
18) Fix regression causing iwlwifi firmware crashes on boot, from Anders
Kaseorg.
19) Fix inverted return value logic in llc2 code, from Chan Shu Tak.
20) Disable hardware GRO when XDP is attached to qede, frm Manish
Chopra.
21) Since we encode state in the low pointer bits, dst metrics must be
at least 4 byte aligned, which is not necessarily true on m68k. Add
annotations to fix this, from Geert Uytterhoeven.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (160 commits)
sfc: Include XDP packet headroom in buffer step size.
sfc: fix channel allocation with brute force
net: dst: Force 4-byte alignment of dst_metrics
selftests: pmtu: fix init mtu value in description
hv_netvsc: Fix unwanted rx_table reset
net: phy: ensure that phy IDs are correctly typed
mod_devicetable: fix PHY module format
qede: Disable hardware gro when xdp prog is installed
net: ena: fix issues in setting interrupt moderation params in ethtool
net: ena: fix default tx interrupt moderation interval
net/smc: unregister ib devices in reboot_event
net: stmmac: platform: Fix MDIO init for platforms without PHY
llc2: Fix return statement of llc_stat_ev_rx_null_dsap_xid_c (and _test_c)
net: hisilicon: Fix a BUG trigered by wrong bytes_compl
net: dsa: ksz: use common define for tag len
s390/qeth: don't return -ENOTSUPP to userspace
s390/qeth: fix promiscuous mode after reset
s390/qeth: handle error due to unsupported transport mode
cxgb4: fix refcount init for TC-MQPRIO offload
tc-testing: initial tdc selftests for cls_u32
...
The common use-case in production is to have multiple cgroup-bpf
programs per attach type that cover multiple use-cases. Such programs
are attached with BPF_F_ALLOW_MULTI and can be maintained by different
people.
Order of programs usually matters, for example imagine two egress
programs: the first one drops packets and the second one counts packets.
If they're swapped the result of counting program will be different.
It brings operational challenges with updating cgroup-bpf program(s)
attached with BPF_F_ALLOW_MULTI since there is no way to replace a
program:
* One way to update is to detach all programs first and then attach the
new version(s) again in the right order. This introduces an
interruption in the work a program is doing and may not be acceptable
(e.g. if it's egress firewall);
* Another way is attach the new version of a program first and only then
detach the old version. This introduces the time interval when two
versions of same program are working, what may not be acceptable if a
program is not idempotent. It also imposes additional burden on
program developers to make sure that two versions of their program can
co-exist.
Solve the problem by introducing a "replace" mode in BPF_PROG_ATTACH
command for cgroup-bpf programs being attached with BPF_F_ALLOW_MULTI
flag. This mode is enabled by newly introduced BPF_F_REPLACE attach flag
and bpf_attr.replace_bpf_fd attribute to pass fd of the old program to
replace
That way user can replace any program among those attached with
BPF_F_ALLOW_MULTI flag without the problems described above.
Details of the new API:
* If BPF_F_REPLACE is set but replace_bpf_fd doesn't have valid
descriptor of BPF program, BPF_PROG_ATTACH will return corresponding
error (EINVAL or EBADF).
* If replace_bpf_fd has valid descriptor of BPF program but such a
program is not attached to specified cgroup, BPF_PROG_ATTACH will
return ENOENT.
BPF_F_REPLACE is introduced to make the user intent clear, since
replace_bpf_fd alone can't be used for this (its default value, 0, is a
valid fd). BPF_F_REPLACE also makes it possible to extend the API in the
future (e.g. add BPF_F_BEFORE and BPF_F_AFTER if needed).
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Narkyiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/30cd850044a0057bdfcaaf154b7d2f39850ba813.1576741281.git.rdna@fb.com
__cgroup_bpf_attach has a lot of identical code to handle two scenarios:
BPF_F_ALLOW_MULTI is set and unset.
Simplify it by splitting the two main steps:
* First, the decision is made whether a new bpf_prog_list entry should
be allocated or existing entry should be reused for the new program.
This decision is saved in replace_pl pointer;
* Next, replace_pl pointer is used to handle both possible states of
BPF_F_ALLOW_MULTI flag (set / unset) instead of doing similar work for
them separately.
This splitting, in turn, allows to make further simplifications:
* The check for attaching same program twice in BPF_F_ALLOW_MULTI mode
can be done before allocating cgroup storage, so that if user tries to
attach same program twice no alloc/free happens as it was before;
* pl_was_allocated becomes redundant so it's removed.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/c6193db6fe630797110b0d3ff06c125d093b834c.1576741281.git.rdna@fb.com
The cpumap flush list is used to track entries that need to flushed
from via the xdp_do_flush_map() function. This list used to be
per-map, but there is really no reason for that. Instead make the
flush list global for all devmaps, which simplifies __cpu_map_flush()
and cpu_map_alloc().
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20191219061006.21980-7-bjorn.topel@gmail.com
The devmap flush list is used to track entries that need to flushed
from via the xdp_do_flush_map() function. This list used to be
per-map, but there is really no reason for that. Instead make the
flush list global for all devmaps, which simplifies __dev_map_flush()
and dev_map_init_map().
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20191219061006.21980-6-bjorn.topel@gmail.com
The xskmap flush list is used to track entries that need to flushed
from via the xdp_do_flush_map() function. This list used to be
per-map, but there is really no reason for that. Instead make the
flush list global for all xskmaps, which simplifies __xsk_map_flush()
and xsk_map_alloc().
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20191219061006.21980-5-bjorn.topel@gmail.com
After the RCU flavor consolidation [1], call_rcu() and
synchronize_rcu() waits for preempt-disable regions (NAPI) in addition
to the read-side critical sections. As a result of this, the cleanup
code in cpumap can be simplified
* There is no longer a need to flush in __cpu_map_entry_free, since we
know that this has been done when the call_rcu() callback is
triggered.
* When freeing the map, there is no need to explicitly wait for a
flush. It's guaranteed to be done after the synchronize_rcu() call
in cpu_map_free().
[1] https://lwn.net/Articles/777036/
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20191219061006.21980-3-bjorn.topel@gmail.com
After the RCU flavor consolidation [1], call_rcu() and
synchronize_rcu() waits for preempt-disable regions (NAPI) in addition
to the read-side critical sections. As a result of this, the cleanup
code in devmap can be simplified
* There is no longer a need to flush in __dev_map_entry_free, since we
know that this has been done when the call_rcu() callback is
triggered.
* When freeing the map, there is no need to explicitly wait for a
flush. It's guaranteed to be done after the synchronize_rcu() call
in dev_map_free(). The rcu_barrier() is still needed, so that the
map is not freed prior the elements.
[1] https://lwn.net/Articles/777036/
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20191219061006.21980-2-bjorn.topel@gmail.com
While testing Cilium with /unreleased/ Linus' tree under BPF-based NodePort
implementation, I noticed a strange BPF SNAT engine behavior from time to
time. In some cases it would do the correct SNAT/DNAT service translation,
but at a random point in time it would just stop and perform an unexpected
translation after SYN, SYN/ACK and stack would send a RST back. While initially
assuming that there is some sort of a race condition in BPF code, adding
trace_printk()s for debugging purposes at some point seemed to have resolved
the issue auto-magically.
Digging deeper on this Heisenbug and reducing the trace_printk() calls to
an absolute minimum, it turns out that a single call would suffice to
trigger / not trigger the seen RST issue, even though the logic of the
program itself remains unchanged. Turns out the single call changed verifier
pruning behavior to get everything to work. Reconstructing a minimal test
case, the incorrect JIT dump looked as follows:
# bpftool p d j i 11346
0xffffffffc0cba96c:
[...]
21: movzbq 0x30(%rdi),%rax
26: cmp $0xd,%rax
2a: je 0x000000000000003a
2c: xor %edx,%edx
2e: movabs $0xffff89cc74e85800,%rsi
38: jmp 0x0000000000000049
3a: mov $0x2,%edx
3f: movabs $0xffff89cc74e85800,%rsi
49: mov -0x224(%rbp),%eax
4f: cmp $0x20,%eax
52: ja 0x0000000000000062
54: add $0x1,%eax
57: mov %eax,-0x224(%rbp)
5d: jmpq 0xffffffffffff6911
62: mov $0x1,%eax
[...]
Hence, unexpectedly, JIT emitted a direct jump even though retpoline based
one would have been needed since in line 2c and 3a we have different slot
keys in BPF reg r3. Verifier log of the test case reveals what happened:
0: (b7) r0 = 14
1: (73) *(u8 *)(r1 +48) = r0
2: (71) r0 = *(u8 *)(r1 +48)
3: (15) if r0 == 0xd goto pc+4
R0_w=inv(id=0,umax_value=255,var_off=(0x0; 0xff)) R1=ctx(id=0,off=0,imm=0) R10=fp0
4: (b7) r3 = 0
5: (18) r2 = 0xffff89cc74d54a00
7: (05) goto pc+3
11: (85) call bpf_tail_call#12
12: (b7) r0 = 1
13: (95) exit
from 3 to 8: R0_w=inv13 R1=ctx(id=0,off=0,imm=0) R10=fp0
8: (b7) r3 = 2
9: (18) r2 = 0xffff89cc74d54a00
11: safe
processed 13 insns (limit 1000000) [...]
Second branch is pruned by verifier since considered safe, but issue is that
record_func_key() couldn't have seen the index in line 3a and therefore
decided that emitting a direct jump at this location was okay.
Fix this by reusing our backtracking logic for precise scalar verification
in order to prevent pruning on the slot key. This means verifier will track
content of r3 all the way backwards and only prune if both scalars were
unknown in state equivalence check and therefore poisoned in the first place
in record_func_key(). The range is [x,x] in record_func_key() case since
the slot always would have to be constant immediate. Correct verification
after fix:
0: (b7) r0 = 14
1: (73) *(u8 *)(r1 +48) = r0
2: (71) r0 = *(u8 *)(r1 +48)
3: (15) if r0 == 0xd goto pc+4
R0_w=invP(id=0,umax_value=255,var_off=(0x0; 0xff)) R1=ctx(id=0,off=0,imm=0) R10=fp0
4: (b7) r3 = 0
5: (18) r2 = 0x0
7: (05) goto pc+3
11: (85) call bpf_tail_call#12
12: (b7) r0 = 1
13: (95) exit
from 3 to 8: R0_w=invP13 R1=ctx(id=0,off=0,imm=0) R10=fp0
8: (b7) r3 = 2
9: (18) r2 = 0x0
11: (85) call bpf_tail_call#12
12: (b7) r0 = 1
13: (95) exit
processed 15 insns (limit 1000000) [...]
And correct corresponding JIT dump:
# bpftool p d j i 11
0xffffffffc0dc34c4:
[...]
21: movzbq 0x30(%rdi),%rax
26: cmp $0xd,%rax
2a: je 0x000000000000003a
2c: xor %edx,%edx
2e: movabs $0xffff9928b4c02200,%rsi
38: jmp 0x0000000000000049
3a: mov $0x2,%edx
3f: movabs $0xffff9928b4c02200,%rsi
49: cmp $0x4,%rdx
4d: jae 0x0000000000000093
4f: and $0x3,%edx
52: mov %edx,%edx
54: cmp %edx,0x24(%rsi)
57: jbe 0x0000000000000093
59: mov -0x224(%rbp),%eax
5f: cmp $0x20,%eax
62: ja 0x0000000000000093
64: add $0x1,%eax
67: mov %eax,-0x224(%rbp)
6d: mov 0x110(%rsi,%rdx,8),%rax
75: test %rax,%rax
78: je 0x0000000000000093
7a: mov 0x30(%rax),%rax
7e: add $0x19,%rax
82: callq 0x000000000000008e
87: pause
89: lfence
8c: jmp 0x0000000000000087
8e: mov %rax,(%rsp)
92: retq
93: mov $0x1,%eax
[...]
Also explicitly adding explicit env->allow_ptr_leaks to fixup_bpf_calls() since
backtracking is enabled under former (direct jumps as well, but use different
test). In case of only tracking different map pointers as in c93552c443 ("bpf:
properly enforce index mask to prevent out-of-bounds speculation"), pruning
cannot make such short-cuts, neither if there are paths with scalar and non-scalar
types as r3. mark_chain_precision() is only needed after we know that
register_is_const(). If it was not the case, we already poison the key on first
path and non-const key in later paths are not matching the scalar range in regsafe()
either. Cilium NodePort testing passes fine as well now. Note, released kernels
not affected.
Fixes: d2e4c1e6c2 ("bpf: Constant map key tracking for prog array pokes")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/ac43ffdeb7386c5bd688761ed266f3722bb39823.1576789878.git.daniel@iogearbox.net