Shortly we will want to load a percpu variable in the return from
userspace path. We can save an instruction by folding the addition of
the percpu offset into the load instruction, and this patch adds a new
helper to do so.
At the same time, we clean up this_cpu_ptr for consistency. As with
{adr,ldr,str}_l, we change the template to take the destination register
first, and name this dst. Secondly, we rename the macro to adr_this_cpu,
following the scheme of adr_l, and matching the newly added
ldr_this_cpu.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In the absence of CONFIG_THREAD_INFO_IN_TASK, core code maintains
thread_info::cpu, and low-level architecture code can access this to
build raw_smp_processor_id(). With CONFIG_THREAD_INFO_IN_TASK, core code
maintains task_struct::cpu, which for reasons of hte header soup is not
accessible to low-level arch code.
Instead, we can maintain a percpu variable containing the cpu number.
For both the old and new implementation of raw_smp_processor_id(), we
read a syreg into a GPR, add an offset, and load the result. As the
offset is now larger, it may not be folded into the load, but otherwise
the assembly shouldn't change much.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When returning from idle, we rely on the fact that thread_info lives at
the end of the kernel stack, and restore this by masking the saved stack
pointer. Subsequent patches will sever the relationship between the
stack and thread_info, and to cater for this we must save/restore sp_el0
explicitly, storing it in cpu_suspend_ctx.
As cpu_suspend_ctx must be doubleword aligned, this leaves us with an
extra slot in cpu_suspend_ctx. We can use this to save/restore tpidr_el1
in the same way, which simplifies the code, avoiding pointer chasing on
the restore path (as we no longer need to load thread_info::cpu followed
by the relevant slot in __per_cpu_offset based on this).
This patch stashes both registers in cpu_suspend_ctx.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We define current_stack_pointer in <asm/thread_info.h>, though other
files and header relying upon it do not have this necessary include, and
are thus fragile to changes in the header soup.
Subsequent patches will affect the header soup such that directly
including <asm/thread_info.h> may result in a circular header include in
some of these cases, so we can't simply include <asm/thread_info.h>.
Instead, factor current_thread_info into its own header, and have all
existing users include this explicitly.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We have a comment claiming __switch_to() cares about where cpu_context
is located relative to cpu_domain in thread_info. However arm64 has
never had a thread_info::cpu_domain field, and neither __switch_to nor
cpu_switch_to care where the cpu_context field is relative to others.
Additionally, the init_thread_info alias is never used anywhere in the
kernel, and will shortly become problematic when thread_info is moved
into task_struct.
This patch removes both.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For several reasons it is preferable to use {READ,WRITE}_ONCE() rather than
ACCESS_ONCE(). For example, these handle aggregate types, result in shorter
source code, and better document the intended access (which may be useful for
instrumentation features such as the upcoming KTSAN).
Over a number of patches, most uses of ACCESS_ONCE() in arch/arm64 have been
migrated to {READ,WRITE}_ONCE(). For consistency, and the above reasons, this
patch migrates the final remaining uses.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch adds support for uprobe on ARM64 architecture.
Unit tests for following have been done so far and they have been found
working
1. Step-able instructions, like sub, ldr, add etc.
2. Simulation-able like ret, cbnz, cbz etc.
3. uretprobe
4. Reject-able instructions like sev, wfe etc.
5. trapped and abort xol path
6. probe at unaligned user address.
7. longjump test cases
Currently it does not support aarch32 instruction probing.
Signed-off-by: Pratyush Anand <panand@redhat.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We need to decide in some cases like uprobe instruction analysis that
whether the current mm context belongs to a 32 bit task or 64 bit.
This patch has introduced an unsigned flag variable in mm_context_t.
Currently, we set and clear TIF_32BIT depending on the condition that
whether an elf binary load sets personality for 32 bit or 64 bit
respectively.
Signed-off-by: Pratyush Anand <panand@redhat.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
decode-insn code has to be reused by arm64 uprobe implementation as well.
Therefore, this patch protects some portion of kprobe code and renames few
other, so that decode-insn functionality can be reused by uprobe even when
CONFIG_KPROBES is not defined.
kprobe_opcode_t and struct arch_specific_insn are also defined by
linux/kprobes.h, when CONFIG_KPROBES is not defined. So, protect these
definitions in asm/probes.h.
linux/kprobes.h already includes asm/kprobes.h. Therefore, remove inclusion
of asm/kprobes.h from decode-insn.c.
There are some definitions like kprobe_insn and kprobes_handler_t etc can
be re-used by uprobe. So, it would be better to remove 'k' from their
names.
struct arch_specific_insn is specific to kprobe. Therefore, introduce a new
struct arch_probe_insn which will be common for both kprobe and uprobe, so
that decode-insn code can be shared. Modify kprobe code accordingly.
Function arm_probe_decode_insn() will be needed by uprobe as well. So make
it global.
Signed-off-by: Pratyush Anand <panand@redhat.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Page mappings with full RWX permissions are a security risk. x86
has an option to walk the page tables and dump any bad pages.
(See e1a58320a3 ("x86/mm: Warn on W^X mappings")). Add a similar
implementation for arm64.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[catalin.marinas@arm.com: folded fix for KASan out of bounds from Mark Rutland]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
max_addr was added as part of struct ptdump_info but has never actually
been used. Remove it.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ptdump_register currently initializes a set of page table information and
registers debugfs. There are uses for the ptdump option without wanting the
debugfs options. Split this out to make it a separate option.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In preparation of adding support for contiguous PTE and PMD mappings,
let's replace 'block_mappings_allowed' with 'page_mappings_only', which
will be a more accurate description of the nature of the setting once we
add such contiguous mappings into the mix.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Fix parameter name for __page_to_voff, to match its definition.
At present, we don't see any issue, as page_to_virt's caller
declares 'page'.
Fixes: 9f2875912d ("arm64: mm: restrict virt_to_page() to the linear mapping")
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The WnR bit in the HSR/ESR_EL2 indicates whether a data abort was
generated by a read or a write instruction. For stage 2 data aborts
generated by a stage 1 translation table walk (i.e. the actual page
table access faults at EL2), the WnR bit therefore reports whether the
instruction generating the walk was a load or a store, *not* whether the
page table walker was reading or writing the entry.
For page tables marked as read-only at stage 2 (e.g. due to KSM merging
them with the tables from another guest), this could result in livelock,
where a page table walk generated by a load instruction attempts to
set the access flag in the stage 1 descriptor, but fails to trigger
CoW in the host since only a read fault is reported.
This patch modifies the arm64 kvm_vcpu_dabt_iswrite function to
take into account stage 2 faults in stage 1 walks. Since DBM cannot be
disabled at EL2 for CPUs that implement it, we assume that these faults
are always causes by writes, avoiding the livelock situation at the
expense of occasional, spurious CoWs.
We could, in theory, do a bit better by checking the guest TCR
configuration and inspecting the page table to see why the PTE faulted.
However, I doubt this is measurable in practice, and the threat of
livelock is real.
Cc: <stable@vger.kernel.org>
Cc: Julien Grall <julien.grall@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The suspend/resume path in kernel/sleep.S, as used by cpu-idle, does not
save/restore PSTATE. As a result of this cpufeatures that were detected
and have bits in PSTATE get lost when we resume from idle.
UAO gets set appropriately on the next context switch. PAN will be
re-enabled next time we return from user-space, but on a preemptible
kernel we may run work accessing user space before this point.
Add code to re-enable theses two features in __cpu_suspend_exit().
We re-use uao_thread_switch() passing current.
Signed-off-by: James Morse <james.morse@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The enable() call for a cpufeature/errata is called using on_each_cpu().
This issues a cross-call IPI to get the work done. Implicitly, this
stashes the running PSTATE in SPSR when the CPU receives the IPI, and
restores it when we return. This means an enable() call can never modify
PSTATE.
To allow PAN to do this, change the on_each_cpu() call to use
stop_machine(). This schedules the work on each CPU which allows
us to modify PSTATE.
This involves changing the protype of all the enable() functions.
enable_cpu_capabilities() is called during boot and enables the feature
on all online CPUs. This path now uses stop_machine(). CPU features for
hotplug'd CPUs are enabled by verify_local_cpu_features() which only
acts on the local CPU, and can already modify the running PSTATE as it
is called from secondary_start_kernel().
Reported-by: Tony Thompson <anthony.thompson@arm.com>
Reported-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit 7dd01aef05 ("arm64: trap userspace "dc cvau" cache operation on
errata-affected core") adds code to execute cache maintenance instructions
in the kernel on behalf of userland on CPUs with certain ARM CPU errata.
It turns out that the address hasn't been checked to be a valid user
space address, allowing userland to clean cache lines in kernel space.
Fix this by introducing an address check before executing the
instructions on behalf of userland.
Since the address doesn't come via a syscall parameter, we can't just
reject tagged pointers and instead have to remove the tag when checking
against the user address limit.
Cc: <stable@vger.kernel.org>
Fixes: 7dd01aef05 ("arm64: trap userspace "dc cvau" cache operation on errata-affected core")
Reported-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
[will: rework commit message + replace access_ok with max_user_addr()]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Writing the outer loop of an LL/SC sequence using do {...} while
constructs potentially allows the compiler to hoist memory accesses
between the STXR and the branch back to the LDXR. On CPUs that do not
guarantee forward progress of LL/SC loops when faced with memory
accesses to the same ERG (up to 2k) between the failed STXR and the
branch back, we may end up livelocking.
This patch avoids this issue in our percpu atomics by rewriting the
outer loop as part of the LL/SC inline assembly block.
Cc: <stable@vger.kernel.org>
Fixes: f97fc81079 ("arm64: percpu: Implement this_cpu operations")
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit 8a71f0c656 ("arm64: sysreg: replace open-coded mrs_s/msr_s with
{read,write}_sysreg_s") introduced a write_sysreg_s macro for writing
to system registers that are not supported by binutils.
Unfortunately, this was implemented with the wrong template (%0 vs %x0),
so in the case that we are writing a constant 0, we will generate
invalid instruction syntax and bail with a cryptic assembler error:
| Error: constant expression required
This patch fixes the template.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
As it turns out, the KASLR code breaks CONFIG_MODVERSIONS, since the
kcrctab has an absolute address field that is relocated at runtime
when the kernel offset is randomized.
This has been fixed already for PowerPC in the past, so simply wire up
the existing code dealing with this issue.
Cc: <stable@vger.kernel.org>
Fixes: f80fb3a3d5 ("arm64: add support for kernel ASLR")
Tested-by: Timur Tabi <timur@codeaurora.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Pull more misc uaccess and vfs updates from Al Viro:
"The rest of the stuff from -next (more uaccess work) + assorted fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
score: traps: Add missing include file to fix build error
fs/super.c: don't fool lockdep in freeze_super() and thaw_super() paths
fs/super.c: fix race between freeze_super() and thaw_super()
overlayfs: Fix setting IOP_XATTR flag
iov_iter: kernel-doc import_iovec() and rw_copy_check_uvector()
blackfin: no access_ok() for __copy_{to,from}_user()
arm64: don't zero in __copy_from_user{,_inatomic}
arm: don't zero in __copy_from_user_inatomic()/__copy_from_user()
arc: don't leak bits of kernel stack into coredump
alpha: get rid of tail-zeroing in __copy_user()
Kernel source files need not include <linux/kconfig.h> explicitly
because the top Makefile forces to include it with:
-include $(srctree)/include/linux/kconfig.h
This commit removes explicit includes except the following:
* arch/s390/include/asm/facilities_src.h
* tools/testing/radix-tree/linux/kernel.h
These two are used for host programs.
Link: http://lkml.kernel.org/r/1473656164-11929-1-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All architectures:
Move `make kvmconfig` stubs from x86; use 64 bits for debugfs stats.
ARM:
Important fixes for not using an in-kernel irqchip; handle SError
exceptions and present them to guests if appropriate; proxying of GICV
access at EL2 if guest mappings are unsafe; GICv3 on AArch32 on ARMv8;
preparations for GICv3 save/restore, including ABI docs; cleanups and
a bit of optimizations.
MIPS:
A couple of fixes in preparation for supporting MIPS EVA host kernels;
MIPS SMP host & TLB invalidation fixes.
PPC:
Fix the bug which caused guests to falsely report lockups; other minor
fixes; a small optimization.
s390:
Lazy enablement of runtime instrumentation; up to 255 CPUs for nested
guests; rework of machine check deliver; cleanups and fixes.
x86:
IOMMU part of AMD's AVIC for vmexit-less interrupt delivery; Hyper-V
TSC page; per-vcpu tsc_offset in debugfs; accelerated INS/OUTS in
nVMX; cleanups and fixes.
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJX9iDrAAoJEED/6hsPKofoOPoIAIUlgojkb9l2l1XVDgsXdgQL
sRVhYSVv7/c8sk9vFImrD5ElOPZd+CEAIqFOu45+NM3cNi7gxip9yftUVs7wI5aC
eDZRWm1E4trDZLe54ZM9ThcqZzZZiELVGMfR1+ZndUycybwyWzafpXYsYyaXp3BW
hyHM3qVkoWO3dxBWFwHIoO/AUJrWYkRHEByKyvlC6KPxSdBPSa5c1AQwMCoE0Mo4
K/xUj4gBn9eMelNhg4Oqu/uh49/q+dtdoP2C+sVM8bSdquD+PmIeOhPFIcuGbGFI
B+oRpUhIuntN39gz8wInJ4/GRSeTuR2faNPxMn4E1i1u4LiuJvipcsOjPfe0a18=
=fZRB
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.9-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"All architectures:
- move `make kvmconfig` stubs from x86
- use 64 bits for debugfs stats
ARM:
- Important fixes for not using an in-kernel irqchip
- handle SError exceptions and present them to guests if appropriate
- proxying of GICV access at EL2 if guest mappings are unsafe
- GICv3 on AArch32 on ARMv8
- preparations for GICv3 save/restore, including ABI docs
- cleanups and a bit of optimizations
MIPS:
- A couple of fixes in preparation for supporting MIPS EVA host
kernels
- MIPS SMP host & TLB invalidation fixes
PPC:
- Fix the bug which caused guests to falsely report lockups
- other minor fixes
- a small optimization
s390:
- Lazy enablement of runtime instrumentation
- up to 255 CPUs for nested guests
- rework of machine check deliver
- cleanups and fixes
x86:
- IOMMU part of AMD's AVIC for vmexit-less interrupt delivery
- Hyper-V TSC page
- per-vcpu tsc_offset in debugfs
- accelerated INS/OUTS in nVMX
- cleanups and fixes"
* tag 'kvm-4.9-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (140 commits)
KVM: MIPS: Drop dubious EntryHi optimisation
KVM: MIPS: Invalidate TLB by regenerating ASIDs
KVM: MIPS: Split kernel/user ASID regeneration
KVM: MIPS: Drop other CPU ASIDs on guest MMU changes
KVM: arm/arm64: vgic: Don't flush/sync without a working vgic
KVM: arm64: Require in-kernel irqchip for PMU support
KVM: PPC: Book3s PR: Allow access to unprivileged MMCR2 register
KVM: PPC: Book3S PR: Support 64kB page size on POWER8E and POWER8NVL
KVM: PPC: Book3S: Remove duplicate setting of the B field in tlbie
KVM: PPC: BookE: Fix a sanity check
KVM: PPC: Book3S HV: Take out virtual core piggybacking code
KVM: PPC: Book3S: Treat VTB as a per-subcore register, not per-thread
ARM: gic-v3: Work around definition of gic_write_bpr1
KVM: nVMX: Fix the NMI IDT-vectoring handling
KVM: VMX: Enable MSR-BASED TPR shadow even if APICv is inactive
KVM: nVMX: Fix reload apic access page warning
kvmconfig: add virtio-gpu to config fragment
config: move x86 kvm_guest.config to a common location
arm64: KVM: Remove duplicating init code for setting VMID
ARM: KVM: Support vgic-v3
...
Pull irq updates from Thomas Gleixner:
"The irq departement proudly presents:
- A rework of the core infrastructure to optimally spread interrupt
for multiqueue devices. The first version was a bit naive and
failed to take thread siblings and other details into account.
Developed in cooperation with Christoph and Keith.
- Proper delegation of softirqs to ksoftirqd, so if ksoftirqd is
active then no further softirq processsing on interrupt return
happens. Otherwise we try to delegate and still run another batch
of network packets in the irq return path, which then tries to
delegate to ksoftirqd .....
- A proper machine parseable sysfs based alternative for
/proc/interrupts.
- ACPI support for the GICV3-ITS and ARM interrupt remapping
- Two new irq chips from the ARM SoC zoo: STM32-EXTI and MVEBU-PIC
- A new irq chip for the JCore (SuperH)
- The usual pile of small fixlets in core and irqchip drivers"
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (42 commits)
softirq: Let ksoftirqd do its job
genirq: Make function __irq_do_set_handler() static
ARM/dts: Add EXTI controller node to stm32f429
ARM/STM32: Select external interrupts controller
drivers/irqchip: Add STM32 external interrupts support
Documentation/dt-bindings: Document STM32 EXTI controller bindings
irqchip/mips-gic: Use for_each_set_bit to iterate over local IRQs
pci/msi: Retrieve affinity for a vector
genirq/affinity: Remove old irq spread infrastructure
genirq/msi: Switch to new irq spreading infrastructure
genirq/affinity: Provide smarter irq spreading infrastructure
genirq/msi: Add cpumask allocation to alloc_msi_entry
genirq: Expose interrupt information through sysfs
irqchip/gicv3-its: Use MADT ITS subtable to do PCI/MSI domain initialization
irqchip/gicv3-its: Factor out PCI-MSI part that might be reused for ACPI
irqchip/gicv3-its: Probe ITS in the ACPI way
irqchip/gicv3-its: Refactor ITS DT init code to prepare for ACPI
irqchip/gicv3-its: Cleanup for ITS domain initialization
PCI/MSI: Setup MSI domain on a per-device basis using IORT ACPI table
ACPI: Add new IORT functions to support MSI domain handling
...
- Support for execute-only page permissions
- Support for hibernate and DEBUG_PAGEALLOC
- Support for heterogeneous systems with mismatches cache line sizes
- Errata workarounds (A53 843419 update and QorIQ A-008585 timer bug)
- arm64 PMU perf updates, including cpumasks for heterogeneous systems
- Set UTS_MACHINE for building rpm packages
- Yet another head.S tidy-up
- Some cleanups and refactoring, particularly in the NUMA code
- Lots of random, non-critical fixes across the board
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJX7k31AAoJELescNyEwWM0XX0H/iOaWCfKlWOhvBsStGUCsLrK
XryTzQT2KjdnLKf3jwP+1ateCuBR5ROurYxoDCX5/7mD63c5KiI338Vbv61a1lE1
AAwjt1stmQVUg/j+kqnuQwB/0DYg+2C8se3D3q5Iyn7zc19cDZJEGcBHNrvLMufc
XgHrgHgl/rzBDDlHJXleknDFge/MfhU5/Q1vJMRRb4JYrpAtmIokzCO75CYMRcCT
ND2QbmppKtsyuFPGUTVbAFzJlP6dGKb3eruYta7/ct5d0pJQxav3u98D2yWGfjdM
YaYq1EmX5Pol7rWumqLtk0+mA9yCFcKLLc+PrJu20Vx0UkvOq8G8Xt70sHNvZU8=
=gdPM
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"It's a bit all over the place this time with no "killer feature" to
speak of. Support for mismatched cache line sizes should help people
seeing whacky JIT failures on some SoCs, and the big.LITTLE perf
updates have been a long time coming, but a lot of the changes here
are cleanups.
We stray outside arch/arm64 in a few areas: the arch/arm/ arch_timer
workaround is acked by Russell, the DT/OF bits are acked by Rob, the
arch_timer clocksource changes acked by Marc, CPU hotplug by tglx and
jump_label by Peter (all CC'd).
Summary:
- Support for execute-only page permissions
- Support for hibernate and DEBUG_PAGEALLOC
- Support for heterogeneous systems with mismatches cache line sizes
- Errata workarounds (A53 843419 update and QorIQ A-008585 timer bug)
- arm64 PMU perf updates, including cpumasks for heterogeneous systems
- Set UTS_MACHINE for building rpm packages
- Yet another head.S tidy-up
- Some cleanups and refactoring, particularly in the NUMA code
- Lots of random, non-critical fixes across the board"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (100 commits)
arm64: tlbflush.h: add __tlbi() macro
arm64: Kconfig: remove SMP dependence for NUMA
arm64: Kconfig: select OF/ACPI_NUMA under NUMA config
arm64: fix dump_backtrace/unwind_frame with NULL tsk
arm/arm64: arch_timer: Use archdata to indicate vdso suitability
arm64: arch_timer: Work around QorIQ Erratum A-008585
arm64: arch_timer: Add device tree binding for A-008585 erratum
arm64: Correctly bounds check virt_addr_valid
arm64: migrate exception table users off module.h and onto extable.h
arm64: pmu: Hoist pmu platform device name
arm64: pmu: Probe default hw/cache counters
arm64: pmu: add fallback probe table
MAINTAINERS: Update ARM PMU PROFILING AND DEBUGGING entry
arm64: Improve kprobes test for atomic sequence
arm64/kvm: use alternative auto-nop
arm64: use alternative auto-nop
arm64: alternative: add auto-nop infrastructure
arm64: lse: convert lse alternatives NOP padding to use __nops
arm64: barriers: introduce nops and __nops macros for NOP sequences
arm64: sysreg: replace open-coded mrs_s/msr_s with {read,write}_sysreg_s
...
- Various cleanups and removal of redundant code
- Two important fixes for not using an in-kernel irqchip
- A bit of optimizations
- Handle SError exceptions and present them to guests if appropriate
- Proxying of GICV access at EL2 if guest mappings are unsafe
- GICv3 on AArch32 on ARMv8
- Preparations for GICv3 save/restore, including ABI docs
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJX6rKQAAoJEEtpOizt6ddy8i4H/0bfB1EVukggoL/FfGeds/dg
p2FG0oOsggcSBwK7VXUUvVllO7ioUssRCqqkn1e0/bCLtQrN4ex4PqJ3618EHFz/
pLP72hf8Zl33rP3OVtPaDcxzjjKKdf+xGbBIv3AE7x7O5rFZg4lWHeWjy4yuhFv2
Jm+8ul7JCxCMse08Xc90riou4i/jWjyoLadHbAoeX3tR+dVcZyOUZSlgAPI1bS/P
rOQi/zkl3bT2R3kh28QuEFTrJ9BVTnmw25BRW8DNr6+CWmR9bpM6y7AGzOwrZ3FZ
F1MbsPpN3ogcjvPg2QTYuOoqrwz8NLLHw5pR5YNj84VppjSpSsAhKU7Ug5Uhsr0=
=1z/L
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-v4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into next
KVM/ARM Changes for v4.9
- Various cleanups and removal of redundant code
- Two important fixes for not using an in-kernel irqchip
- A bit of optimizations
- Handle SError exceptions and present them to guests if appropriate
- Proxying of GICV access at EL2 if guest mappings are unsafe
- GICv3 on AArch32 on ARMv8
- Preparations for GICv3 save/restore, including ABI docs
As with dsb() and isb(), add a __tlbi() helper so that we can avoid
distracting asm boilerplate every time we want a TLBI. As some TLBI
operations take an argument while others do not, some pre-processor is
used to handle these two cases with different assembly blocks.
The existing tlbflush.h code is moved over to use the helper.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
[ rename helper to __tlbi, update comment and commit log ]
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Instead of comparing the name to a magic string, use archdata to
explicitly communicate whether the arch timer is suitable for
direct vdso access.
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Scott Wood <oss@buserror.net>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Erratum A-008585 says that the ARM generic timer counter "has the
potential to contain an erroneous value for a small number of core
clock cycles every time the timer value changes". Accesses to TVAL
(both read and write) are also affected due to the implicit counter
read. Accesses to CVAL are not affected.
The workaround is to reread TVAL and count registers until successive
reads return the same value. Writes to TVAL are replaced with an
equivalent write to CVAL.
The workaround is to reread TVAL and count registers until successive reads
return the same value, and when writing TVAL to retry until counter
reads before and after the write return the same value.
The workaround is enabled if the fsl,erratum-a008585 property is found in
the timer node in the device tree. This can be overridden with the
clocksource.arm_arch_timer.fsl-a008585 boot parameter, which allows KVM
users to enable the workaround until a mechanism is implemented to
automatically communicate this information.
This erratum can be found on LS1043A and LS2080A.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Scott Wood <oss@buserror.net>
[will: renamed read macro to reflect that it's not usually unstable]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Handle read-only cases when CONFIG_DEBUG_RODATA (4.0) or
CONFIG_DEBUG_SET_MODULE_RONX (3.18) are enabled by using
aarch64_insn_write() instead of probe_kernel_write() as introduced by
commit 2f896d5866 ("arm64: use fixmap for text patching") in 4.0.
Fixes: 11d91a770f ("arm64: Add CONFIG_DEBUG_SET_MODULE_RONX support")
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since we are going to share vgic-v3 save/restore code with ARM keep
arch specific accessors separately.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
virt_addr_valid is supposed to return true if and only if virt_to_page
returns a valid page structure. The current macro does math on whatever
address is given and passes that to pfn_valid to verify. vmalloc and
module addresses can happen to generate a pfn that 'happens' to be
valid. Fix this by only performing the pfn_valid check on addresses that
have the potential to be valid.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently, when running on FVP, CPU 0 boots up with its BPR changed from
the reset value. This renders it impossible to (preemptively) prioritize
interrupts on CPU 0.
This is harmless on normal systems since Linux typically does not
support preemptive interrupts. It does however cause problems in
systems with additional changes (such as patches for NMI simulation).
Many thanks to Andrew Thoelke for suggesting the BPR as having the
potential to harm preemption.
Suggested-by: Andrew Thoelke <andrew.thoelke@arm.com>
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Make use of the new alternative_if and alternative_else_nop_endif and
get rid of our open-coded NOP sleds, making the code simpler to read.
Note that for __kvm_call_hyp the branch to __vhe_hyp_call has been moved
out of the alternative sequence, and in the default case there will be
four additional NOPs executed.
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In some cases, one side of an alternative sequence is simply a number of
NOPs used to balance the other side. Keeping track of this manually is
tedious, and the presence of large chains of NOPs makes the code more
painful to read than necessary.
To ameliorate matters, this patch adds a new alternative_else_nop_endif,
which automatically balances an alternative sequence with a trivial NOP
sled.
In many cases, we would like a NOP-sled in the default case, and
instructions patched in in the presence of a feature. To enable the NOPs
to be generated automatically for this case, this patch also adds a new
alternative_if, and updates alternative_else and alternative_endif to
work with either alternative_if or alternative_endif.
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Martin <dave.martin@arm.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
[will: use new nops macro to generate nop sequences]
Signed-off-by: Will Deacon <will.deacon@arm.com>
The LSE atomics are implemented using alternative code sequences of
different lengths, and explicit NOP padding is used to ensure the
patching works correctly.
This patch converts the bulk of the LSE code over to using the __nops
macro, which makes it slightly clearer as to what is going on and also
consolidates all of the padding at the end of the various sequences.
Signed-off-by: Will Deacon <will.deacon@arm.com>
NOP sequences tend to get used for padding out alternative sections
and uarch-specific pipeline flushes in errata workarounds.
This patch adds macros for generating these sequences as both inline
asm blocks, but also as strings suitable for embedding in other asm
blocks directly.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Similar to our {read,write}_sysreg accessors for architected, named
system registers, this patch introduces {read,write}_sysreg_s variants
that can take arbitrary sys_reg output and therefore access IMPDEF
registers or registers that unsupported by binutils.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We've grown our own versions of bug.h, ftrace.h, pci.h and topology.h,
so generating the generic ones as well is unnecessary and a potential
source of build hiccups. At the very least, having them present has
confused my source-indexing tool, and that simply will not do.
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Systems with differing CPU i-cache/d-cache line sizes can cause
problems with the cache management by software when the execution
is migrated from one to another. Usually, the application reads
the cache size on a CPU and then uses that length to perform cache
operations. However, if it gets migrated to another CPU with a smaller
cache line size, things could go completely wrong. To prevent such
cases, always use the smallest cache line size among the CPUs. The
kernel CPU feature infrastructure already keeps track of the safe
value for all CPUID registers including CTR. This patch works around
the problem by :
For kernel, dynamically patch the kernel to read the cache size
from the system wide copy of CTR_EL0.
For applications, trap read accesses to CTR_EL0 (by clearing the SCTLR.UCT)
and emulate the mrs instruction to return the system wide safe value
of CTR_EL0.
For faster access (i.e, avoiding to lookup the system wide value of CTR_EL0
via read_system_reg), we keep track of the pointer to table entry for
CTR_EL0 in the CPU feature infrastructure.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Right now we trap some of the user space data cache operations
based on a few Errata (ARM 819472, 826319, 827319 and 824069).
We need to trap userspace access to CTR_EL0, if we detect mismatched
cache line size. Since both these traps share the EC, refactor
the handler a little bit to make it a bit more reader friendly.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
On systems with mismatched i/d cache min line sizes, we need to use
the smallest size possible across all CPUs. This will be done by fetching
the system wide safe value from CPU feature infrastructure.
However the some special users(e.g kexec, hibernate) would need the line
size on the CPU (rather than the system wide), when either the system
wide feature may not be accessible or it is guranteed that the caller
executes with a gurantee of no migration.
Provide another helper which will fetch cache line size on the current CPU.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: James Morse <james.morse@arm.com>
Reviewed-by: Geoff Levand <geoff@infradead.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Adds helpers for decoding/encoding the PC relative addresses for adrp.
This will be used for handling dynamic patching of 'adrp' instructions
in alternative code patching.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Right now we run through the work around checks on a CPU
from __cpuinfo_store_cpu. There are some problems with that:
1) We initialise the system wide CPU feature registers only after the
Boot CPU updates its cpuinfo. Now, if a work around depends on the
variance of a CPU ID feature (e.g, check for Cache Line size mismatch),
we have no way of performing it cleanly for the boot CPU.
2) It is out of place, invoked from __cpuinfo_store_cpu() in cpuinfo.c. It
is not an obvious place for that.
This patch rearranges the CPU specific capability(aka work around) checks.
1) At the moment we use verify_local_cpu_capabilities() to check if a new
CPU has all the system advertised features. Use this for the secondary CPUs
to perform the work around check. For that we rename
verify_local_cpu_capabilities() => check_local_cpu_capabilities()
which:
If the system wide capabilities haven't been initialised (i.e, the CPU
is activated at the boot), update the system wide detected work arounds.
Otherwise (i.e a CPU hotplugged in later) verify that this CPU conforms to the
system wide capabilities.
2) Boot CPU updates the work arounds from smp_prepare_boot_cpu() after we have
initialised the system wide CPU feature values.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This is a cosmetic change to rename the functions dealing with
the errata work arounds to be more consistent with their naming.
1) check_local_cpu_errata() => update_cpu_errata_workarounds()
check_local_cpu_errata() actually updates the system's errata work
arounds. So rename it to reflect the same.
2) verify_local_cpu_errata() => verify_local_cpu_errata_workarounds()
Use errata_workarounds instead of _errata.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Right now we use 0 as the safe value for CTR_EL0:L1Ip, which is
not defined at the moment. The safer value for the L1Ip should be
the weakest of the policies, which happens to be AIVIVT. While at it,
fix the comment about safe_val.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>