The GHCB specification defines a GHCB MSR protocol using the lower
12-bits of the GHCB MSR (in the hypervisor this corresponds to the
GHCB GPA field in the VMCB).
Function 0x002 is a request to set the GHCB MSR value to the SEV INFO as
per the specification via the VMCB GHCB GPA field.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <c23c163a505290a0d1b9efc4659b838c8c902cbc.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SEV-ES adds a new VMEXIT reason code, VMGEXIT. Initial support for a
VMGEXIT includes mapping the GHCB based on the guest GPA, which is
obtained from a new VMCB field, and then validating the required inputs
for the VMGEXIT exit reason.
Since many of the VMGEXIT exit reasons correspond to existing VMEXIT
reasons, the information from the GHCB is copied into the VMCB control
exit code areas and KVM register areas. The standard exit handlers are
invoked, similar to standard VMEXIT processing. Before restarting the
vCPU, the GHCB is updated with any registers that have been updated by
the hypervisor.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <c6a4ed4294a369bd75c44d03bd7ce0f0c3840e50.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is a pre-patch to consolidate some exit handling code into callable
functions. Follow-on patches for SEV-ES exit handling will then be able
to use them from the sev.c file.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <5b8b0ffca8137f3e1e257f83df9f5c881c8a96a3.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When a SHUTDOWN VMEXIT is encountered, normally the VMCB is re-initialized
so that the guest can be re-launched. But when a guest is running as an
SEV-ES guest, the VMSA cannot be re-initialized because it has been
encrypted. For now, just return -EINVAL to prevent a possible attempt at
a guest reset.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <aa6506000f6f3a574de8dbcdab0707df844cb00c.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When a guest is running as an SEV-ES guest, it is not possible to emulate
instructions. Add support to prevent instruction emulation.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <f6355ea3024fda0a3eb5eb99c6b62dca10d792bd.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since the guest register state of an SEV-ES guest is encrypted, debugging
is not supported. Update the code to prevent guest debugging when the
guest has protected state.
Additionally, an SEV-ES guest must only and always intercept DR7 reads and
writes. Update set_dr_intercepts() and clr_dr_intercepts() to account for
this.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <8db966fa2f9803d6454ce773863025d0e2e7f3cc.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When a guest is running under SEV-ES, the hypervisor cannot access the
guest register state. There are numerous places in the KVM code where
certain registers are accessed that are not allowed to be accessed (e.g.
RIP, CR0, etc). Add checks to prevent register accesses and add intercept
update support at various points within the KVM code.
Also, when handling a VMGEXIT, exceptions are passed back through the
GHCB. Since the RDMSR/WRMSR intercepts (may) inject a #GP on error,
update the SVM intercepts to handle this for SEV-ES guests.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
[Redo MSR part using the .complete_emulated_msr callback. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This will be used by SEV-ES to inject MSR failure via the GHCB.
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Simplify the four functions that handle {kernel,user} {rd,wr}msr, there
is still some repetition between the two instances of rdmsr but the
whole business of calling kvm_inject_gp and kvm_skip_emulated_instruction
can be unified nicely.
Because complete_emulated_wrmsr now becomes essentially a call to
kvm_complete_insn_gp, remove complete_emulated_msr.
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There is no need to inject a #GP from kvm_mtrr_set_msr, kvm_emulate_wrmsr will
handle it.
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Simplification and distangling of the MSI related functionality
- Let IO/APIC construct the RTE entries from an MSI message instead of
having IO/APIC specific code in the interrupt remapping drivers
- Make the retrieval of the parent interrupt domain (vector or remap
unit) less hardcoded and use the relevant irqdomain callbacks for
selection.
- Allow the handling of more than 255 CPUs without a virtualized IOMMU
when the hypervisor supports it. This has made been possible by the
above modifications and also simplifies the existing workaround in the
HyperV specific virtual IOMMU.
- Cleanup of the historical timer_works() irq flags related
inconsistencies.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/Xxd8THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoYpOD/9C5TppNlPMUyx2SflH6bxt37pJEpln
+hYTKsk+jSThntr5mfj+GifGvgmHOVBTGnlDUnUnrpN7TQmLFBzwTOtnBLW53AO2
16/u0+Xci4LNCtEkaymf0Rq4MfsfriXHPJr0A/CnZ0tpHSf5QKHAiitSiGujdMlb
gbq43+zXd+jNkH7vkOLPX/7dZVI1hNASQEevJu2tRR4xYTuXFdBxvLgYkHtYKKrK
R1sbs6nI6yIzye2u4m4xGu29SxgUft+zdUf+UehJKM3yFmf51d9qpkX+kLaTWuaL
VPsMItbn0kdvxwXQWO6DYnIAAnVKCklyHQJTZCoNq9Fe91OoByak1CEVspSOa1av
JmycNSch4IYWasR4vVCB1gbb+V9SejcKu5SV3CDrEDqwkOIpfiqpriUXSCJTLlFd
QOEDOLuuk/79Qs//J/tb/nJ4IuKv8WPudDfIlMro8wUsAr67DjD4mnXprZ+svwWx
Ct/0/Memk+BSa0cw6pvg24BUZGN6zrufkBu2HKT9GOXRUdNkdLkiPhT8mK4T/O0l
f90QCLjPSOJ/K/pLEWdUHEPmgC5Q9RsXOmwVGqX+RbjfP7mYTJXlmWnBb+cFNch0
xFIH3SxVGylxxT06NX3SkvinrHj10CoAlmneefBlLtx6dF+2P84DAMZSF0OFToVI
c2KMg5zoesI4bg==
=8Gfs
-----END PGP SIGNATURE-----
Merge tag 'x86-apic-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 apic updates from Thomas Gleixner:
"Yet another large set of x86 interrupt management updates:
- Simplification and distangling of the MSI related functionality
- Let IO/APIC construct the RTE entries from an MSI message instead
of having IO/APIC specific code in the interrupt remapping drivers
- Make the retrieval of the parent interrupt domain (vector or remap
unit) less hardcoded and use the relevant irqdomain callbacks for
selection.
- Allow the handling of more than 255 CPUs without a virtualized
IOMMU when the hypervisor supports it. This has made been possible
by the above modifications and also simplifies the existing
workaround in the HyperV specific virtual IOMMU.
- Cleanup of the historical timer_works() irq flags related
inconsistencies"
* tag 'x86-apic-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (42 commits)
x86/ioapic: Cleanup the timer_works() irqflags mess
iommu/hyper-v: Remove I/O-APIC ID check from hyperv_irq_remapping_select()
iommu/amd: Fix IOMMU interrupt generation in X2APIC mode
iommu/amd: Don't register interrupt remapping irqdomain when IR is disabled
iommu/amd: Fix union of bitfields in intcapxt support
x86/ioapic: Correct the PCI/ISA trigger type selection
x86/ioapic: Use I/O-APIC ID for finding irqdomain, not index
x86/hyperv: Enable 15-bit APIC ID if the hypervisor supports it
x86/kvm: Enable 15-bit extension when KVM_FEATURE_MSI_EXT_DEST_ID detected
iommu/hyper-v: Disable IRQ pseudo-remapping if 15 bit APIC IDs are available
x86/apic: Support 15 bits of APIC ID in MSI where available
x86/ioapic: Handle Extended Destination ID field in RTE
iommu/vt-d: Simplify intel_irq_remapping_select()
x86: Kill all traces of irq_remapping_get_irq_domain()
x86/ioapic: Use irq_find_matching_fwspec() to find remapping irqdomain
x86/hpet: Use irq_find_matching_fwspec() to find remapping irqdomain
iommu/hyper-v: Implement select() method on remapping irqdomain
iommu/vt-d: Implement select() method on remapping irqdomain
iommu/amd: Implement select() method on remapping irqdomain
x86/apic: Add select() method on vector irqdomain
...
When performing VMGEXIT processing for an SEV-ES guest, register values
will be synced between KVM and the GHCB. Prepare for detecting when a GPR
has been updated (marked dirty) in order to determine whether to sync the
register to the GHCB.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <7ca2a1cdb61456f2fe9c64193e34d601e395c133.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allocate a page during vCPU creation to be used as the encrypted VM save
area (VMSA) for the SEV-ES guest. Provide a flag in the kvm_vcpu_arch
structure that indicates whether the guest state is protected.
When freeing a VMSA page that has been encrypted, the cache contents must
be flushed using the MSR_AMD64_VM_PAGE_FLUSH before freeing the page.
[ i386 build warnings ]
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <fde272b17eec804f3b9db18c131262fe074015c5.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add support to KVM for determining if a system is capable of supporting
SEV-ES as well as determining if a guest is an SEV-ES guest.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <e66792323982c822350e40c7a1cf67ea2978a70b.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When both KVM support and the CCP driver are built into the kernel instead
of as modules, KVM initialization can happen before CCP initialization. As
a result, sev_platform_status() will return a failure when it is called
from sev_hardware_setup(), when this isn't really an error condition.
Since sev_platform_status() doesn't need to be called at this time anyway,
remove the invocation from sev_hardware_setup().
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <618380488358b56af558f2682203786f09a49483.1607620209.git.thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move kvm_machine_check to x86.h to avoid two exact copies
of the same function in kvm.c and svm.c.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Message-Id: <20201029135600.122392-1-ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl/UDHQUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMGeQf9EtGft5U5EihqAbNr2O61Bh4ptCIT
+qNWWfuGQkKLsP6PCHMUJnNI3WJy2/Gb5+nUHjFXSEZBP2l3KGRuDniAdm4+DyEi
2khVmJiXYn2q2yfodmpHA/dqav3OHSrsq2IfH+J+WAFlIHnjkdz3Wk1zNFk7Y/xv
PVv2czvXhsnrvHvNp5e1+YsVGkMZc9fwXLRbac7ptmaKUKCBAgpZO8Gkc2GGgOdE
zUDp3qA8/7Ys+vzzYfPrRMUhev9dgE4x2TBmtOuzqOcfj2FOKRbKbwjur37fJ61j
Px4F2ZI0GEL0RrHvZK1vZ5KO41BcD+gQPumKAg1Lgz312loKj85RG8nBEQ==
=BJ9g
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"Bugfixes for ARM, x86 and tools"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
tools/kvm_stat: Exempt time-based counters
KVM: mmu: Fix SPTE encoding of MMIO generation upper half
kvm: x86/mmu: Use cpuid to determine max gfn
kvm: svm: de-allocate svm_cpu_data for all cpus in svm_cpu_uninit()
selftests: kvm/set_memory_region_test: Fix race in move region test
KVM: arm64: Add usage of stage 2 fault lookup level in user_mem_abort()
KVM: arm64: Fix handling of merging tables into a block entry
KVM: arm64: Fix memory leak on stage2 update of a valid PTE
Commit cae7ed3c2c ("KVM: x86: Refactor the MMIO SPTE generation handling")
cleaned up the computation of MMIO generation SPTE masks, however it
introduced a bug how the upper part was encoded:
SPTE bits 52-61 were supposed to contain bits 10-19 of the current
generation number, however a missing shift encoded bits 1-10 there instead
(mostly duplicating the lower part of the encoded generation number that
then consisted of bits 1-9).
In the meantime, the upper part was shrunk by one bit and moved by
subsequent commits to become an upper half of the encoded generation number
(bits 9-17 of bits 0-17 encoded in a SPTE).
In addition to the above, commit 56871d444b ("KVM: x86: fix overlap between SPTE_MMIO_MASK and generation")
has changed the SPTE bit range assigned to encode the generation number and
the total number of bits encoded but did not update them in the comment
attached to their defines, nor in the KVM MMU doc.
Let's do it here, too, since it is too trivial thing to warrant a separate
commit.
Fixes: cae7ed3c2c ("KVM: x86: Refactor the MMIO SPTE generation handling")
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <156700708db2a5296c5ed7a8b9ac71f1e9765c85.1607129096.git.maciej.szmigiero@oracle.com>
Cc: stable@vger.kernel.org
[Reorganize macros so that everything is computed from the bit ranges. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Until commit e7c587da12 ("x86/speculation: Use synthetic bits for
IBRS/IBPB/STIBP"), KVM was testing both Intel and AMD CPUID bits before
allowing the guest to write MSR_IA32_SPEC_CTRL and MSR_IA32_PRED_CMD.
Testing only Intel bits on VMX processors, or only AMD bits on SVM
processors, fails if the guests are created with the "opposite" vendor
as the host.
While at it, also tweak the host CPU check to use the vendor-agnostic
feature bit X86_FEATURE_IBPB, since we only care about the availability
of the MSR on the host here and not about specific CPUID bits.
Fixes: e7c587da12 ("x86/speculation: Use synthetic bits for IBRS/IBPB/STIBP")
Cc: stable@vger.kernel.org
Reported-by: Denis V. Lunev <den@openvz.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
AVX512_FP16 is supported by Intel processors, like Sapphire Rapids.
It could gain better performance for it's faster compared to FP32
if the precision or magnitude requirements are met. It's availability
is indicated by CPUID.(EAX=7,ECX=0):EDX[bit 23].
Expose it in KVM supported CPUID, then guest could make use of it; no
new registers are used, only new instructions.
Signed-off-by: Cathy Zhang <cathy.zhang@intel.com>
Signed-off-by: Kyung Min Park <kyung.min.park@intel.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Message-Id: <20201208033441.28207-3-kyung.min.park@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Saves one byte in __vmx_vcpu_run for the same functionality.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Message-Id: <20201029140457.126965-1-ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the commit 1c96dcceae
("KVM: x86: fix apic_accept_events vs check_nested_events"),
we accidently started latching SIPIs that are received while the cpu is not
waiting for them.
This causes vCPUs to never enter a halted state.
Fixes: 1c96dcceae ("KVM: x86: fix apic_accept_events vs check_nested_events")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20201203143319.159394-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the TDP MMU, use shadow_phys_bits to dermine the maximum possible GFN
mapped in the guest for zapping operations. boot_cpu_data.x86_phys_bits
may be reduced in the case of HW features that steal HPA bits for other
purposes. However, this doesn't necessarily reduce GPA space that can be
accessed via TDP. So zap based on a maximum gfn calculated with MAXPHYADDR
retrieved from CPUID. This is already stored in shadow_phys_bits, so use
it instead of x86_phys_bits.
Fixes: faaf05b00a ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU")
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Message-Id: <20201203231120.27307-1-rick.p.edgecombe@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The cpu arg for svm_cpu_uninit() was previously ignored resulting in the
per cpu structure svm_cpu_data not being de-allocated for all cpus.
Signed-off-by: Jacob Xu <jacobhxu@google.com>
Message-Id: <20201203205939.1783969-1-jacobhxu@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since the ASID is now stored in svm->asid, pre_sev_run should also place
it there and not directly in the VMCB control area.
Reported-by: Ashish Kalra <Ashish.Kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Fix alignment of the new HYP sections
- Fix GICR_TYPER access from userspace
S390:
- do not reset the global diag318 data for per-cpu reset
- do not mark memory as protected too early
- fix for destroy page ultravisor call
x86:
- fix for SEV debugging
- fix incorrect return code
- fix for "noapic" with PIC in userspace and LAPIC in kernel
- fix for 5-level paging
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl/BKpQUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPrZgf+Jdw1ONU5hFLl5Xz2YneVppqMr3nh
X/Nr/dGzP+ve2FPNgkMotwqOWb/6jwKYKbliB2Q6fS51/7MiV7TDizna8ZpzEn12
M0/NMWtW7Luq7yTTnXUhClG4QfRvn90EaflxUYxCBSRRhDleJ9sCl4Ga5b1fDIdQ
AeDdqJV4ElCGUrPM1my4vemrbFeiiEeDeWZvb6TP5LlJS+EDZeehk9zEAB7PFwAu
oX3O8WUbRxRYakZR1PPIn8e0qh2zaVDFUk/sZKJLOCCPx2UnOErf3jV6rQEMeSPC
5aOspfq+gI3jukufdyNxcKxRSj8Jw63f0vDaUgd4H71dsG390gM6onQiQg==
=IyC5
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"ARM:
- Fix alignment of the new HYP sections
- Fix GICR_TYPER access from userspace
S390:
- do not reset the global diag318 data for per-cpu reset
- do not mark memory as protected too early
- fix for destroy page ultravisor call
x86:
- fix for SEV debugging
- fix incorrect return code
- fix for 'noapic' with PIC in userspace and LAPIC in kernel
- fix for 5-level paging"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm: x86/mmu: Fix get_mmio_spte() on CPUs supporting 5-level PT
KVM: x86: Fix split-irqchip vs interrupt injection window request
KVM: x86: handle !lapic_in_kernel case in kvm_cpu_*_extint
MAINTAINERS: Update email address for Sean Christopherson
MAINTAINERS: add uv.c also to KVM/s390
s390/uv: handle destroy page legacy interface
KVM: arm64: vgic-v3: Drop the reporting of GICR_TYPER.Last for userspace
KVM: SVM: fix error return code in svm_create_vcpu()
KVM: SVM: Fix offset computation bug in __sev_dbg_decrypt().
KVM: arm64: Correctly align nVHE percpu data
KVM: s390: remove diag318 reset code
KVM: s390: pv: Mark mm as protected after the set secure parameters and improve cleanup
SVM generally ignores fixed-1 bits. Set them manually so that we
do not end up by mistake without those bits set in struct kvm_vcpu;
it is part of userspace API that KVM always returns value with the
bits set.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU") caused
the following WARNING on an Intel Ice Lake CPU:
get_mmio_spte: detect reserved bits on spte, addr 0xb80a0, dump hierarchy:
------ spte 0xb80a0 level 5.
------ spte 0xfcd210107 level 4.
------ spte 0x1004c40107 level 3.
------ spte 0x1004c41107 level 2.
------ spte 0x1db00000000b83b6 level 1.
WARNING: CPU: 109 PID: 10254 at arch/x86/kvm/mmu/mmu.c:3569 kvm_mmu_page_fault.cold.150+0x54/0x22f [kvm]
...
Call Trace:
? kvm_io_bus_get_first_dev+0x55/0x110 [kvm]
vcpu_enter_guest+0xaa1/0x16a0 [kvm]
? vmx_get_cs_db_l_bits+0x17/0x30 [kvm_intel]
? skip_emulated_instruction+0xaa/0x150 [kvm_intel]
kvm_arch_vcpu_ioctl_run+0xca/0x520 [kvm]
The guest triggering this crashes. Note, this happens with the traditional
MMU and EPT enabled, not with the newly introduced TDP MMU. Turns out,
there was a subtle change in the above mentioned commit. Previously,
walk_shadow_page_get_mmio_spte() was setting 'root' to 'iterator.level'
which is returned by shadow_walk_init() and this equals to
'vcpu->arch.mmu->shadow_root_level'. Now, get_mmio_spte() sets it to
'int root = vcpu->arch.mmu->root_level'.
The difference between 'root_level' and 'shadow_root_level' on CPUs
supporting 5-level page tables is that in some case we don't want to
use 5-level, in particular when 'cpuid_maxphyaddr(vcpu) <= 48'
kvm_mmu_get_tdp_level() returns '4'. In case upper layer is not used,
the corresponding SPTE will fail '__is_rsvd_bits_set()' check.
Revert to using 'shadow_root_level'.
Fixes: 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201126110206.2118959-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_cpu_accept_dm_intr and kvm_vcpu_ready_for_interrupt_injection are
a hodge-podge of conditions, hacked together to get something that
more or less works. But what is actually needed is much simpler;
in both cases the fundamental question is, do we have a place to stash
an interrupt if userspace does KVM_INTERRUPT?
In userspace irqchip mode, that is !vcpu->arch.interrupt.injected.
Currently kvm_event_needs_reinjection(vcpu) covers it, but it is
unnecessarily restrictive.
In split irqchip mode it's a bit more complicated, we need to check
kvm_apic_accept_pic_intr(vcpu) (the IRQ window exit is basically an INTACK
cycle and thus requires ExtINTs not to be masked) as well as
!pending_userspace_extint(vcpu). However, there is no need to
check kvm_event_needs_reinjection(vcpu), since split irqchip keeps
pending ExtINT state separate from event injection state, and checking
kvm_cpu_has_interrupt(vcpu) is wrong too since ExtINT has higher
priority than APIC interrupts. In fact the latter fixes a bug:
when userspace requests an IRQ window vmexit, an interrupt in the
local APIC can cause kvm_cpu_has_interrupt() to be true and thus
kvm_vcpu_ready_for_interrupt_injection() to return false. When this
happens, vcpu_run does not exit to userspace but the interrupt window
vmexits keep occurring. The VM loops without any hope of making progress.
Once we try to fix these with something like
return kvm_arch_interrupt_allowed(vcpu) &&
- !kvm_cpu_has_interrupt(vcpu) &&
- !kvm_event_needs_reinjection(vcpu) &&
- kvm_cpu_accept_dm_intr(vcpu);
+ (!lapic_in_kernel(vcpu)
+ ? !vcpu->arch.interrupt.injected
+ : (kvm_apic_accept_pic_intr(vcpu)
+ && !pending_userspace_extint(v)));
we realize two things. First, thanks to the previous patch the complex
conditional can reuse !kvm_cpu_has_extint(vcpu). Second, the interrupt
window request in vcpu_enter_guest()
bool req_int_win =
dm_request_for_irq_injection(vcpu) &&
kvm_cpu_accept_dm_intr(vcpu);
should be kept in sync with kvm_vcpu_ready_for_interrupt_injection():
it is unnecessary to ask the processor for an interrupt window
if we would not be able to return to userspace. Therefore,
kvm_cpu_accept_dm_intr(vcpu) is basically !kvm_cpu_has_extint(vcpu)
ANDed with the existing check for masked ExtINT. It all makes sense:
- we can accept an interrupt from userspace if there is a place
to stash it (and, for irqchip split, ExtINTs are not masked).
Interrupts from userspace _can_ be accepted even if right now
EFLAGS.IF=0.
- in order to tell userspace we will inject its interrupt ("IRQ
window open" i.e. kvm_vcpu_ready_for_interrupt_injection), both
KVM and the vCPU need to be ready to accept the interrupt.
... and this is what the patch implements.
Reported-by: David Woodhouse <dwmw@amazon.co.uk>
Analyzed-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Nikos Tsironis <ntsironis@arrikto.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Tested-by: David Woodhouse <dwmw@amazon.co.uk>
Centralize handling of interrupts from the userspace APIC
in kvm_cpu_has_extint and kvm_cpu_get_extint, since
userspace APIC interrupts are handled more or less the
same as ExtINTs are with split irqchip. This removes
duplicated code from kvm_cpu_has_injectable_intr and
kvm_cpu_has_interrupt, and makes the code more similar
between kvm_cpu_has_{extint,interrupt} on one side
and kvm_cpu_get_{extint,interrupt} on the other.
Cc: stable@vger.kernel.org
Reviewed-by: Filippo Sironi <sironi@amazon.de>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Tested-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add an extremely verbose trace point to the TDP MMU to log all SPTE
changes, regardless of callstack / motivation. This is useful when a
complete picture of the paging structure is needed or a change cannot be
explained with the other, existing trace points.
Tested: ran the demand paging selftest on an Intel Skylake machine with
all the trace points used by the TDP MMU enabled and observed
them firing with expected values.
This patch can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/3813
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201027175944.1183301-2-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU was initially implemented without some of the usual
tracepoints found in mmu.c. Correct this discrepancy by adding the
missing trace points to the TDP MMU.
Tested: ran the demand paging selftest on an Intel Skylake machine with
all the trace points used by the TDP MMU enabled and observed
them firing with expected values.
This patch can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/3812
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201027175944.1183301-1-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix to return a negative error code from the error handling case
instead of 0 in function svm_create_vcpu(), as done elsewhere in this
function.
Fixes: f4c847a956 ("KVM: SVM: refactor msr permission bitmap allocation")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Chen Zhou <chenzhou10@huawei.com>
Message-Id: <20201117025426.167824-1-chenzhou10@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix offset computation in __sev_dbg_decrypt() to include the
source paddr before it is rounded down to be aligned to 16 bytes
as required by SEV API. This fixes incorrect guest memory dumps
observed when using qemu monitor.
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-Id: <20201110224205.29444-1-Ashish.Kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Similarly to what vmx/vmx.c does, use vcpu->arch.cr4 to check if CR4
bits PGE, PKE and OSXSAVE have changed. When switching between VMCB01
and VMCB02, CPUID has to be adjusted every time if CR4.PKE or CR4.OSXSAVE
change; without this patch, instead, CR4 would be checked against the
previous value for L2 on vmentry, and against the previous value for
L1 on vmexit, and CPUID would not be updated.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM does not have separate ASIDs for L1 and L2; either the nested
hypervisor and nested guests share a single ASID, or on older processor
the ASID is used only to implement TLB flushing.
Either way, ASIDs are handled at the VM level. In preparation
for having different VMCBs passed to VMLOAD/VMRUN/VMSAVE for L1 and
L2, store the current ASID to struct vcpu_svm and only move it to
the VMCB in svm_vcpu_run. This way, TLB flushes can be applied
no matter which VMCB will be active during the next svm_vcpu_run.
Signed-off-by: Cathy Avery <cavery@redhat.com>
Message-Id: <20201011184818.3609-2-cavery@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
without two-dimensional paging (EPT/NPT).
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl+xQ54UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMzeQf+JP9NpXgeB7dhiODhmO5SyLdw0u9j
kVOM6+kHcEvG6o0yU1uUZr2ZPh9vIAwIjXi8Luiodcazdp6jvxvJ32CeMYJz2lel
y+3Gjp3WS2+FExOjBephBztaMHLihlWQt3E0EKuCc7StyfMhaZooiTRMpvrmiLWe
HQ/epM9oLMyrCqG9MKkvTwH0lDyB5CprV1BNt6YyKjt7d5swEqC75A6lOXnmdAah
utgx1agSIVQPv6vDF9HLaQaoelHT7ucudx+zIkvOAmoQ56AJMPfCr0+Af3ZVW+f/
I5tXVfBhoOV3BVSIsJS7Px0HcZt7siVtl6ISZZos8ox85S4ysjWm2vXFcQ==
=MiOr
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"Fixes for ARM and x86, the latter especially for old processors
without two-dimensional paging (EPT/NPT)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm: mmu: fix is_tdp_mmu_check when the TDP MMU is not in use
KVM: SVM: Update cr3_lm_rsvd_bits for AMD SEV guests
KVM: x86: Introduce cr3_lm_rsvd_bits in kvm_vcpu_arch
KVM: x86: clflushopt should be treated as a no-op by emulation
KVM: arm64: Handle SCXTNUM_ELx traps
KVM: arm64: Unify trap handlers injecting an UNDEF
KVM: arm64: Allow setting of ID_AA64PFR0_EL1.CSV2 from userspace
- A set of commits which reduce the stack usage of various perf event
handling functions which allocated large data structs on stack causing
stack overflows in the worst case.
- Use the proper mechanism for detecting soft interrupts in the recursion
protection.
- Make the resursion protection simpler and more robust.
- Simplify the scheduling of event groups to make the code more robust and
prepare for fixing the issues vs. scheduling of exclusive event groups.
- Prevent event multiplexing and rotation for exclusive event groups
- Correct the perf event attribute exclusive semantics to take pinned
events, e.g. the PMU watchdog, into account
- Make the anythread filtering conditional for Intel's generic PMU
counters as it is not longer guaranteed to be supported on newer
CPUs. Check the corresponding CPUID leaf to make sure.
- Fixup a duplicate initialization in an array which was probably cause by
the usual copy & paste - forgot to edit mishap.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl+xIi0THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYofixD/4+4gc8DhOmAkMrN0Z9tiW8ebgMKmb9
wZRkMr5Osi0GzLJOPZ6SdY6jd0A3rMN/sW6P1DT6pDtcty4bKFoW5VZBuUDIAhel
BC4C93L3y1En/GEZu1GTy3LvsBwLBQTOoY4goDjbdAbk60S/0RTHOGyQsRsOQFe6
fVs3iXozAFuaR6I6N3dlxuJAE51zvr8MyBWaUoByNDB//1+lLNW+JfClaAOG1oXx
qZIg/niatBVGzSGgKNRUyh3g8G1HJtabsA/NZ4PH8ZHuYABfmj4lmmUPR77ICLfV
wMITEBG7eaktB8EqM9hvaoOZLA5kpXHO2JbCFSs4c4x11mlC8g7QMV3poCw33YoN
a5TmT1A3muri1riy1/Ee9lXACOq7/tf2+Xfn9o6dvDdBwd6s5pzlhLGR8gILp2lF
2bcg3IwYvHT/Kiurb/WGNpbCqQIPJpcUcfs3tNBCCtKegahUQNnGjxN3NVo9RCit
zfL6xIJ8eZiYnsxXx4NKm744AukWiql3aRNgRkOdBP5WC68xt6VLcxG1YZKUoDhy
jRSOCD/DuPSMSvAAgN7S8OWlPsKWBxVxxWYV+K8FpwhgzbQ3WbS3UDiYkhgjeOxu
OlM692oWpllKvQWlvYthr2Be6oPCRRi1vvADNNbTKzgHk5i61bwympsGl1EZx3Pz
2ROp7NJFRESnqw==
=FzCf
-----END PGP SIGNATURE-----
Merge tag 'perf-urgent-2020-11-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Thomas Gleixner:
"A set of fixes for perf:
- A set of commits which reduce the stack usage of various perf
event handling functions which allocated large data structs on
stack causing stack overflows in the worst case
- Use the proper mechanism for detecting soft interrupts in the
recursion protection
- Make the resursion protection simpler and more robust
- Simplify the scheduling of event groups to make the code more
robust and prepare for fixing the issues vs. scheduling of
exclusive event groups
- Prevent event multiplexing and rotation for exclusive event groups
- Correct the perf event attribute exclusive semantics to take
pinned events, e.g. the PMU watchdog, into account
- Make the anythread filtering conditional for Intel's generic PMU
counters as it is not longer guaranteed to be supported on newer
CPUs. Check the corresponding CPUID leaf to make sure
- Fixup a duplicate initialization in an array which was probably
caused by the usual 'copy & paste - forgot to edit' mishap"
* tag 'perf-urgent-2020-11-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel/uncore: Fix Add BW copypasta
perf/x86/intel: Make anythread filter support conditional
perf: Tweak perf_event_attr::exclusive semantics
perf: Fix event multiplexing for exclusive groups
perf: Simplify group_sched_in()
perf: Simplify group_sched_out()
perf/x86: Make dummy_iregs static
perf/arch: Remove perf_sample_data::regs_user_copy
perf: Optimize get_recursion_context()
perf: Fix get_recursion_context()
perf/x86: Reduce stack usage for x86_pmu::drain_pebs()
perf: Reduce stack usage of perf_output_begin()
On emulated VM-entry and VM-exit, update the CPUID bits that reflect
CR4.OSXSAVE and CR4.PKE.
This fixes a bug where the CPUID bits could continue to reflect L2 CR4
values after emulated VM-exit to L1. It also fixes a related bug where
the CPUID bits could continue to reflect L1 CR4 values after emulated
VM-entry to L2. The latter bug is mainly relevant to SVM, wherein
CPUID is not a required intercept. However, it could also be relevant
to VMX, because the code to conditionally update these CPUID bits
assumes that the guest CPUID and the guest CR4 are always in sync.
Fixes: 8eb3f87d90 ("KVM: nVMX: fix guest CR4 loading when emulating L2 to L1 exit")
Fixes: 2acf923e38 ("KVM: VMX: Enable XSAVE/XRSTOR for guest")
Fixes: b9baba8614 ("KVM, pkeys: expose CPUID/CR4 to guest")
Reported-by: Abhiroop Dabral <adabral@paloaltonetworks.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Cc: Haozhong Zhang <haozhong.zhang@intel.com>
Cc: Dexuan Cui <dexuan.cui@intel.com>
Cc: Huaitong Han <huaitong.han@intel.com>
Message-Id: <20201029170648.483210-1-jmattson@google.com>
Because kvm dirty rings and kvm dirty log is used in an exclusive way,
Let's avoid creating the dirty_bitmap when kvm dirty ring is enabled.
At the meantime, since the dirty_bitmap will be conditionally created
now, we can't use it as a sign of "whether this memory slot enabled
dirty tracking". Change users like that to check against the kvm
memory slot flags.
Note that there still can be chances where the kvm memory slot got its
dirty_bitmap allocated, _if_ the memory slots are created before
enabling of the dirty rings and at the same time with the dirty
tracking capability enabled, they'll still with the dirty_bitmap.
However it should not hurt much (e.g., the bitmaps will always be
freed if they are there), and the real users normally won't trigger
this because dirty bit tracking flag should in most cases only be
applied to kvm slots only before migration starts, that should be far
latter than kvm initializes (VM starts).
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20201001012226.5868-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch is heavily based on previous work from Lei Cao
<lei.cao@stratus.com> and Paolo Bonzini <pbonzini@redhat.com>. [1]
KVM currently uses large bitmaps to track dirty memory. These bitmaps
are copied to userspace when userspace queries KVM for its dirty page
information. The use of bitmaps is mostly sufficient for live
migration, as large parts of memory are be dirtied from one log-dirty
pass to another. However, in a checkpointing system, the number of
dirty pages is small and in fact it is often bounded---the VM is
paused when it has dirtied a pre-defined number of pages. Traversing a
large, sparsely populated bitmap to find set bits is time-consuming,
as is copying the bitmap to user-space.
A similar issue will be there for live migration when the guest memory
is huge while the page dirty procedure is trivial. In that case for
each dirty sync we need to pull the whole dirty bitmap to userspace
and analyse every bit even if it's mostly zeros.
The preferred data structure for above scenarios is a dense list of
guest frame numbers (GFN). This patch series stores the dirty list in
kernel memory that can be memory mapped into userspace to allow speedy
harvesting.
This patch enables dirty ring for X86 only. However it should be
easily extended to other archs as well.
[1] https://patchwork.kernel.org/patch/10471409/
Signed-off-by: Lei Cao <lei.cao@stratus.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20201001012222.5767-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Originally, we have three code paths that can dirty a page without
vcpu context for X86:
- init_rmode_identity_map
- init_rmode_tss
- kvmgt_rw_gpa
init_rmode_identity_map and init_rmode_tss will be setup on
destination VM no matter what (and the guest cannot even see them), so
it does not make sense to track them at all.
To do this, allow __x86_set_memory_region() to return the userspace
address that just allocated to the caller. Then in both of the
functions we directly write to the userspace address instead of
calling kvm_write_*() APIs.
Another trivial change is that we don't need to explicitly clear the
identity page table root in init_rmode_identity_map() because no
matter what we'll write to the whole page with 4M huge page entries.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20201001012044.5151-4-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_GET_SUPPORTED_HV_CPUID is a vCPU ioctl but its output is now
independent from vCPU and in some cases VMMs may want to use it as a system
ioctl instead. In particular, QEMU doesn CPU feature expansion before any
vCPU gets created so KVM_GET_SUPPORTED_HV_CPUID can't be used.
Convert KVM_GET_SUPPORTED_HV_CPUID to 'dual' system/vCPU ioctl with the
same meaning.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200929150944.1235688-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Background: We have a lightweight HV, it needs INIT-VMExit and
SIPI-VMExit to wake-up APs for guests since it do not monitor
the Local APIC. But currently virtual wait-for-SIPI(WFS) state
is not supported in nVMX, so when running on top of KVM, the L1
HV cannot receive the INIT-VMExit and SIPI-VMExit which cause
the L2 guest cannot wake up the APs.
According to Intel SDM Chapter 25.2 Other Causes of VM Exits,
SIPIs cause VM exits when a logical processor is in
wait-for-SIPI state.
In this patch:
1. introduce SIPI exit reason,
2. introduce wait-for-SIPI state for nVMX,
3. advertise wait-for-SIPI support to guest.
When L1 hypervisor is not monitoring Local APIC, L0 need to emulate
INIT-VMExit and SIPI-VMExit to L1 to emulate INIT-SIPI-SIPI for
L2. L2 LAPIC write would be traped by L0 Hypervisor(KVM), L0 should
emulate the INIT/SIPI vmexit to L1 hypervisor to set proper state
for L2's vcpu state.
Handle procdure:
Source vCPU:
L2 write LAPIC.ICR(INIT).
L0 trap LAPIC.ICR write(INIT): inject a latched INIT event to target
vCPU.
Target vCPU:
L0 emulate an INIT VMExit to L1 if is guest mode.
L1 set guest VMCS, guest_activity_state=WAIT_SIPI, vmresume.
L0 set vcpu.mp_state to INIT_RECEIVED if (vmcs12.guest_activity_state
== WAIT_SIPI).
Source vCPU:
L2 write LAPIC.ICR(SIPI).
L0 trap LAPIC.ICR write(INIT): inject a latched SIPI event to traget
vCPU.
Target vCPU:
L0 emulate an SIPI VMExit to L1 if (vcpu.mp_state == INIT_RECEIVED).
L1 set CS:IP, guest_activity_state=ACTIVE, vmresume.
L0 resume to L2.
L2 start-up.
Signed-off-by: Yadong Qi <yadong.qi@intel.com>
Message-Id: <20200922052343.84388-1-yadong.qi@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20201106065122.403183-1-yadong.qi@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vmx_apic_init_signal_blocked is buggy in that it returns true
even in VMX non-root mode. In non-root mode, however, INITs
are not latched, they just cause a vmexit. Previously,
KVM was waiting for them to be processed when kvm_apic_accept_events
and in the meanwhile it ate the SIPIs that the processor received.
However, in order to implement the wait-for-SIPI activity state,
KVM will have to process KVM_APIC_SIPI in vmx_check_nested_events,
and it will not be possible anymore to disregard SIPIs in non-root
mode as the code is currently doing.
By calling kvm_x86_ops.nested_ops->check_events, we can force a vmexit
(with the side-effect of latching INITs) before incorrectly injecting
an INIT or SIPI in a guest, and therefore vmx_apic_init_signal_blocked
can do the right thing.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rework the common CR4 and SREGS checks to return a bool instead of an
int, i.e. true/false instead of 0/-EINVAL, and add "is" to the name to
clarify the polarity of the return value (which is effectively inverted
by this change).
No functional changed intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201007014417.29276-6-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Split out VMX's checks on CR4.VMXE to a dedicated hook, .is_valid_cr4(),
and invoke the new hook from kvm_valid_cr4(). This fixes an issue where
KVM_SET_SREGS would return success while failing to actually set CR4.
Fixing the issue by explicitly checking kvm_x86_ops.set_cr4()'s return
in __set_sregs() is not a viable option as KVM has already stuffed a
variety of vCPU state.
Note, kvm_valid_cr4() and is_valid_cr4() have different return types and
inverted semantics. This will be remedied in a future patch.
Fixes: 5e1746d620 ("KVM: nVMX: Allow setting the VMXE bit in CR4")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201007014417.29276-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop svm_set_cr4()'s explicit check CR4.VMXE now that common x86 handles
the check by incorporating VMXE into the CR4 reserved bits, via
kvm_cpu_caps. SVM obviously does not set X86_FEATURE_VMX.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201007014417.29276-4-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop vmx_set_cr4()'s explicit check on the 'nested' module param now
that common x86 handles the check by incorporating VMXE into the CR4
reserved bits, via kvm_cpu_caps. X86_FEATURE_VMX is set in kvm_cpu_caps
(by vmx_set_cpu_caps()), if and only if 'nested' is true.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201007014417.29276-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop vmx_set_cr4()'s somewhat hidden guest_cpuid_has() check on VMXE now
that common x86 handles the check by incorporating VMXE into the CR4
reserved bits, i.e. in cr4_guest_rsvd_bits. This fixes a bug where KVM
incorrectly rejects KVM_SET_SREGS with CR4.VMXE=1 if it's executed
before KVM_SET_CPUID{,2}.
Fixes: 5e1746d620 ("KVM: nVMX: Allow setting the VMXE bit in CR4")
Reported-by: Stas Sergeev <stsp@users.sourceforge.net>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201007014417.29276-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In some cases where shadow paging is in use, the root page will
be either mmu->pae_root or vcpu->arch.mmu->lm_root. Then it will
not have an associated struct kvm_mmu_page, because it is allocated
with alloc_page instead of kvm_mmu_alloc_page.
Just return false quickly from is_tdp_mmu_root if the TDP MMU is
not in use, which also includes the case where shadow paging is
enabled.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For AMD SEV guests, update the cr3_lm_rsvd_bits to mask
the memory encryption bit in reserved bits.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Message-Id: <160521948301.32054.5783800787423231162.stgit@bmoger-ubuntu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SEV guests fail to boot on a system that supports the PCID feature.
While emulating the RSM instruction, KVM reads the guest CR3
and calls kvm_set_cr3(). If the vCPU is in the long mode,
kvm_set_cr3() does a sanity check for the CR3 value. In this case,
it validates whether the value has any reserved bits set. The
reserved bit range is 63:cpuid_maxphysaddr(). When AMD memory
encryption is enabled, the memory encryption bit is set in the CR3
value. The memory encryption bit may fall within the KVM reserved
bit range, causing the KVM emulation failure.
Introduce a new field cr3_lm_rsvd_bits in kvm_vcpu_arch which will
cache the reserved bits in the CR3 value. This will be initialized
to rsvd_bits(cpuid_maxphyaddr(vcpu), 63).
If the architecture has any special bits(like AMD SEV encryption bit)
that needs to be masked from the reserved bits, should be cleared
in vendor specific kvm_x86_ops.vcpu_after_set_cpuid handler.
Fixes: a780a3ea62 ("KVM: X86: Fix reserved bits check for MOV to CR3")
Signed-off-by: Babu Moger <babu.moger@amd.com>
Message-Id: <160521947657.32054.3264016688005356563.stgit@bmoger-ubuntu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The instruction emulator ignores clflush instructions, yet fails to
support clflushopt. Treat both similarly.
Fixes: 13e457e0ee ("KVM: x86: Emulator does not decode clflush well")
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Message-Id: <20201103120400.240882-1-david.edmondson@oracle.com>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Starting with Arch Perfmon v5, the anythread filter on generic counters may be
deprecated. The current kernel was exporting the any filter without checking.
On Icelake, it means you could do cpu/event=0x3c,any/ even though the filter
does not exist. This patch corrects the problem by relying on the CPUID 0xa leaf
function to determine if anythread is supported or not as described in the
Intel SDM Vol3b 18.2.5.1 AnyThread Deprecation section.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201028194247.3160610-1-eranian@google.com
Windows2016 guest tries to enable LBR by setting the corresponding bits
in MSR_IA32_DEBUGCTLMSR. KVM does not emulate MSR_IA32_DEBUGCTLMSR and
spams the host kernel logs with error messages like:
kvm [...]: vcpu1, guest rIP: 0xfffff800a8b687d3 kvm_set_msr_common: MSR_IA32_DEBUGCTLMSR 0x1, nop"
This patch fixes this by enabling error logging only with
'report_ignored_msrs=1'.
Signed-off-by: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Message-Id: <20201105153932.24316-1-pankaj.gupta.linux@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 5b9bb0ebbc ("kvm: x86: encapsulate wrmsr(MSR_KVM_SYSTEM_TIME)
emulation in helper fn", 2020-10-21) subtly changed the behavior of guest
writes to MSR_KVM_SYSTEM_TIME(_NEW). Restore the previous behavior; update
the masterclock any time the guest uses a different msr than before.
Fixes: 5b9bb0ebbc ("kvm: x86: encapsulate wrmsr(MSR_KVM_SYSTEM_TIME) emulation in helper fn", 2020-10-21)
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20201027231044.655110-6-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make the paravirtual cpuid enforcement mechanism idempotent to ioctl()
ordering by updating pv_cpuid.features whenever userspace requests the
capability. Extract this update out of kvm_update_cpuid_runtime() into a
new helper function and move its other call site into
kvm_vcpu_after_set_cpuid() where it more likely belongs.
Fixes: 66570e966d ("kvm: x86: only provide PV features if enabled in guest's CPUID")
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20201027231044.655110-5-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
commit 66570e966d ("kvm: x86: only provide PV features if enabled in
guest's CPUID") only protects against disallowed guest writes to KVM
paravirtual msrs, leaving msr reads unchecked. Fix this by enforcing
KVM_CPUID_FEATURES for msr reads as well.
Fixes: 66570e966d ("kvm: x86: only provide PV features if enabled in guest's CPUID")
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20201027231044.655110-4-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Recent introduction of the userspace msr filtering added code that uses
negative error codes for cases that result in either #GP delivery to
the guest, or handled by the userspace msr filtering.
This breaks an assumption that a negative error code returned from the
msr emulation code is a semi-fatal error which should be returned
to userspace via KVM_RUN ioctl and usually kill the guest.
Fix this by reusing the already existing KVM_MSR_RET_INVALID error code,
and by adding a new KVM_MSR_RET_FILTERED error code for the
userspace filtered msrs.
Fixes: 291f35fb2c1d1 ("KVM: x86: report negative values from wrmsr emulation to userspace")
Reported-by: Qian Cai <cai@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20201101115523.115780-1-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix an off-by-one style bug in pte_list_add() where it failed to
account the last full set of SPTEs, i.e. when desc->sptes is full
and desc->more is NULL.
Merge the two "PTE_LIST_EXT-1" checks as part of the fix to avoid
an extra comparison.
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <1601196297-24104-1-git-send-email-lirongqing@baidu.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It was noticed that evmcs_sanitize_exec_ctrls() is not being executed
nowadays despite the code checking 'enable_evmcs' static key looking
correct. Turns out, static key magic doesn't work in '__init' section
(and it is unclear when things changed) but setup_vmcs_config() is called
only once per CPU so we don't really need it to. Switch to checking
'enlightened_vmcs' instead, it is supposed to be in sync with
'enable_evmcs'.
Opportunistically make evmcs_sanitize_exec_ctrls '__init' and drop unneeded
extra newline from it.
Reported-by: Yang Weijiang <weijiang.yang@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201014143346.2430936-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The newly introduced kvm_msr_ignored_check() tries to print error or
debug messages via vcpu_*() macros, but those may cause Oops when NULL
vcpu is passed for KVM_GET_MSRS ioctl.
Fix it by replacing the print calls with kvm_*() macros.
(Note that this will leave vcpu argument completely unused in the
function, but I didn't touch it to make the fix as small as
possible. A clean up may be applied later.)
Fixes: 12bc2132b1 ("KVM: X86: Do the same ignore_msrs check for feature msrs")
BugLink: https://bugzilla.suse.com/show_bug.cgi?id=1178280
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Message-Id: <20201030151414.20165-1-tiwai@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Even though the compiler is able to replace static const variables with
their value, it will warn about them being unused when Linux is built with W=1.
Use good old macros instead, this is not C++.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the bitfields in the x86 shadow structs instead of decomposing the
32bit value with macros.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-17-dwmw2@infradead.org
a host hang.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl+T6RoUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMx2gf+PjoeMjLKtstdKDdiLFV46X7YdYKz
sUoDhpSbiLpEus5BF6OauUWwKgB7GcsoDUnLgjN5jqkAQzoFm0YOcI2GlXS999SL
5QIg6Vw5WF8X/7EVt6gxzC6KcWjbQvv38R/Ktd/0sMqRBPiZG7kVcWeXlopb9DaQ
Rdgg0hNVpgDiTNrBNl5RnM7Wz/SrOZmwaotW1LcII+BkCnj9Av77v77TxN9YuvG4
o+GMMQseFAzDjQ+jHZkHuBmPRy5dQB9ywzEIrUCubqhT04sWbQ6DhGfx45a0IgsY
33iT28omYdMVlRd/i3KcHQ86JJSo5g7pOqLwGd1L9HjNTS5VmQ8HXNJWBA==
=ECL9
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"Two fixes for this merge window, and an unrelated bugfix for a host
hang"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: ioapic: break infinite recursion on lazy EOI
KVM: vmx: rename pi_init to avoid conflict with paride
KVM: x86/mmu: Avoid modulo operator on 64-bit value to fix i386 build
During shutdown the IOAPIC trigger mode is reset to edge triggered
while the vfio-pci INTx is still registered with a resampler.
This allows us to get into an infinite loop:
ioapic_set_irq
-> ioapic_lazy_update_eoi
-> kvm_ioapic_update_eoi_one
-> kvm_notify_acked_irq
-> kvm_notify_acked_gsi
-> (via irq_acked fn ptr) irqfd_resampler_ack
-> kvm_set_irq
-> (via set fn ptr) kvm_set_ioapic_irq
-> kvm_ioapic_set_irq
-> ioapic_set_irq
Commit 8be8f932e3 ("kvm: ioapic: Restrict lazy EOI update to
edge-triggered interrupts", 2020-05-04) acknowledges that this recursion
loop exists and tries to avoid it at the call to ioapic_lazy_update_eoi,
but at this point the scenario is already set, we have an edge interrupt
with resampler on the same gsi.
Fortunately, the only user of irq ack notifiers (in addition to resamplefd)
is i8254 timer interrupt reinjection. These are edge-triggered, so in
principle they would need the call to kvm_ioapic_update_eoi_one from
ioapic_lazy_update_eoi, but they already disable AVIC(*), so they don't
need the lazy EOI behavior. Therefore, remove the call to
kvm_ioapic_update_eoi_one from ioapic_lazy_update_eoi.
This fixes CVE-2020-27152. Note that this issue cannot happen with
SR-IOV assigned devices because virtual functions do not have INTx,
only MSI.
Fixes: f458d039db ("kvm: ioapic: Lazy update IOAPIC EOI")
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Tested-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
allyesconfig results in:
ld: drivers/block/paride/paride.o: in function `pi_init':
(.text+0x1340): multiple definition of `pi_init'; arch/x86/kvm/vmx/posted_intr.o:posted_intr.c:(.init.text+0x0): first defined here
make: *** [Makefile:1164: vmlinux] Error 1
because commit:
commit 8888cdd099
Author: Xiaoyao Li <xiaoyao.li@intel.com>
Date: Wed Sep 23 11:31:11 2020 -0700
KVM: VMX: Extract posted interrupt support to separate files
added another pi_init(), though one already existed in the paride code.
Reported-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace a modulo operator with the more common pattern for computing the
gfn "offset" of a huge page to fix an i386 build error.
arch/x86/kvm/mmu/tdp_mmu.c:212: undefined reference to `__umoddi3'
In fact, almost all of tdp_mmu.c can be elided on 32-bit builds, but
that is a much larger patch.
Fixes: 2f2fad0897 ("kvm: x86/mmu: Add functions to handle changed TDP SPTEs")
Reported-by: Daniel Díaz <daniel.diaz@linaro.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201024031150.9318-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- New page table code for both hypervisor and guest stage-2
- Introduction of a new EL2-private host context
- Allow EL2 to have its own private per-CPU variables
- Support of PMU event filtering
- Complete rework of the Spectre mitigation
PPC:
- Fix for running nested guests with in-kernel IRQ chip
- Fix race condition causing occasional host hard lockup
- Minor cleanups and bugfixes
x86:
- allow trapping unknown MSRs to userspace
- allow userspace to force #GP on specific MSRs
- INVPCID support on AMD
- nested AMD cleanup, on demand allocation of nested SVM state
- hide PV MSRs and hypercalls for features not enabled in CPUID
- new test for MSR_IA32_TSC writes from host and guest
- cleanups: MMU, CPUID, shared MSRs
- LAPIC latency optimizations ad bugfixes
For x86, also included in this pull request is a new alternative and
(in the future) more scalable implementation of extended page tables
that does not need a reverse map from guest physical addresses to
host physical addresses. For now it is disabled by default because
it is still lacking a few of the existing MMU's bells and whistles.
However it is a very solid piece of work and it is already available
for people to hammer on it.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl+S8dsUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroM40Af+M46NJmuS5rcwFfybvK/c42KT6svX
Co1NrZDwzSQ2mMy3WQzH9qeLvb+nbY4sT3n5BPNPNsT+aIDPOTDt//qJ2/Ip9UUs
tRNea0MAR96JWLE7MSeeRxnTaQIrw/AAZC0RXFzZvxcgytXwdqBExugw4im+b+dn
Dcz8QxX1EkwT+4lTm5HC0hKZAuo4apnK1QkqCq4SdD2QVJ1YE6+z7pgj4wX7xitr
STKD6q/Yt/0ndwqS0GSGbyg0jy6mE620SN6isFRkJYwqfwLJci6KnqvEK67EcNMu
qeE017K+d93yIVC46/6TfVHzLR/D1FpQ8LZ16Yl6S13OuGIfAWBkQZtPRg==
=AD6a
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"For x86, there is a new alternative and (in the future) more scalable
implementation of extended page tables that does not need a reverse
map from guest physical addresses to host physical addresses.
For now it is disabled by default because it is still lacking a few of
the existing MMU's bells and whistles. However it is a very solid
piece of work and it is already available for people to hammer on it.
Other updates:
ARM:
- New page table code for both hypervisor and guest stage-2
- Introduction of a new EL2-private host context
- Allow EL2 to have its own private per-CPU variables
- Support of PMU event filtering
- Complete rework of the Spectre mitigation
PPC:
- Fix for running nested guests with in-kernel IRQ chip
- Fix race condition causing occasional host hard lockup
- Minor cleanups and bugfixes
x86:
- allow trapping unknown MSRs to userspace
- allow userspace to force #GP on specific MSRs
- INVPCID support on AMD
- nested AMD cleanup, on demand allocation of nested SVM state
- hide PV MSRs and hypercalls for features not enabled in CPUID
- new test for MSR_IA32_TSC writes from host and guest
- cleanups: MMU, CPUID, shared MSRs
- LAPIC latency optimizations ad bugfixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (232 commits)
kvm: x86/mmu: NX largepage recovery for TDP MMU
kvm: x86/mmu: Don't clear write flooding count for direct roots
kvm: x86/mmu: Support MMIO in the TDP MMU
kvm: x86/mmu: Support write protection for nesting in tdp MMU
kvm: x86/mmu: Support disabling dirty logging for the tdp MMU
kvm: x86/mmu: Support dirty logging for the TDP MMU
kvm: x86/mmu: Support changed pte notifier in tdp MMU
kvm: x86/mmu: Add access tracking for tdp_mmu
kvm: x86/mmu: Support invalidate range MMU notifier for TDP MMU
kvm: x86/mmu: Allocate struct kvm_mmu_pages for all pages in TDP MMU
kvm: x86/mmu: Add TDP MMU PF handler
kvm: x86/mmu: Remove disallowed_hugepage_adjust shadow_walk_iterator arg
kvm: x86/mmu: Support zapping SPTEs in the TDP MMU
KVM: Cache as_id in kvm_memory_slot
kvm: x86/mmu: Add functions to handle changed TDP SPTEs
kvm: x86/mmu: Allocate and free TDP MMU roots
kvm: x86/mmu: Init / Uninit the TDP MMU
kvm: x86/mmu: Introduce tdp_iter
KVM: mmu: extract spte.h and spte.c
KVM: mmu: Separate updating a PTE from kvm_set_pte_rmapp
...
When KVM maps a largepage backed region at a lower level in order to
make it executable (i.e. NX large page shattering), it reduces the TLB
performance of that region. In order to avoid making this degradation
permanent, KVM must periodically reclaim shattered NX largepages by
zapping them and allowing them to be rebuilt in the page fault handler.
With this patch, the TDP MMU does not respect KVM's rate limiting on
reclaim. It traverses the entire TDP structure every time. This will be
addressed in a future patch.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-21-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Direct roots don't have a write flooding count because the guest can't
affect that paging structure. Thus there's no need to clear the write
flooding count on a fast CR3 switch for direct roots.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-20-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to support MMIO, KVM must be able to walk the TDP paging
structures to find mappings for a given GFN. Support this walk for
the TDP MMU.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
v2: Thanks to Dan Carpenter and kernel test robot for finding that root
was used uninitialized in get_mmio_spte.
Signed-off-by: Ben Gardon <bgardon@google.com>
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Message-Id: <20201014182700.2888246-19-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To support nested virtualization, KVM will sometimes need to write
protect pages which are part of a shadowed paging structure or are not
writable in the shadowed paging structure. Add a function to write
protect GFN mappings for this purpose.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-18-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Dirty logging ultimately breaks down MMU mappings to 4k granularity.
When dirty logging is no longer needed, these granaular mappings
represent a useless performance penalty. When dirty logging is disabled,
search the paging structure for mappings that could be re-constituted
into a large page mapping. Zap those mappings so that they can be
faulted in again at a higher mapping level.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-17-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Dirty logging is a key feature of the KVM MMU and must be supported by
the TDP MMU. Add support for both the write protection and PML dirty
logging modes.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-16-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to interoperate correctly with the rest of KVM and other Linux
subsystems, the TDP MMU must correctly handle various MMU notifiers. Add
a hook and handle the change_pte MMU notifier.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-15-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to interoperate correctly with the rest of KVM and other Linux
subsystems, the TDP MMU must correctly handle various MMU notifiers. The
main Linux MM uses the access tracking MMU notifiers for swap and other
features. Add hooks to handle the test/flush HVA (range) family of
MMU notifiers.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-14-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to interoperate correctly with the rest of KVM and other Linux
subsystems, the TDP MMU must correctly handle various MMU notifiers. Add
hooks to handle the invalidate range family of MMU notifiers.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-13-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Attach struct kvm_mmu_pages to every page in the TDP MMU to track
metadata, facilitate NX reclaim, and enable inproved parallelism of MMU
operations in future patches.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-12-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add functions to handle page faults in the TDP MMU. These page faults
are currently handled in much the same way as the x86 shadow paging
based MMU, however the ordering of some operations is slightly
different. Future patches will add eager NX splitting, a fast page fault
handler, and parallel page faults.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-11-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to avoid creating executable hugepages in the TDP MMU PF
handler, remove the dependency between disallowed_hugepage_adjust and
the shadow_walk_iterator. This will open the function up to being used
by the TDP MMU PF handler in a future patch.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-10-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add functions to zap SPTEs to the TDP MMU. These are needed to tear down
TDP MMU roots properly and implement other MMU functions which require
tearing down mappings. Future patches will add functions to populate the
page tables, but as for this patch there will not be any work for these
functions to do.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-8-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The existing bookkeeping done by KVM when a PTE is changed is spread
around several functions. This makes it difficult to remember all the
stats, bitmaps, and other subsystems that need to be updated whenever a
PTE is modified. When a non-leaf PTE is marked non-present or becomes a
leaf PTE, page table memory must also be freed. To simplify the MMU and
facilitate the use of atomic operations on SPTEs in future patches, create
functions to handle some of the bookkeeping required as a result of
a change.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU must be able to allocate paging structure root pages and track
the usage of those pages. Implement a similar, but separate system for root
page allocation to that of the x86 shadow paging implementation. When
future patches add synchronization model changes to allow for parallel
page faults, these pages will need to be handled differently from the
x86 shadow paging based MMU's root pages.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU offers an alternative mode of operation to the x86 shadow
paging based MMU, optimized for running an L1 guest with TDP. The TDP MMU
will require new fields that need to be initialized and torn down. Add
hooks into the existing KVM MMU initialization process to do that
initialization / cleanup. Currently the initialization and cleanup
fucntions do not do very much, however more operations will be added in
future patches.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-4-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP iterator implements a pre-order traversal of a TDP paging
structure. This iterator will be used in future patches to create
an efficient implementation of the KVM MMU for the TDP case.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The SPTE format will be common to both the shadow and the TDP MMU.
Extract code that implements the format to a separate module, as a
first step towards adding the TDP MMU and putting mmu.c on a diet.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU's own function for the changed-PTE notifier will need to be
update a PTE in the exact same way as the shadow MMU. Rather than
re-implementing this logic, factor the SPTE creation out of kvm_set_pte_rmapp.
Extracted out of a patch by Ben Gardon. <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Separate the functions for generating leaf page table entries from the
function that inserts them into the paging structure. This refactoring
will facilitate changes to the MMU sychronization model to use atomic
compare / exchanges (which are not guaranteed to succeed) instead of a
monolithic MMU lock.
No functional change expected.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This commit introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU page fault handler will need to be able to create non-leaf
SPTEs to build up the paging structures. Rather than re-implementing the
function, factor the SPTE creation out of link_shadow_page.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20200925212302.3979661-9-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add FSGSBASE to the set of possible guest-owned CR4 bits, i.e. let the
guest own it on VMX. KVM never queries the guest's CR4.FSGSBASE value,
thus there is no reason to force VM-Exit on FSGSBASE being toggled.
Note, because FSGSBASE is conditionally available, this is dependent on
recent changes to intercept reserved CR4 bits and to update the CR4
guest/host mask in response to guest CPUID changes.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
[sean: added justification in changelog]
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200930041659.28181-6-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intercept CR4 bits that are guest reserved so that KVM correctly injects
a #GP fault if the guest attempts to set a reserved bit. If a feature
is supported by the CPU but is not exposed to the guest, and its
associated CR4 bit is not intercepted by KVM by default, then KVM will
fail to inject a #GP if the guest sets the CR4 bit without triggering
an exit, e.g. by toggling only the bit in question.
Note, KVM doesn't give the guest direct access to any CR4 bits that are
also dependent on guest CPUID. Yet.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200930041659.28181-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that vcpu_after_set_cpuid() and update_exception_bitmap() are called
back-to-back, subsume the exception bitmap update into the common CPUID
update. Drop the SVM invocation entirely as SVM's exception bitmap
doesn't vary with respect to guest CPUID.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200930041659.28181-4-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the call to kvm_x86_ops.vcpu_after_set_cpuid() to the very end of
kvm_vcpu_after_set_cpuid() to allow the vendor implementation to react
to changes made by the common code. In the near future, this will be
used by VMX to update its CR4 guest/host masks to account for reserved
bits. In the long term, SGX support will update the allowed XCR0 mask
for enclaves based on the vCPU's allowed XCR0.
vcpu_after_set_cpuid() (nee kvm_update_cpuid()) was originally added by
commit 2acf923e38 ("KVM: VMX: Enable XSAVE/XRSTOR for guest"), and was
called separately after kvm_x86_ops.vcpu_after_set_cpuid() (nee
kvm_x86_ops->cpuid_update()). There is no indication that the placement
of the common code updates after the vendor updates was anything more
than a "new function at the end" decision.
Inspection of the current code reveals no dependency on kvm_x86_ops'
vcpu_after_set_cpuid() in kvm_vcpu_after_set_cpuid() or any of its
helpers. The bulk of the common code depends only on the guest's CPUID
configuration, kvm_mmu_reset_context() does not consume dynamic vendor
state, and there are no collisions between kvm_pmu_refresh() and VMX's
update of PT state.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200930041659.28181-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unconditionally intercept changes to CR4.LA57 so that KVM correctly
injects a #GP fault if the guest attempts to set CR4.LA57 when it's
supported in hardware but not exposed to the guest.
Long term, KVM needs to properly handle CR4 bits that can be under guest
control but also may be reserved from the guest's perspective. But, KVM
currently sets the CR4 guest/host mask only during vCPU creation, and
reworking flows to change that will take a bit of elbow grease.
Even if/when generic support for intercepting reserved bits exists, it's
probably not worth letting the guest set CR4.LA57 directly. LA57 can't
be toggled while long mode is enabled, thus it's all but guaranteed to
be set once (maybe twice, e.g. by BIOS and kernel) during boot and never
touched again. On the flip side, letting the guest own CR4.LA57 may
incur extra VMREADs. In other words, this temporary "hack" is probably
also the right long term fix.
Fixes: fd8cb43373 ("KVM: MMU: Expose the LA57 feature to VM.")
Cc: stable@vger.kernel.org
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
[sean: rewrote changelog]
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200930041659.28181-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The function amd_ir_set_vcpu_affinity makes use of the parameter struct
amd_iommu_pi_data.prev_ga_tag to determine if it should delete struct
amd_iommu_pi_data from a list when not running in AVIC mode.
However, prev_ga_tag is initialized only when AVIC is enabled. The non-zero
uninitialized value can cause unintended code path, which ends up making
use of the struct vcpu_svm.ir_list and ir_list_lock without being
initialized (since they are intended only for the AVIC case).
This triggers NULL pointer dereference bug in the function vm_ir_list_del
with the following call trace:
svm_update_pi_irte+0x3c2/0x550 [kvm_amd]
? proc_create_single_data+0x41/0x50
kvm_arch_irq_bypass_add_producer+0x40/0x60 [kvm]
__connect+0x5f/0xb0 [irqbypass]
irq_bypass_register_producer+0xf8/0x120 [irqbypass]
vfio_msi_set_vector_signal+0x1de/0x2d0 [vfio_pci]
vfio_msi_set_block+0x77/0xe0 [vfio_pci]
vfio_pci_set_msi_trigger+0x25c/0x2f0 [vfio_pci]
vfio_pci_set_irqs_ioctl+0x88/0xb0 [vfio_pci]
vfio_pci_ioctl+0x2ea/0xed0 [vfio_pci]
? alloc_file_pseudo+0xa5/0x100
vfio_device_fops_unl_ioctl+0x26/0x30 [vfio]
? vfio_device_fops_unl_ioctl+0x26/0x30 [vfio]
__x64_sys_ioctl+0x96/0xd0
do_syscall_64+0x37/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Therefore, initialize prev_ga_tag to zero before use. This should be safe
because ga_tag value 0 is invalid (see function avic_vm_init).
Fixes: dfa20099e2 ("KVM: SVM: Refactor AVIC vcpu initialization into avic_init_vcpu()")
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20201003232707.4662-1-suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This way we don't waste memory on VMs which don't use nesting
virtualization even when the host enabled it for them.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20201001112954.6258-5-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>