There is no reason why the BP hardening vectors shouldn't be part
of the HYP text at compile time, rather than being mapped at runtime.
Also introduce a new config symbol that controls the compilation
of bpi.S.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We currently provide the hyp-init code with a kernel VA, and expect
it to turn it into a HYP va by itself. As we're about to provide
the hypervisor with mappings that are not necessarily in the memory
range, let's move the kern_hyp_va macro to kvm_get_hyp_vector.
No functionnal change.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The main idea behind randomising the EL2 VA is that we usually have
a few spare bits between the most significant bit of the VA mask
and the most significant bit of the linear mapping.
Those bits could be a bunch of zeroes, and could be useful
to move things around a bit. Of course, the more memory you have,
the less randomisation you get...
Alternatively, these bits could be the result of KASLR, in which
case they are already random. But it would be nice to have a
*different* randomization, just to make the job of a potential
attacker a bit more difficult.
Inserting these random bits is a bit involved. We don't have a spare
register (short of rewriting all the kern_hyp_va call sites), and
the immediate we want to insert is too random to be used with the
ORR instruction. The best option I could come up with is the following
sequence:
and x0, x0, #va_mask
ror x0, x0, #first_random_bit
add x0, x0, #(random & 0xfff)
add x0, x0, #(random >> 12), lsl #12
ror x0, x0, #(63 - first_random_bit)
making it a fairly long sequence, but one that a decent CPU should
be able to execute without breaking a sweat. It is of course NOPed
out on VHE. The last 4 instructions can also be turned into NOPs
if it appears that there is no free bits to use.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Add an encoder for the EXTR instruction, which also implements the ROR
variant (where Rn == Rm).
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
As we're about to change the way we map devices at HYP, we need
to move away from kern_hyp_va on an IO address.
One way of achieving this is to store the VAs in kvm_vgic_global_state,
and use that directly from the HYP code. This requires a small change
to create_hyp_io_mappings so that it can also return a HYP VA.
We take this opportunity to nuke the vctrl_base field in the emulated
distributor, as it is not used anymore.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Both HYP io mappings call ioremap, followed by create_hyp_io_mappings.
Let's move the ioremap call into create_hyp_io_mappings itself, which
simplifies the code a bit and allows for further refactoring.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
kvm_vgic_global_state is part of the read-only section, and is
usually accessed using a PC-relative address generation (adrp + add).
It is thus useless to use kern_hyp_va() on it, and actively problematic
if kern_hyp_va() becomes non-idempotent. On the other hand, there is
no way that the compiler is going to guarantee that such access is
always PC relative.
So let's bite the bullet and provide our own accessor.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Now that we can dynamically compute the kernek/hyp VA mask, there
is no need for a feature flag to trigger the alternative patching.
Let's drop the flag and everything that depends on it.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
So far, we're using a complicated sequence of alternatives to
patch the kernel/hyp VA mask on non-VHE, and NOP out the
masking altogether when on VHE.
The newly introduced dynamic patching gives us the opportunity
to simplify that code by patching a single instruction with
the correct mask (instead of the mind bending cumulative masking
we have at the moment) or even a single NOP on VHE. This also
adds some initial code that will allow the patching callback
to switch to a more complex patching.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We lack a way to encode operations such as AND, ORR, EOR that take
an immediate value. Doing so is quite involved, and is all about
reverse engineering the decoding algorithm described in the
pseudocode function DecodeBitMasks().
This has been tested by feeding it all the possible literal values
and comparing the output with that of GAS.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We're missing the a way to generate the encoding of the N immediate,
which is only a single bit used in a number of instruction that take
an immediate.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We've so far relied on a patching infrastructure that only gave us
a single alternative, without any way to provide a range of potential
replacement instructions. For a single feature, this is an all or
nothing thing.
It would be interesting to have a more flexible grained way of patching
the kernel though, where we could dynamically tune the code that gets
injected.
In order to achive this, let's introduce a new form of dynamic patching,
assiciating a callback to a patching site. This callback gets source and
target locations of the patching request, as well as the number of
instructions to be patched.
Dynamic patching is declared with the new ALTERNATIVE_CB and alternative_cb
directives:
asm volatile(ALTERNATIVE_CB("mov %0, #0\n", callback)
: "r" (v));
or
alternative_cb callback
mov x0, #0
alternative_cb_end
where callback is the C function computing the alternative.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We can finally get completely rid of any calls to the VGICv3
save/restore functions when the AP lists are empty on VHE systems. This
requires carefully factoring out trap configuration from saving and
restoring state, and carefully choosing what to do on the VHE and
non-VHE path.
One of the challenges is that we cannot save/restore the VMCR lazily
because we can only write the VMCR when ICC_SRE_EL1.SRE is cleared when
emulating a GICv2-on-GICv3, since otherwise all Group-0 interrupts end
up being delivered as FIQ.
To solve this problem, and still provide fast performance in the fast
path of exiting a VM when no interrupts are pending (which also
optimized the latency for actually delivering virtual interrupts coming
from physical interrupts), we orchestrate a dance of only doing the
activate/deactivate traps in vgic load/put for VHE systems (which can
have ICC_SRE_EL1.SRE cleared when running in the host), and doing the
configuration on every round-trip on non-VHE systems.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The APRs can only have bits set when the guest acknowledges an interrupt
in the LR and can only have a bit cleared when the guest EOIs an
interrupt in the LR. Therefore, if we have no LRs with any
pending/active interrupts, the APR cannot change value and there is no
need to clear it on every exit from the VM (hint: it will have already
been cleared when we exited the guest the last time with the LRs all
EOIed).
The only case we need to take care of is when we migrate the VCPU away
from a CPU or migrate a new VCPU onto a CPU, or when we return to
userspace to capture the state of the VCPU for migration. To make sure
this works, factor out the APR save/restore functionality into separate
functions called from the VCPU (and by extension VGIC) put/load hooks.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We can program the GICv2 hypervisor control interface logic directly
from the core vgic code and can instead do the save/restore directly
from the flush/sync functions, which can lead to a number of future
optimizations.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We do not have to change the c15 trap setting on each switch to/from the
guest on VHE systems, because this setting only affects guest EL1/EL0
(and therefore not the VHE host).
The PMU and debug trap configuration can also be done on vcpu load/put
instead, because they don't affect how the VHE host kernel can access the
debug registers while executing KVM kernel code.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
32-bit registers are not used by a 64-bit host kernel and can be
deferred, but we need to rework the accesses to these register to access
the latest values depending on whether or not guest system registers are
loaded on the CPU or only reside in memory.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
ELR_EL1 is not used by a VHE host kernel and can be deferred, but we
need to rework the accesses to this register to access the latest value
depending on whether or not guest system registers are loaded on the CPU
or only reside in memory.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
SPSR_EL1 is not used by a VHE host kernel and can be deferred, but we
need to rework the accesses to this register to access the latest value
depending on whether or not guest system registers are loaded on the CPU
or only reside in memory.
The handling of accessing the various banked SPSRs for 32-bit VMs is a
bit clunky, but this will be improved in following patches which will
first prepare and subsequently implement deferred save/restore of the
32-bit registers, including the 32-bit SPSRs.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We are about to defer saving and restoring some groups of system
registers to vcpu_put and vcpu_load on supported systems. This means
that we need some infrastructure to access system registes which
supports either accessing the memory backing of the register or directly
accessing the system registers, depending on the state of the system
when we access the register.
We do this by defining read/write accessor functions, which can handle
both "immediate" and "deferrable" system registers. Immediate registers
are always saved/restored in the world-switch path, but deferrable
registers are only saved/restored in vcpu_put/vcpu_load when supported
and sysregs_loaded_on_cpu will be set in that case.
Note that we don't use the deferred mechanism yet in this patch, but only
introduce infrastructure. This is to improve convenience of review in
the subsequent patches where it is clear which registers become
deferred.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Currently we access the system registers array via the vcpu_sys_reg()
macro. However, we are about to change the behavior to some times
modify the register file directly, so let's change this to two
primitives:
* Accessor macros vcpu_write_sys_reg() and vcpu_read_sys_reg()
* Direct array access macro __vcpu_sys_reg()
The accessor macros should be used in places where the code needs to
access the currently loaded VCPU's state as observed by the guest. For
example, when trapping on cache related registers, a write to a system
register should go directly to the VCPU version of the register.
The direct array access macro can be used in places where the VCPU is
known to never be running (for example userspace access) or for
registers which are never context switched (for example all the PMU
system registers).
This rewrites all users of vcpu_sys_regs to one of the macros described
above.
No functional change.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We currently handle 32-bit accesses to trapped VM system registers using
the 32-bit index into the coproc array on the vcpu structure, which is a
union of the coproc array and the sysreg array.
Since all the 32-bit coproc indices are created to correspond to the
architectural mapping between 64-bit system registers and 32-bit
coprocessor registers, and because the AArch64 system registers are the
double in size of the AArch32 coprocessor registers, we can always find
the system register entry that we must update by dividing the 32-bit
coproc index by 2.
This is going to make our lives much easier when we have to start
accessing system registers that use deferred save/restore and might
have to be read directly from the physical CPU.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
There is no need to have multiple identical functions with different
names for saving host and guest state. When saving and restoring state
for the host and guest, the state is the same for both contexts, and
that's why we have the kvm_cpu_context structure. Delete one
version and rename the other into simply save/restore.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
As we are about to handle system registers quite differently between VHE
and non-VHE systems. In preparation for that, we need to split some of
the handling functions between VHE and non-VHE functionality.
For now, we simply copy the non-VHE functions, but we do change the use
of static keys for VHE and non-VHE functionality now that we have
separate functions.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
So far this is mostly (see below) a copy of the legacy non-VHE switch
function, but we will start reworking these functions in separate
directions to work on VHE and non-VHE in the most optimal way in later
patches.
The only difference after this patch between the VHE and non-VHE run
functions is that we omit the branch-predictor variant-2 hardening for
QC Falkor CPUs, because this workaround is specific to a series of
non-VHE ARMv8.0 CPUs.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Instead of having multiple calls from the world switch path to the debug
logic, each figuring out if the dirty bit is set and if we should
save/restore the debug registers, let's just provide two hooks to the
debug save/restore functionality, one for switching to the guest
context, and one for switching to the host context, and we get the
benefit of only having to evaluate the dirty flag once on each path,
plus we give the compiler some more room to inline some of this
functionality.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We have numerous checks around that checks if the HCR_EL2 has the RW bit
set to figure out if we're running an AArch64 or AArch32 VM. In some
cases, directly checking the RW bit (given its unintuitive name), is a
bit confusing, and that's not going to improve as we move logic around
for the following patches that optimize KVM on AArch64 hosts with VHE.
Therefore, introduce a helper, vcpu_el1_is_32bit, and replace existing
direct checks of HCR_EL2.RW with the helper.
Reviewed-by: Julien Grall <julien.grall@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
As we are about to move a bunch of save/restore logic for VHE kernels to
the load and put functions, we need some infrastructure to do this.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We currently have a separate read-modify-write of the HCR_EL2 on entry
to the guest for the sole purpose of setting the VF and VI bits, if set.
Since this is most rarely the case (only when using userspace IRQ chip
and interrupts are in flight), let's get rid of this operation and
instead modify the bits in the vcpu->arch.hcr[_el2] directly when
needed.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We always set the IMO and FMO bits in the HCR_EL2 when running the
guest, regardless if we use the vgic or not. By moving these flags to
HCR_GUEST_FLAGS we can avoid one of the extra save/restore operations of
HCR_EL2 in the world switch code, and we can also soon get rid of the
other one.
This is safe, because even though the IMO and FMO bits control both
taking the interrupts to EL2 and remapping ICC_*_EL1 to ICV_*_EL1 when
executed at EL1, as long as we ensure that these bits are clear when
running the EL1 host, we're OK, because we reset the HCR_EL2 to only
have the HCR_RW bit set when returning to EL1 on non-VHE systems.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Shih-Wei Li <shihwei@cs.columbia.edu>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We already have the percpu area for the host cpu state, which points to
the VCPU, so there's no need to store the VCPU pointer on the stack on
every context switch. We can be a little more clever and just use
tpidr_el2 for the percpu offset and load the VCPU pointer from the host
context.
This has the benefit of being able to retrieve the host context even
when our stack is corrupted, and it has a potential performance benefit
because we trade a store plus a load for an mrs and a load on a round
trip to the guest.
This does require us to calculate the percpu offset without including
the offset from the kernel mapping of the percpu array to the linear
mapping of the array (which is what we store in tpidr_el1), because a
PC-relative generated address in EL2 is already giving us the hyp alias
of the linear mapping of a kernel address. We do this in
__cpu_init_hyp_mode() by using kvm_ksym_ref().
The code that accesses ESR_EL2 was previously using an alternative to
use the _EL1 accessor on VHE systems, but this was actually unnecessary
as the _EL1 accessor aliases the ESR_EL2 register on VHE, and the _EL2
accessor does the same thing on both systems.
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Currently, as reported by Eric, an invalid si_code value 0 is
passed in many signals delivered to userspace in response to faults
and other kernel errors. Typically 0 is passed when the fault is
insufficiently diagnosable or when there does not appear to be any
sensible alternative value to choose.
This appears to violate POSIX, and is intuitively wrong for at
least two reasons arising from the fact that 0 == SI_USER:
1) si_code is a union selector, and SI_USER (and si_code <= 0 in
general) implies the existence of a different set of fields
(siginfo._kill) from that which exists for a fault signal
(siginfo._sigfault). However, the code raising the signal
typically writes only the _sigfault fields, and the _kill
fields make no sense in this case.
Thus when userspace sees si_code == 0 (SI_USER) it may
legitimately inspect fields in the inactive union member _kill
and obtain garbage as a result.
There appears to be software in the wild relying on this,
albeit generally only for printing diagnostic messages.
2) Software that wants to be robust against spurious signals may
discard signals where si_code == SI_USER (or <= 0), or may
filter such signals based on the si_uid and si_pid fields of
siginfo._sigkill. In the case of fault signals, this means
that important (and usually fatal) error conditions may be
silently ignored.
In practice, many of the faults for which arm64 passes si_code == 0
are undiagnosable conditions such as exceptions with syndrome
values in ESR_ELx to which the architecture does not yet assign any
meaning, or conditions indicative of a bug or error in the kernel
or system and thus that are unrecoverable and should never occur in
normal operation.
The approach taken in this patch is to translate all such
undiagnosable or "impossible" synchronous fault conditions to
SIGKILL, since these are at least probably localisable to a single
process. Some of these conditions should really result in a kernel
panic, but due to the lack of diagnostic information it is
difficult to be certain: this patch does not add any calls to
panic(), but this could change later if justified.
Although si_code will not reach userspace in the case of SIGKILL,
it is still desirable to pass a nonzero value so that the common
siginfo handling code can detect incorrect use of si_code == 0
without false positives. In this case the si_code dependent
siginfo fields will not be correctly initialised, but since they
are not passed to userspace I deem this not to matter.
A few faults can reasonably occur in realistic userspace scenarios,
and _should_ raise a regular, handleable (but perhaps not
ignorable/blockable) signal: for these, this patch attempts to
choose a suitable standard si_code value for the raised signal in
each case instead of 0.
arm64 was the only arch to define a BUS_FIXME code, so after this
patch nobody defines it. This patch therefore also removes the
relevant code from siginfo_layout().
Cc: James Morse <james.morse@arm.com>
Reported-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The DCache clean & ICache invalidation requirements for instructions
to be data coherence are discoverable through new fields in CTR_EL0.
The following two control bits DIC and IDC were defined for this
purpose. No need to perform point of unification cache maintenance
operations from software on systems where CPU caches are transparent.
This patch optimize the three functions __flush_cache_user_range(),
clean_dcache_area_pou() and invalidate_icache_range() if the hardware
reports CTR_EL0.IDC and/or CTR_EL0.IDC. Basically it skips the two
instructions 'DC CVAU' and 'IC IVAU', and the associated loop logic
in order to avoid the unnecessary overhead.
CTR_EL0.DIC: Instruction cache invalidation requirements for
instruction to data coherence. The meaning of this bit[29].
0: Instruction cache invalidation to the point of unification
is required for instruction to data coherence.
1: Instruction cache cleaning to the point of unification is
not required for instruction to data coherence.
CTR_EL0.IDC: Data cache clean requirements for instruction to data
coherence. The meaning of this bit[28].
0: Data cache clean to the point of unification is required for
instruction to data coherence, unless CLIDR_EL1.LoC == 0b000
or (CLIDR_EL1.LoUIS == 0b000 && CLIDR_EL1.LoUU == 0b000).
1: Data cache clean to the point of unification is not required
for instruction to data coherence.
Co-authored-by: Philip Elcan <pelcan@codeaurora.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Omit patching of ADRP instruction at module load time if the current
CPUs are not susceptible to the erratum.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[will: Drop duplicate initialisation of .def_scope field]
Signed-off-by: Will Deacon <will.deacon@arm.com>
In some cases, core variants that are affected by a certain erratum
also exist in versions that have the erratum fixed, and this fact is
recorded in a dedicated bit in system register REVIDR_EL1.
Since the architecture does not require that a certain bit retains
its meaning across different variants of the same model, each such
REVIDR bit is tightly coupled to a certain revision/variant value,
and so we need a list of revidr_mask/midr pairs to carry this
information.
So add the struct member and the associated macros and handling to
allow REVIDR fixes to be taken into account.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Working around Cortex-A53 erratum #843419 involves special handling of
ADRP instructions that end up in the last two instruction slots of a
4k page, or whose output register gets overwritten without having been
read. (Note that the latter instruction sequence is never emitted by
a properly functioning compiler, which is why it is disregarded by the
handling of the same erratum in the bfd.ld linker which we rely on for
the core kernel)
Normally, this gets taken care of by the linker, which can spot such
sequences at final link time, and insert a veneer if the ADRP ends up
at a vulnerable offset. However, linux kernel modules are partially
linked ELF objects, and so there is no 'final link time' other than the
runtime loading of the module, at which time all the static relocations
are resolved.
For this reason, we have implemented the #843419 workaround for modules
by avoiding ADRP instructions altogether, by using the large C model,
and by passing -mpc-relative-literal-loads to recent versions of GCC
that may emit adrp/ldr pairs to perform literal loads. However, this
workaround forces us to keep literal data mixed with the instructions
in the executable .text segment, and literal data may inadvertently
turn into an exploitable speculative gadget depending on the relative
offsets of arbitrary symbols.
So let's reimplement this workaround in a way that allows us to switch
back to the small C model, and to drop the -mpc-relative-literal-loads
GCC switch, by patching affected ADRP instructions at runtime:
- ADRP instructions that do not appear at 4k relative offset 0xff8 or
0xffc are ignored
- ADRP instructions that are within 1 MB of their target symbol are
converted into ADR instructions
- remaining ADRP instructions are redirected via a veneer that performs
the load using an unaffected movn/movk sequence.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[will: tidied up ADRP -> ADR instruction patching.]
[will: use ULL suffix for 64-bit immediate]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Whether or not we will ever decide to start using x18 as a platform
register in Linux is uncertain, but by that time, we will need to
ensure that UEFI runtime services calls don't corrupt it.
So let's start issuing warnings now for this, and increase the
likelihood that these firmware images have all been replaced by that time.
This has been fixed on the EDK2 side in commit:
6d73863b5464 ("BaseTools/tools_def AARCH64: mark register x18 as reserved")
dated July 13, 2017.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20180308080020.22828-6-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
TCR_EL1.NFD1 was allocated by SVE and ensures that fault-surpressing SVE
memory accesses (e.g. speculative accesses from a first-fault gather load)
which translate via TTBR1_EL1 result in a translation fault if they
miss in the TLB when executed from EL0. This mitigates some timing attacks
against KASLR, where the kernel address space could otherwise be probed
efficiently using the FFR in conjunction with suppressed faults on SVE
loads.
Cc: Dave Martin <Dave.Martin@arm.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit 9730348075 ("arm64: Increase the max granular size") increased
the cache line size to 128 to match Cavium ThunderX, apparently for some
performance benefit which could not be confirmed. This change, however,
has an impact on the network packets allocation in certain
circumstances, requiring slightly over a 4K page with a significant
performance degradation.
This patch reverts L1_CACHE_SHIFT back to 6 (64-byte cache line) while
keeping ARCH_DMA_MINALIGN at 128. The cache_line_size() function was
changed to default to ARCH_DMA_MINALIGN in the absence of a meaningful
CTR_EL0.CWG bit field.
In addition, if a system with ARCH_DMA_MINALIGN < CTR_EL0.CWG is
detected, the kernel will force swiotlb bounce buffering for all
non-coherent devices since DMA cache maintenance on sub-CWG ranges is
not safe, leading to data corruption.
Cc: Tirumalesh Chalamarla <tchalamarla@cavium.com>
Cc: Timur Tabi <timur@codeaurora.org>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
show_unhandled_signals_ratelimited is only called in traps.c, so move it
out of its macro in the dreaded system_misc.h and into a static function
in traps.c
Signed-off-by: Will Deacon <will.deacon@arm.com>
In preparation for consolidating our handling of printing unhandled
signals, introduce a wrapper around force_sig_info which can act as
the canonical place for dealing with show_unhandled_signals.
Initially, we just hook this up to arm64_notify_die.
Signed-off-by: Will Deacon <will.deacon@arm.com>
force_signal_inject is a little flakey:
* It only knows about SIGILL and SIGSEGV, so can potentially deliver
other signals based on a partially initialised siginfo_t
* It sets si_addr to point at the PC for SIGSEGV
* It always operates on current, so doesn't need the regs argument
This patch fixes these issues by always assigning the si_addr field to
the address parameter of the function and updates the callers (including
those that indirectly call via arm64_notify_segfault) accordingly.
Signed-off-by: Will Deacon <will.deacon@arm.com>
The HCR_EL2.TID3 flag needs to be set when trapping guest access to
the CPU ID registers is required. However, the decision about
whether to set this bit does not need to be repeated at every
switch to the guest.
Instead, it's sufficient to make this decision once and record the
outcome.
This patch moves the decision to vcpu_reset_hcr() and records the
choice made in vcpu->arch.hcr_el2. The world switch code can then
load this directly when switching to the guest without the need for
conditional logic on the critical path.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Suggested-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We don't currently limit guest accesses to the LOR registers, which we
neither virtualize nor context-switch. As such, guests are provided with
unusable information/controls, and are not isolated from each other (or
the host).
To prevent these issues, we can trap register accesses and present the
illusion LORegions are unssupported by the CPU. To do this, we mask
ID_AA64MMFR1.LO, and set HCR_EL2.TLOR to trap accesses to the following
registers:
* LORC_EL1
* LOREA_EL1
* LORID_EL1
* LORN_EL1
* LORSA_EL1
... when trapped, we inject an UNDEFINED exception to EL1, simulating
their non-existence.
As noted in D7.2.67, when no LORegions are implemented, LoadLOAcquire
and StoreLORelease must behave as LoadAcquire and StoreRelease
respectively. We can ensure this by clearing LORC_EL1.EN when a CPU's
EL2 is first initialized, as the host kernel will not modify this.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Vladimir Murzin <vladimir.murzin@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
do_task_stat() calls get_wchan(), which further does unwind_frame().
unwind_frame() restores frame->pc to original value in case function
graph tracer has modified a return address (LR) in a stack frame to hook
a function return. However, if function graph tracer has hit a filtered
function, then we can't unwind it as ftrace_push_return_trace() has
biased the index(frame->graph) with a 'huge negative'
offset(-FTRACE_NOTRACE_DEPTH).
Moreover, arm64 stack walker defines index(frame->graph) as unsigned
int, which can not compare a -ve number.
Similar problem we can have with calling of walk_stackframe() from
save_stack_trace_tsk() or dump_backtrace().
This patch fixes unwind_frame() to test the index for -ve value and
restore index accordingly before we can restore frame->pc.
Reproducer:
cd /sys/kernel/debug/tracing/
echo schedule > set_graph_notrace
echo 1 > options/display-graph
echo wakeup > current_tracer
ps -ef | grep -i agent
Above commands result in:
Unable to handle kernel paging request at virtual address ffff801bd3d1e000
pgd = ffff8003cbe97c00
[ffff801bd3d1e000] *pgd=0000000000000000, *pud=0000000000000000
Internal error: Oops: 96000006 [#1] SMP
[...]
CPU: 5 PID: 11696 Comm: ps Not tainted 4.11.0+ #33
[...]
task: ffff8003c21ba000 task.stack: ffff8003cc6c0000
PC is at unwind_frame+0x12c/0x180
LR is at get_wchan+0xd4/0x134
pc : [<ffff00000808892c>] lr : [<ffff0000080860b8>] pstate: 60000145
sp : ffff8003cc6c3ab0
x29: ffff8003cc6c3ab0 x28: 0000000000000001
x27: 0000000000000026 x26: 0000000000000026
x25: 00000000000012d8 x24: 0000000000000000
x23: ffff8003c1c04000 x22: ffff000008c83000
x21: ffff8003c1c00000 x20: 000000000000000f
x19: ffff8003c1bc0000 x18: 0000fffffc593690
x17: 0000000000000000 x16: 0000000000000001
x15: 0000b855670e2b60 x14: 0003e97f22cf1d0f
x13: 0000000000000001 x12: 0000000000000000
x11: 00000000e8f4883e x10: 0000000154f47ec8
x9 : 0000000070f367c0 x8 : 0000000000000000
x7 : 00008003f7290000 x6 : 0000000000000018
x5 : 0000000000000000 x4 : ffff8003c1c03cb0
x3 : ffff8003c1c03ca0 x2 : 00000017ffe80000
x1 : ffff8003cc6c3af8 x0 : ffff8003d3e9e000
Process ps (pid: 11696, stack limit = 0xffff8003cc6c0000)
Stack: (0xffff8003cc6c3ab0 to 0xffff8003cc6c4000)
[...]
[<ffff00000808892c>] unwind_frame+0x12c/0x180
[<ffff000008305008>] do_task_stat+0x864/0x870
[<ffff000008305c44>] proc_tgid_stat+0x3c/0x48
[<ffff0000082fde0c>] proc_single_show+0x5c/0xb8
[<ffff0000082b27e0>] seq_read+0x160/0x414
[<ffff000008289e6c>] __vfs_read+0x58/0x164
[<ffff00000828b164>] vfs_read+0x88/0x144
[<ffff00000828c2e8>] SyS_read+0x60/0xc0
[<ffff0000080834a0>] __sys_trace_return+0x0/0x4
Fixes: 20380bb390 (arm64: ftrace: fix a stack tracer's output under function graph tracer)
Signed-off-by: Pratyush Anand <panand@redhat.com>
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
[catalin.marinas@arm.com: replace WARN_ON with WARN_ON_ONCE]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In converting __range_ok() into a static inline, I inadvertently made
it more type-safe, but without considering the ordering of the relevant
conversions. This leads to quite a lot of Sparse noise about the fact
that we use __chk_user_ptr() after addr has already been converted from
a user pointer to an unsigned long.
Rather than just adding another cast for the sake of shutting Sparse up,
it seems reasonable to rework the types to make logical sense (although
the resulting codegen for __range_ok() remains identical). The only
callers this affects directly are our compat traps where the inferred
"user-pointer-ness" of a register value now warrants explicit casting.
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since commit e1a50de378 (arm64: cputype: Silence Sparse warnings),
compilation of arm64 architecture is broken with the following error
messages:
AR arch/arm64/kernel/built-in.o
arch/arm64/kernel/head.S: Assembler messages:
arch/arm64/kernel/head.S:677: Error: found 'L', expected: ')'
arch/arm64/kernel/head.S:677: Error: found 'L', expected: ')'
arch/arm64/kernel/head.S:677: Error: found 'L', expected: ')'
arch/arm64/kernel/head.S:677: Error: junk at end of line, first
unrecognized character is `L'
arch/arm64/kernel/head.S:677: Error: unexpected characters following
instruction at operand 2 -- `movz x1,:abs_g1_s:0xff00ffffffUL'
arch/arm64/kernel/head.S:677: Error: unexpected characters following
instruction at operand 2 -- `movk x1,:abs_g0_nc:0xff00ffffffUL'
This patch fixes the same by using the UL() macro correctly for
assigning the MPIDR_HWID_BITMASK macro value.
Fixes: e1a50de378 ("arm64: cputype: Silence Sparse warnings")
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Bhupesh Sharma <bhsharma@redhat.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Sparse makes a fair bit of noise about our MPIDR mask being implicitly
long - let's explicitly describe it as such rather than just relying on
the value forcing automatic promotion.
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In many cases, page tables can be accessed concurrently by either another
CPU (due to things like fast gup) or by the hardware page table walker
itself, which may set access/dirty bits. In such cases, it is important
to use READ_ONCE/WRITE_ONCE when accessing page table entries so that
entries cannot be torn, merged or subject to apparent loss of coherence
due to compiler transformations.
Whilst there are some scenarios where this cannot happen (e.g. pinned
kernel mappings for the linear region), the overhead of using READ_ONCE
/WRITE_ONCE everywhere is minimal and makes the code an awful lot easier
to reason about. This patch consistently uses these macros in the arch
code, as well as explicitly namespacing pointers to page table entries
from the entries themselves by using adopting a 'p' suffix for the former
(as is sometimes used elsewhere in the kernel source).
Tested-by: Yury Norov <ynorov@caviumnetworks.com>
Tested-by: Richard Ruigrok <rruigrok@codeaurora.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARM:
- Include icache invalidation optimizations, improving VM startup time
- Support for forwarded level-triggered interrupts, improving
performance for timers and passthrough platform devices
- A small fix for power-management notifiers, and some cosmetic changes
PPC:
- Add MMIO emulation for vector loads and stores
- Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
requiring the complex thread synchronization of older CPU versions
- Improve the handling of escalation interrupts with the XIVE interrupt
controller
- Support decrement register migration
- Various cleanups and bugfixes.
s390:
- Cornelia Huck passed maintainership to Janosch Frank
- Exitless interrupts for emulated devices
- Cleanup of cpuflag handling
- kvm_stat counter improvements
- VSIE improvements
- mm cleanup
x86:
- Hypervisor part of SEV
- UMIP, RDPID, and MSR_SMI_COUNT emulation
- Paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
- Allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more AVX512
features
- Show vcpu id in its anonymous inode name
- Many fixes and cleanups
- Per-VCPU MSR bitmaps (already merged through x86/pti branch)
- Stable KVM clock when nesting on Hyper-V (merged through x86/hyperv)
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJafvMtAAoJEED/6hsPKofo6YcH/Rzf2RmshrWaC3q82yfIV0Qz
Z8N8yJHSaSdc3Jo6cmiVj0zelwAxdQcyjwlT7vxt5SL2yML+/Q0st9Hc3EgGGXPm
Il99eJEl+2MYpZgYZqV8ff3mHS5s5Jms+7BITAeh6Rgt+DyNbykEAvzt+MCHK9cP
xtsIZQlvRF7HIrpOlaRzOPp3sK2/MDZJ1RBE7wYItK3CUAmsHim/LVYKzZkRTij3
/9b4LP1yMMbziG+Yxt1o682EwJB5YIat6fmDG9uFeEVI5rWWN7WFubqs8gCjYy/p
FX+BjpOdgTRnX+1m9GIj0Jlc/HKMXryDfSZS07Zy4FbGEwSiI5SfKECub4mDhuE=
=C/uD
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"ARM:
- icache invalidation optimizations, improving VM startup time
- support for forwarded level-triggered interrupts, improving
performance for timers and passthrough platform devices
- a small fix for power-management notifiers, and some cosmetic
changes
PPC:
- add MMIO emulation for vector loads and stores
- allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
requiring the complex thread synchronization of older CPU versions
- improve the handling of escalation interrupts with the XIVE
interrupt controller
- support decrement register migration
- various cleanups and bugfixes.
s390:
- Cornelia Huck passed maintainership to Janosch Frank
- exitless interrupts for emulated devices
- cleanup of cpuflag handling
- kvm_stat counter improvements
- VSIE improvements
- mm cleanup
x86:
- hypervisor part of SEV
- UMIP, RDPID, and MSR_SMI_COUNT emulation
- paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
- allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more
AVX512 features
- show vcpu id in its anonymous inode name
- many fixes and cleanups
- per-VCPU MSR bitmaps (already merged through x86/pti branch)
- stable KVM clock when nesting on Hyper-V (merged through
x86/hyperv)"
* tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (197 commits)
KVM: PPC: Book3S: Add MMIO emulation for VMX instructions
KVM: PPC: Book3S HV: Branch inside feature section
KVM: PPC: Book3S HV: Make HPT resizing work on POWER9
KVM: PPC: Book3S HV: Fix handling of secondary HPTEG in HPT resizing code
KVM: PPC: Book3S PR: Fix broken select due to misspelling
KVM: x86: don't forget vcpu_put() in kvm_arch_vcpu_ioctl_set_sregs()
KVM: PPC: Book3S PR: Fix svcpu copying with preemption enabled
KVM: PPC: Book3S HV: Drop locks before reading guest memory
kvm: x86: remove efer_reload entry in kvm_vcpu_stat
KVM: x86: AMD Processor Topology Information
x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested
kvm: embed vcpu id to dentry of vcpu anon inode
kvm: Map PFN-type memory regions as writable (if possible)
x86/kvm: Make it compile on 32bit and with HYPYERVISOR_GUEST=n
KVM: arm/arm64: Fixup userspace irqchip static key optimization
KVM: arm/arm64: Fix userspace_irqchip_in_use counting
KVM: arm/arm64: Fix incorrect timer_is_pending logic
MAINTAINERS: update KVM/s390 maintainers
MAINTAINERS: add Halil as additional vfio-ccw maintainer
MAINTAINERS: add David as a reviewer for KVM/s390
...
Spectre v1 mitigation:
- back-end version of array_index_mask_nospec()
- masking of the syscall number to restrict speculation through the
syscall table
- masking of __user pointers prior to deference in uaccess routines
Spectre v2 mitigation update:
- using the new firmware SMC calling convention specification update
- removing the current PSCI GET_VERSION firmware call mitigation as
vendors are deploying new SMCCC-capable firmware
- additional branch predictor hardening for synchronous exceptions and
interrupts while in user mode
Meltdown v3 mitigation update for Cavium Thunder X: unaffected but
hardware erratum gets in the way. The kernel now starts with the page
tables mapped as global and switches to non-global if kpti needs to be
enabled.
Other:
- Theoretical trylock bug fixed
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlp8lqcACgkQa9axLQDI
XvH2lxAAnsYqthpGQ11MtDJB+/UiBAFkg9QWPDkwrBDvNhgpll+J0VQuCN1QJ2GX
qQ8rkv8uV+y4Fqr8hORGJy5At+0aI63ZCJ72RGkZTzJAtbFbFGIDHP7RhAEIGJBS
Lk9kDZ7k39wLEx30UXIFYTTVzyHar397TdI7vkTcngiTzZ8MdFATfN/hiKO906q3
14pYnU9Um4aHUdcJ+FocL3dxvdgniuuMBWoNiYXyOCZXjmbQOnDNU2UrICroV8lS
mB+IHNEhX1Gl35QzNBtC0ET+aySfHBMJmM5oln+uVUljIGx6En1WLj6mrHYcx8U2
rIBm5qO/X/4iuzYPGkxwQtpjq3wPYxsSUnMdKJrsUZqAfy2QeIhFx6XUtJsZPB2J
/lgls5xSXMOS7oiOQtmVjcDLBURDmYXGwljXR4n4jLm4CT1V9qSLcKHu1gdFU9Mq
VuMUdPOnQub1vqKndi154IoYDTo21jAib2ktbcxpJfSJnDYoit4Gtnv7eWY+M3Pd
Toaxi8htM2HSRwbvslHYGW8ZcVpI79Jit+ti7CsFg7m9Lvgs0zxcnNui4uPYDymT
jh2JYxuirIJbX9aGGhnmkNhq9REaeZJg9LA2JM8S77FCHN3bnlSdaG6wy899J6EI
lK4anCuPQKKKhUia/dc1MeKwrmmC18EfPyGUkOzywg/jGwGCmZM=
=Y0TT
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull more arm64 updates from Catalin Marinas:
"As I mentioned in the last pull request, there's a second batch of
security updates for arm64 with mitigations for Spectre/v1 and an
improved one for Spectre/v2 (via a newly defined firmware interface
API).
Spectre v1 mitigation:
- back-end version of array_index_mask_nospec()
- masking of the syscall number to restrict speculation through the
syscall table
- masking of __user pointers prior to deference in uaccess routines
Spectre v2 mitigation update:
- using the new firmware SMC calling convention specification update
- removing the current PSCI GET_VERSION firmware call mitigation as
vendors are deploying new SMCCC-capable firmware
- additional branch predictor hardening for synchronous exceptions
and interrupts while in user mode
Meltdown v3 mitigation update:
- Cavium Thunder X is unaffected but a hardware erratum gets in the
way. The kernel now starts with the page tables mapped as global
and switches to non-global if kpti needs to be enabled.
Other:
- Theoretical trylock bug fixed"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (38 commits)
arm64: Kill PSCI_GET_VERSION as a variant-2 workaround
arm64: Add ARM_SMCCC_ARCH_WORKAROUND_1 BP hardening support
arm/arm64: smccc: Implement SMCCC v1.1 inline primitive
arm/arm64: smccc: Make function identifiers an unsigned quantity
firmware/psci: Expose SMCCC version through psci_ops
firmware/psci: Expose PSCI conduit
arm64: KVM: Add SMCCC_ARCH_WORKAROUND_1 fast handling
arm64: KVM: Report SMCCC_ARCH_WORKAROUND_1 BP hardening support
arm/arm64: KVM: Turn kvm_psci_version into a static inline
arm/arm64: KVM: Advertise SMCCC v1.1
arm/arm64: KVM: Implement PSCI 1.0 support
arm/arm64: KVM: Add smccc accessors to PSCI code
arm/arm64: KVM: Add PSCI_VERSION helper
arm/arm64: KVM: Consolidate the PSCI include files
arm64: KVM: Increment PC after handling an SMC trap
arm: KVM: Fix SMCCC handling of unimplemented SMC/HVC calls
arm64: KVM: Fix SMCCC handling of unimplemented SMC/HVC calls
arm64: entry: Apply BP hardening for suspicious interrupts from EL0
arm64: entry: Apply BP hardening for high-priority synchronous exceptions
arm64: futex: Mask __user pointers prior to dereference
...
Right now the fact that KASAN uses a single shadow byte for 8 bytes of
memory is scattered all over the code.
This change defines KASAN_SHADOW_SCALE_SHIFT early in asm include files
and makes use of this constant where necessary.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/34937ca3b90736eaad91b568edf5684091f662e3.1515775666.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A new feature of SMCCC 1.1 is that it offers firmware-based CPU
workarounds. In particular, SMCCC_ARCH_WORKAROUND_1 provides
BP hardening for CVE-2017-5715.
If the host has some mitigation for this issue, report that
we deal with it using SMCCC_ARCH_WORKAROUND_1, as we apply the
host workaround on every guest exit.
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
As we're about to update the PSCI support, and because I'm lazy,
let's move the PSCI include file to include/kvm so that both
ARM architectures can find it.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The arm64 futex code has some explicit dereferencing of user pointers
where performing atomic operations in response to a futex command. This
patch uses masking to limit any speculative futex operations to within
the user address space.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Like we've done for get_user and put_user, ensure that user pointers
are masked before invoking the underlying __arch_{clear,copy_*}_user
operations.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
access_ok isn't an expensive operation once the addr_limit for the current
thread has been loaded into the cache. Given that the initial access_ok
check preceding a sequence of __{get,put}_user operations will take
the brunt of the miss, we can make the __* variants identical to the
full-fat versions, which brings with it the benefits of address masking.
The likely cost in these sequences will be from toggling PAN/UAO, which
we can address later by implementing the *_unsafe versions.
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
A mispredicted conditional call to set_fs could result in the wrong
addr_limit being forwarded under speculation to a subsequent access_ok
check, potentially forming part of a spectre-v1 attack using uaccess
routines.
This patch prevents this forwarding from taking place, but putting heavy
barriers in set_fs after writing the addr_limit.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In a similar manner to array_index_mask_nospec, this patch introduces an
assembly macro (mask_nospec64) which can be used to bound a value under
speculation. This macro is then used to ensure that the indirect branch
through the syscall table is bounded under speculation, with out-of-range
addresses speculating as calls to sys_io_setup (0).
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Similarly to x86, mitigate speculation past an access_ok() check by
masking the pointer against the address limit before use.
Even if we don't expect speculative writes per se, it is plausible that
a CPU may still speculate at least as far as fetching a cache line for
writing, hence we also harden put_user() and clear_user() for peace of
mind.
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently, USER_DS represents an exclusive limit while KERNEL_DS is
inclusive. In order to do some clever trickery for speculation-safe
masking, we need them both to behave equivalently - there aren't enough
bits to make KERNEL_DS exclusive, so we have precisely one option. This
also happens to correct a longstanding false negative for a range
ending on the very top byte of kernel memory.
Mark Rutland points out that we've actually got the semantics of
addresses vs. segments muddled up in most of the places we need to
amend, so shuffle the {USER,KERNEL}_DS definitions around such that we
can correct those properly instead of just pasting "-1"s everywhere.
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Provide an optimised, assembly implementation of array_index_mask_nospec()
for arm64 so that the compiler is not in a position to transform the code
in ways which affect its ability to inhibit speculation (e.g. by introducing
conditional branches).
This is similar to the sequence used by x86, modulo architectural differences
in the carry/borrow flags.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For CPUs capable of data value prediction, CSDB waits for any outstanding
predictions to architecturally resolve before allowing speculative execution
to continue. Provide macros to expose it to the arch code.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
pte_to_phys lives in assembler.h and takes its destination register as
the first argument. Move phys_to_pte out of head.S to sit with its
counterpart and rejig it to follow the same calling convention.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since AArch64 assembly instructions take the destination register as
their first operand, do the same thing for the phys_to_ttbr macro.
Acked-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Defaulting to global mappings for kernel space is generally good for
performance and appears to be necessary for Cavium ThunderX. If we
subsequently decide that we need to enable kpti, then we need to rewrite
our existing page table entries to be non-global. This is fiddly, and
made worse by the possible use of contiguous mappings, which require
a strict break-before-make sequence.
Since the enable callback runs on each online CPU from stop_machine
context, we can have all CPUs enter the idmap, where secondaries can
wait for the primary CPU to rewrite swapper with its MMU off. It's all
fairly horrible, but at least it only runs once.
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
To allow systems which do not require kpti to continue running with
global kernel mappings (which appears to be a requirement for Cavium
ThunderX due to a CPU erratum), make the use of nG in the kernel page
tables dependent on arm64_kernel_unmapped_at_el0(), which is resolved
at runtime.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The ARM architecture defines the memory locations that are permitted
to be accessed as the result of a speculative instruction fetch from
an exception level for which all stages of translation are disabled.
Specifically, the core is permitted to speculatively fetch from the
4KB region containing the current program counter 4K and next 4K.
When translation is changed from enabled to disabled for the running
exception level (SCTLR_ELn[M] changed from a value of 1 to 0), the
Falkor core may errantly speculatively access memory locations outside
of the 4KB region permitted by the architecture. The errant memory
access may lead to one of the following unexpected behaviors.
1) A System Error Interrupt (SEI) being raised by the Falkor core due
to the errant memory access attempting to access a region of memory
that is protected by a slave-side memory protection unit.
2) Unpredictable device behavior due to a speculative read from device
memory. This behavior may only occur if the instruction cache is
disabled prior to or coincident with translation being changed from
enabled to disabled.
The conditions leading to this erratum will not occur when either of the
following occur:
1) A higher exception level disables translation of a lower exception level
(e.g. EL2 changing SCTLR_EL1[M] from a value of 1 to 0).
2) An exception level disabling its stage-1 translation if its stage-2
translation is enabled (e.g. EL1 changing SCTLR_EL1[M] from a value of 1
to 0 when HCR_EL2[VM] has a value of 1).
To avoid the errant behavior, software must execute an ISB immediately
prior to executing the MSR that will change SCTLR_ELn[M] from 1 to 0.
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If the spinlock "next" ticket wraps around between the initial LDR
and the cmpxchg in the LSE version of spin_trylock, then we can erroneously
think that we have successfuly acquired the lock because we only check
whether the next ticket return by the cmpxchg is equal to the owner ticket
in our updated lock word.
This patch fixes the issue by performing a full 32-bit check of the lock
word when trying to determine whether or not the CASA instruction updated
memory.
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
cache objects. This is good, but still leaves a lot of kernel memory
available to be copied to/from userspace in the face of bugs. To further
restrict what memory is available for copying, this creates a way to
whitelist specific areas of a given slab cache object for copying to/from
userspace, allowing much finer granularity of access control. Slab caches
that are never exposed to userspace can declare no whitelist for their
objects, thereby keeping them unavailable to userspace via dynamic copy
operations. (Note, an implicit form of whitelisting is the use of constant
sizes in usercopy operations and get_user()/put_user(); these bypass all
hardened usercopy checks since these sizes cannot change at runtime.)
This new check is WARN-by-default, so any mistakes can be found over the
next several releases without breaking anyone's system.
The series has roughly the following sections:
- remove %p and improve reporting with offset
- prepare infrastructure and whitelist kmalloc
- update VFS subsystem with whitelists
- update SCSI subsystem with whitelists
- update network subsystem with whitelists
- update process memory with whitelists
- update per-architecture thread_struct with whitelists
- update KVM with whitelists and fix ioctl bug
- mark all other allocations as not whitelisted
- update lkdtm for more sensible test overage
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
Comment: Kees Cook <kees@outflux.net>
iQIcBAABCgAGBQJabvleAAoJEIly9N/cbcAmO1kQAJnjVPutnLSbnUteZxtsv7W4
43Cggvokfxr6l08Yh3hUowNxZVKjhF9uwMVgRRg9Nl5WdYCN+vCQbHz+ZdzGJXKq
cGqdKWgexMKX+aBdNDrK7BphUeD46sH7JWR+a/lDV/BgPxBCm9i5ZZCgXbPP89AZ
NpLBji7gz49wMsnm/x135xtNlZ3dG0oKETzi7MiR+NtKtUGvoIszSKy5JdPZ4m8q
9fnXmHqmwM6uQFuzDJPt1o+D1fusTuYnjI7EgyrJRRhQ+BB3qEFZApXnKNDRS9Dm
uB7jtcwefJCjlZVCf2+PWTOEifH2WFZXLPFlC8f44jK6iRW2Nc+wVRisJ3vSNBG1
gaRUe/FSge68eyfQj5OFiwM/2099MNkKdZ0fSOjEBeubQpiFChjgWgcOXa5Bhlrr
C4CIhFV2qg/tOuHDAF+Q5S96oZkaTy5qcEEwhBSW15ySDUaRWFSrtboNt6ZVOhug
d8JJvDCQWoNu1IQozcbv6xW/Rk7miy8c0INZ4q33YUvIZpH862+vgDWfTJ73Zy9H
jR/8eG6t3kFHKS1vWdKZzOX1bEcnd02CGElFnFYUEewKoV7ZeeLsYX7zodyUAKyi
Yp5CImsDbWWTsptBg6h9nt2TseXTxYCt2bbmpJcqzsqSCUwOQNQ4/YpuzLeG0ihc
JgOmUnQNJWCTwUUw5AS1
=tzmJ
-----END PGP SIGNATURE-----
Merge tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull hardened usercopy whitelisting from Kees Cook:
"Currently, hardened usercopy performs dynamic bounds checking on slab
cache objects. This is good, but still leaves a lot of kernel memory
available to be copied to/from userspace in the face of bugs.
To further restrict what memory is available for copying, this creates
a way to whitelist specific areas of a given slab cache object for
copying to/from userspace, allowing much finer granularity of access
control.
Slab caches that are never exposed to userspace can declare no
whitelist for their objects, thereby keeping them unavailable to
userspace via dynamic copy operations. (Note, an implicit form of
whitelisting is the use of constant sizes in usercopy operations and
get_user()/put_user(); these bypass all hardened usercopy checks since
these sizes cannot change at runtime.)
This new check is WARN-by-default, so any mistakes can be found over
the next several releases without breaking anyone's system.
The series has roughly the following sections:
- remove %p and improve reporting with offset
- prepare infrastructure and whitelist kmalloc
- update VFS subsystem with whitelists
- update SCSI subsystem with whitelists
- update network subsystem with whitelists
- update process memory with whitelists
- update per-architecture thread_struct with whitelists
- update KVM with whitelists and fix ioctl bug
- mark all other allocations as not whitelisted
- update lkdtm for more sensible test overage"
* tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (38 commits)
lkdtm: Update usercopy tests for whitelisting
usercopy: Restrict non-usercopy caches to size 0
kvm: x86: fix KVM_XEN_HVM_CONFIG ioctl
kvm: whitelist struct kvm_vcpu_arch
arm: Implement thread_struct whitelist for hardened usercopy
arm64: Implement thread_struct whitelist for hardened usercopy
x86: Implement thread_struct whitelist for hardened usercopy
fork: Provide usercopy whitelisting for task_struct
fork: Define usercopy region in thread_stack slab caches
fork: Define usercopy region in mm_struct slab caches
net: Restrict unwhitelisted proto caches to size 0
sctp: Copy struct sctp_sock.autoclose to userspace using put_user()
sctp: Define usercopy region in SCTP proto slab cache
caif: Define usercopy region in caif proto slab cache
ip: Define usercopy region in IP proto slab cache
net: Define usercopy region in struct proto slab cache
scsi: Define usercopy region in scsi_sense_cache slab cache
cifs: Define usercopy region in cifs_request slab cache
vxfs: Define usercopy region in vxfs_inode slab cache
ufs: Define usercopy region in ufs_inode_cache slab cache
...
to the clk rate protection support added by Jerome Brunet. This feature
will allow consumers to lock in a certain rate on the output of a clk so
that things like audio playback don't hear pops when the clk frequency
changes due to shared parent clks changing rates. Currently the clk
API doesn't guarantee the rate of a clk stays at the rate you request
after clk_set_rate() is called, so this new API will allow drivers
to express that requirement. Beyond this, the core got some debugfs
pretty printing patches and a couple minor non-critical fixes.
Looking outside of the core framework diff we have some new driver
additions and the removal of a legacy TI clk driver. Both of these hit
high in the dirstat. Also, the removal of the asm-generic/clkdev.h file
causes small one-liners in all the architecture Kbuild files. Overall, the
driver diff seems to be the normal stuff that comes all the time to
fix little problems here and there and to support new hardware.
Core:
- Clk rate protection
- Symbolic clk flags in debugfs output
- Clk registration enabled clks while doing bookkeeping updates
New Drivers:
- Spreadtrum SC9860
- HiSilicon hi3660 stub
- Qualcomm A53 PLL, SPMI clkdiv, and MSM8916 APCS
- Amlogic Meson-AXG
- ASPEED BMC
Removed Drivers:
- TI OMAP 3xxx legacy clk (non-DT) support
- asm*/clkdev.h got removed (not really a driver)
Updates:
- Renesas FDP1-0 module clock on R-Car M3-W
- Renesas LVDS module clock on R-Car V3M
- Misc fixes to pr_err() prints
- Qualcomm MSM8916 audio fixes
- Qualcomm IPQ8074 rounded out support for more peripherals
- Qualcomm Alpha PLL variants
- Divider code was using container_of() on bad pointers
- Allwinner DE2 clks on H3
- Amlogic minor data fixes and dropping of CLK_IGNORE_UNUSED
- Mediatek clk driver compile test support
- AT91 PMC clk suspend/resume restoration support
- PLL issues fixed on si5351
- Broadcom IProc PLL calculation updates
- DVFS support for Armada mvebu CPU clks
- Allwinner fixed post-divider support
- TI clkctrl fixes and support for newer SoCs
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJac5vRAAoJEK0CiJfG5JUlUaIP/Riq0tbApfc4k4GMvSvaieR/
AwZFIMCxOxO+KGdUsBWj7UUoDfBYmxyknHZkVUA/m+Lm7cRH/YHHMghEceZLaBYW
zPQmDfkTl/QkwysXZMCw9vg4vO0tt5gWbHljQnvVhxVVTCkIRpaE8Vkktj1RZzpY
WU/TkvPbVGY3SNm504TRXKWC9KpMTEXVvzqlg6zLDJ/jE7PGzBKtewqMoLDCBH2L
q6b50BSXDo2Hep0vm6e5xneXKjLNR4kgN4PkbM4Yoi4iWLLbgAu79NfyOvvr/imS
HxOHRms9tejtyaiR6bQSF0pbLOERZ3QSbMFEbxdxnCTuPEfy3Nw/2W7mNJlhJa8g
EGLMnLL4WdloL4Z83dAcMrj9OmxYf7Yobf5dMidLrQT5EYuafdj0ParbI8TQpWSB
eTqaffSUGPE/7xuKouYBcbvocpXXWCcokrP/mEn3OEHXkIeeut1Jd3RmEvsi3gtJ
pNraJTIpvt4c05rj6yLUOhWfyqlA+fH3p4Fx3rrH1tmKEiG+lrhKoxF26uALZe0V
OvarhG+LPIE10pCIYlQjZjQVnYLGCxsGAIoK1uz7VYvFPh2T0cxQlzzeqFgrlTyN
32hMj3LhkQw82FG9xZqjTX1935R35mySRlx63x7HStI1YFief2X9+RHjJR/lofG0
nC0JWTp5sC/pKf54QBXj
=bGPp
-----END PGP SIGNATURE-----
Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
Pull clk updates from Stephen Boyd:
"The core framework has a handful of patches this time around, mostly
due to the clk rate protection support added by Jerome Brunet.
This feature will allow consumers to lock in a certain rate on the
output of a clk so that things like audio playback don't hear pops
when the clk frequency changes due to shared parent clks changing
rates. Currently the clk API doesn't guarantee the rate of a clk stays
at the rate you request after clk_set_rate() is called, so this new
API will allow drivers to express that requirement.
Beyond this, the core got some debugfs pretty printing patches and a
couple minor non-critical fixes.
Looking outside of the core framework diff we have some new driver
additions and the removal of a legacy TI clk driver. Both of these hit
high in the dirstat. Also, the removal of the asm-generic/clkdev.h
file causes small one-liners in all the architecture Kbuild files.
Overall, the driver diff seems to be the normal stuff that comes all
the time to fix little problems here and there and to support new
hardware.
Summary:
Core:
- Clk rate protection
- Symbolic clk flags in debugfs output
- Clk registration enabled clks while doing bookkeeping updates
New Drivers:
- Spreadtrum SC9860
- HiSilicon hi3660 stub
- Qualcomm A53 PLL, SPMI clkdiv, and MSM8916 APCS
- Amlogic Meson-AXG
- ASPEED BMC
Removed Drivers:
- TI OMAP 3xxx legacy clk (non-DT) support
- asm*/clkdev.h got removed (not really a driver)
Updates:
- Renesas FDP1-0 module clock on R-Car M3-W
- Renesas LVDS module clock on R-Car V3M
- Misc fixes to pr_err() prints
- Qualcomm MSM8916 audio fixes
- Qualcomm IPQ8074 rounded out support for more peripherals
- Qualcomm Alpha PLL variants
- Divider code was using container_of() on bad pointers
- Allwinner DE2 clks on H3
- Amlogic minor data fixes and dropping of CLK_IGNORE_UNUSED
- Mediatek clk driver compile test support
- AT91 PMC clk suspend/resume restoration support
- PLL issues fixed on si5351
- Broadcom IProc PLL calculation updates
- DVFS support for Armada mvebu CPU clks
- Allwinner fixed post-divider support
- TI clkctrl fixes and support for newer SoCs"
* tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux: (125 commits)
clk: aspeed: Handle inverse polarity of USB port 1 clock gate
clk: aspeed: Fix return value check in aspeed_cc_init()
clk: aspeed: Add reset controller
clk: aspeed: Register gated clocks
clk: aspeed: Add platform driver and register PLLs
clk: aspeed: Register core clocks
clk: Add clock driver for ASPEED BMC SoCs
clk: mediatek: adjust dependency of reset.c to avoid unexpectedly being built
clk: fix reentrancy of clk_enable() on UP systems
clk: meson-axg: fix potential NULL dereference in axg_clkc_probe()
clk: Simplify debugfs registration
clk: Fix debugfs_create_*() usage
clk: Show symbolic clock flags in debugfs
clk: renesas: r8a7796: Add FDP clock
clk: Move __clk_{get,put}() into private clk.h API
clk: sunxi: Use CLK_IS_CRITICAL flag for critical clks
clk: Improve flags doc for of_clk_detect_critical()
arch: Remove clkdev.h asm-generic from Kbuild
clk: sunxi-ng: a83t: Add M divider to TCON1 clock
clk: Prepare to remove asm-generic/clkdev.h
...
We need an atomic way to setup pmd page table entry, avoiding races with
CPU setting dirty/accessed bits. This is required to implement
pmdp_invalidate() that doesn't lose these bits.
Link: http://lkml.kernel.org/r/20171213105756.69879-5-kirill.shutemov@linux.intel.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This pull requests contains a consolidation of the generic no-IOMMU code,
a well as the glue code for swiotlb. All the code is based on the x86
implementation with hooks to allow all architectures that aren't cache
coherent to use it. The x86 conversion itself has been deferred because
the x86 maintainers were a little busy in the last months.
-----BEGIN PGP SIGNATURE-----
iQI/BAABCAApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAlpxcVoLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYN/Lw/+Je9teM4NPQ8lU/ncbJN/bUzCFGJ6dFt2eVX/6xs3
sfl8vBdeHt6CBM02rRNecEr31z3+orjQes5JnlEJFYeG3jumV0zCPw/zbxqjzbJ1
3n6cckLxbxzy8Ca1G/BVjHLAUX5eWp1ujn/Q4d03VKVQZhJvFYlqDbP3TrNVx7xn
k86u37p/o+ngjwX66UdZ3C4iIBF8zqy6n2kkpv4HUQtHHzPwEvliN39eNilovb56
iGOzjDX1UWHAu4xCTVnPHSG4fA4XU41NWzIN3DIVPE25lYSISSl9TFAdR8GeZA0G
0Yj6sW53pRSoUwco1ocoS44/FgrPOB5/vHIL06pABvicXBiomje1QylqcK7zAczk
esjkfPEZrmZuu99GtqFyDNKEvKKdy+aBGaTZ3y+NxsuBs+0xS2Owz1IE4Tk28xaw
xh7zn+CVdk2fJh6ZIdw5Eu9b9VN08UriqDmDzO/ylDlcNGcDi7wcxiSTEkHJ1ON/
g9nletV6f3egL0wljDcOnhCJCHTvmWEeq3z8lE55QzPzSH0hHpnGQ2WD0tKrroxz
kjOZp0TdXa4F5iysOHe2xl2sftOH0zIkBQJ+oBcK12mTaLu21+yeuCggQXJ/CBdk
1Ol7l9g9T0TDuZPfiTHt5+6jmECQs92LElWA8x7uF7Fpix3BpnafWaaSMSsosF3F
D1Y=
=Nrl9
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-4.16' of git://git.infradead.org/users/hch/dma-mapping
Pull dma mapping updates from Christoph Hellwig:
"Except for a runtime warning fix from Christian this is all about
consolidation of the generic no-IOMMU code, a well as the glue code
for swiotlb.
All the code is based on the x86 implementation with hooks to allow
all architectures that aren't cache coherent to use it.
The x86 conversion itself has been deferred because the x86
maintainers were a little busy in the last months"
* tag 'dma-mapping-4.16' of git://git.infradead.org/users/hch/dma-mapping: (57 commits)
MAINTAINERS: add the iommu list for swiotlb and xen-swiotlb
arm64: use swiotlb_alloc and swiotlb_free
arm64: replace ZONE_DMA with ZONE_DMA32
mips: use swiotlb_{alloc,free}
mips/netlogic: remove swiotlb support
tile: use generic swiotlb_ops
tile: replace ZONE_DMA with ZONE_DMA32
unicore32: use generic swiotlb_ops
ia64: remove an ifdef around the content of pci-dma.c
ia64: clean up swiotlb support
ia64: use generic swiotlb_ops
ia64: replace ZONE_DMA with ZONE_DMA32
swiotlb: remove various exports
swiotlb: refactor coherent buffer allocation
swiotlb: refactor coherent buffer freeing
swiotlb: wire up ->dma_supported in swiotlb_dma_ops
swiotlb: add common swiotlb_map_ops
swiotlb: rename swiotlb_free to swiotlb_exit
x86: rename swiotlb_dma_ops
powerpc: rename swiotlb_dma_ops
...
Pull siginfo cleanups from Eric Biederman:
"Long ago when 2.4 was just a testing release copy_siginfo_to_user was
made to copy individual fields to userspace, possibly for efficiency
and to ensure initialized values were not copied to userspace.
Unfortunately the design was complex, it's assumptions unstated, and
humans are fallible and so while it worked much of the time that
design failed to ensure unitialized memory is not copied to userspace.
This set of changes is part of a new design to clean up siginfo and
simplify things, and hopefully make the siginfo handling robust enough
that a simple inspection of the code can be made to ensure we don't
copy any unitializied fields to userspace.
The design is to unify struct siginfo and struct compat_siginfo into a
single definition that is shared between all architectures so that
anyone adding to the set of information shared with struct siginfo can
see the whole picture. Hopefully ensuring all future si_code
assignments are arch independent.
The design is to unify copy_siginfo_to_user32 and
copy_siginfo_from_user32 so that those function are complete and cope
with all of the different cases documented in signinfo_layout. I don't
think there was a single implementation of either of those functions
that was complete and correct before my changes unified them.
The design is to introduce a series of helpers including
force_siginfo_fault that take the values that are needed in struct
siginfo and build the siginfo structure for their callers. Ensuring
struct siginfo is built correctly.
The remaining work for 4.17 (unless someone thinks it is post -rc1
material) is to push usage of those helpers down into the
architectures so that architecture specific code will not need to deal
with the fiddly work of intializing struct siginfo, and then when
struct siginfo is guaranteed to be fully initialized change copy
siginfo_to_user into a simple wrapper around copy_to_user.
Further there is work in progress on the issues that have been
documented requires arch specific knowledge to sort out.
The changes below fix or at least document all of the issues that have
been found with siginfo generation. Then proceed to unify struct
siginfo the 32 bit helpers that copy siginfo to and from userspace,
and generally clean up anything that is not arch specific with regards
to siginfo generation.
It is a lot but with the unification you can of siginfo you can
already see the code reduction in the kernel"
* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (45 commits)
signal/memory-failure: Use force_sig_mceerr and send_sig_mceerr
mm/memory_failure: Remove unused trapno from memory_failure
signal/ptrace: Add force_sig_ptrace_errno_trap and use it where needed
signal/powerpc: Remove unnecessary signal_code parameter of do_send_trap
signal: Helpers for faults with specialized siginfo layouts
signal: Add send_sig_fault and force_sig_fault
signal: Replace memset(info,...) with clear_siginfo for clarity
signal: Don't use structure initializers for struct siginfo
signal/arm64: Better isolate the COMPAT_TASK portion of ptrace_hbptriggered
ptrace: Use copy_siginfo in setsiginfo and getsiginfo
signal: Unify and correct copy_siginfo_to_user32
signal: Remove the code to clear siginfo before calling copy_siginfo_from_user32
signal: Unify and correct copy_siginfo_from_user32
signal/blackfin: Remove pointless UID16_SIGINFO_COMPAT_NEEDED
signal/blackfin: Move the blackfin specific si_codes to asm-generic/siginfo.h
signal/tile: Move the tile specific si_codes to asm-generic/siginfo.h
signal/frv: Move the frv specific si_codes to asm-generic/siginfo.h
signal/ia64: Move the ia64 specific si_codes to asm-generic/siginfo.h
signal/powerpc: Remove redefinition of NSIGTRAP on powerpc
signal: Move addr_lsb into the _sigfault union for clarity
...
- Security mitigations:
- variant 2: invalidating the branch predictor with a call to secure firmware
- variant 3: implementing KPTI for arm64
- 52-bit physical address support for arm64 (ARMv8.2)
- arm64 support for RAS (firmware first only) and SDEI (software
delegated exception interface; allows firmware to inject a RAS error
into the OS)
- Perf support for the ARM DynamIQ Shared Unit PMU
- CPUID and HWCAP bits updated for new floating point multiplication
instructions in ARMv8.4
- Removing some virtual memory layout printks during boot
- Fix initial page table creation to cope with larger than 32M kernel
images when 16K pages are enabled
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlpwxDMACgkQa9axLQDI
XvF55BAAniMpxPXnYNfv6l7/4O8eKo1lJIaG1wbej4JRZ/rT3K4Z3OBXW1dKHO8d
/PTbVmZ90IqIGROkoDrE+6xyjjn9yK3uuW4ytN2zQkBa8VFaHAnHlX+zKQcuwy9f
yxwiHk+C7vK5JR7mpXTazjRknsUv1MPtlTt7DQrSdq0KRDJVDNFC+grmbew2rz0X
cjQDqZqgzuFyrKxdiQVjDmc3zH9NsNBhDo0hlGHf2jK6bGJsAPtI8M2JcLrK8ITG
Ye/dD7BJp1mWD8ff0BPaMxu24qfAMNLH8f2dpTa986/H78irVz7i/t5HG0/1+5Jh
EE4OFRTKZ59Qgyo1zWcaJvdp8YjiaX/L4PWJg8CxM5OhP9dIac9ydcFQfWzpKpUs
xyZfmK6XliGFReAkVOOf5tEqFUDhMtsqhzPYmbmU1lp61wmSYIZ8CTenpWWCJSRO
NOGyG1X2uFBvP69+iPNlfTGz1r7tg1URY5iO8fUEIhY8LrgyORkiqw4OvPEgnMXP
Ngy+dXhyvnps2AAWbSX0O4puRlTgEYLT5KaMLzH/+gWsXATT0rzUCD/aOwUQq/Y7
SWXZHkb3jpmOZZnzZsLL2MNzEIPCFBwSUE9fSv4dA9d/N6tUmlmZALJjHkfzCDpj
+mPsSmAMTj72kUYzm0b5GCtOu/iQ2kDWOZjOM1m4+v/B+f7JoEE=
=iEjP
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"The main theme of this pull request is security covering variants 2
and 3 for arm64. I expect to send additional patches next week
covering an improved firmware interface (requires firmware changes)
for variant 2 and way for KPTI to be disabled on unaffected CPUs
(Cavium's ThunderX doesn't work properly with KPTI enabled because of
a hardware erratum).
Summary:
- Security mitigations:
- variant 2: invalidate the branch predictor with a call to
secure firmware
- variant 3: implement KPTI for arm64
- 52-bit physical address support for arm64 (ARMv8.2)
- arm64 support for RAS (firmware first only) and SDEI (software
delegated exception interface; allows firmware to inject a RAS
error into the OS)
- perf support for the ARM DynamIQ Shared Unit PMU
- CPUID and HWCAP bits updated for new floating point multiplication
instructions in ARMv8.4
- remove some virtual memory layout printks during boot
- fix initial page table creation to cope with larger than 32M kernel
images when 16K pages are enabled"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (104 commits)
arm64: Fix TTBR + PAN + 52-bit PA logic in cpu_do_switch_mm
arm64: Turn on KPTI only on CPUs that need it
arm64: Branch predictor hardening for Cavium ThunderX2
arm64: Run enable method for errata work arounds on late CPUs
arm64: Move BP hardening to check_and_switch_context
arm64: mm: ignore memory above supported physical address size
arm64: kpti: Fix the interaction between ASID switching and software PAN
KVM: arm64: Emulate RAS error registers and set HCR_EL2's TERR & TEA
KVM: arm64: Handle RAS SErrors from EL2 on guest exit
KVM: arm64: Handle RAS SErrors from EL1 on guest exit
KVM: arm64: Save ESR_EL2 on guest SError
KVM: arm64: Save/Restore guest DISR_EL1
KVM: arm64: Set an impdef ESR for Virtual-SError using VSESR_EL2.
KVM: arm/arm64: mask/unmask daif around VHE guests
arm64: kernel: Prepare for a DISR user
arm64: Unconditionally enable IESB on exception entry/return for firmware-first
arm64: kernel: Survive corrected RAS errors notified by SError
arm64: cpufeature: Detect CPU RAS Extentions
arm64: sysreg: Move to use definitions for all the SCTLR bits
arm64: cpufeature: __this_cpu_has_cap() shouldn't stop early
...
Add an extra temporary register parameter to uaccess_ttbr0_disable which
is about to be required for arm64 PAN support.
This patch doesn't introduce any functional change but ensures that the
kernel compiles once the KVM/ARM tree is merged with the arm64 tree by
ensuring a trivially mergable conflict with commit
6b88a32c7a
("arm64: kpti: Fix the interaction between ASID switching and software PAN").
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
With ARM64_SW_TTBR0_PAN enabled, the exception entry code checks the
active ASID to decide whether user access was enabled (non-zero ASID)
when the exception was taken. On return from exception, if user access
was previously disabled, it re-instates TTBR0_EL1 from the per-thread
saved value (updated in switch_mm() or efi_set_pgd()).
Commit 7655abb953 ("arm64: mm: Move ASID from TTBR0 to TTBR1") makes a
TTBR0_EL1 + ASID switching non-atomic. Subsequently, commit 27a921e757
("arm64: mm: Fix and re-enable ARM64_SW_TTBR0_PAN") changes the
__uaccess_ttbr0_disable() function and asm macro to first write the
reserved TTBR0_EL1 followed by the ASID=0 update in TTBR1_EL1. If an
exception occurs between these two, the exception return code will
re-instate a valid TTBR0_EL1. Similar scenario can happen in
cpu_switch_mm() between setting the reserved TTBR0_EL1 and the ASID
update in cpu_do_switch_mm().
This patch reverts the entry.S check for ASID == 0 to TTBR0_EL1 and
disables the interrupts around the TTBR0_EL1 and ASID switching code in
__uaccess_ttbr0_disable(). It also ensures that, when returning from the
EFI runtime services, efi_set_pgd() doesn't leave a non-zero ASID in
TTBR1_EL1 by using uaccess_ttbr0_{enable,disable}.
The accesses to current_thread_info()->ttbr0 are updated to use
READ_ONCE/WRITE_ONCE.
As a safety measure, __uaccess_ttbr0_enable() always masks out any
existing non-zero ASID TTBR1_EL1 before writing in the new ASID.
Fixes: 27a921e757 ("arm64: mm: Fix and re-enable ARM64_SW_TTBR0_PAN")
Acked-by: Will Deacon <will.deacon@arm.com>
Reported-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: James Morse <james.morse@arm.com>
Tested-by: James Morse <james.morse@arm.com>
Co-developed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARMv8.2 adds a new bit HCR_EL2.TEA which routes synchronous external
aborts to EL2, and adds a trap control bit HCR_EL2.TERR which traps
all Non-secure EL1&0 error record accesses to EL2.
This patch enables the two bits for the guest OS, guaranteeing that
KVM takes external aborts and traps attempts to access the physical
error registers.
ERRIDR_EL1 advertises the number of error records, we return
zero meaning we can treat all the other registers as RAZ/WI too.
Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com>
[removed specific emulation, use trap_raz_wi() directly for everything,
rephrased parts of the commit message]
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We expect to have firmware-first handling of RAS SErrors, with errors
notified via an APEI method. For systems without firmware-first, add
some minimal handling to KVM.
There are two ways KVM can take an SError due to a guest, either may be a
RAS error: we exit the guest due to an SError routed to EL2 by HCR_EL2.AMO,
or we take an SError from EL2 when we unmask PSTATE.A from __guest_exit.
The current SError from EL2 code unmasks SError and tries to fence any
pending SError into a single instruction window. It then leaves SError
unmasked.
With the v8.2 RAS Extensions we may take an SError for a 'corrected'
error, but KVM is only able to handle SError from EL2 if they occur
during this single instruction window...
The RAS Extensions give us a new instruction to synchronise and
consume SErrors. The RAS Extensions document (ARM DDI0587),
'2.4.1 ESB and Unrecoverable errors' describes ESB as synchronising
SError interrupts generated by 'instructions, translation table walks,
hardware updates to the translation tables, and instruction fetches on
the same PE'. This makes ESB equivalent to KVMs existing
'dsb, mrs-daifclr, isb' sequence.
Use the alternatives to synchronise and consume any SError using ESB
instead of unmasking and taking the SError. Set ARM_EXIT_WITH_SERROR_BIT
in the exit_code so that we can restart the vcpu if it turns out this
SError has no impact on the vcpu.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We expect to have firmware-first handling of RAS SErrors, with errors
notified via an APEI method. For systems without firmware-first, add
some minimal handling to KVM.
There are two ways KVM can take an SError due to a guest, either may be a
RAS error: we exit the guest due to an SError routed to EL2 by HCR_EL2.AMO,
or we take an SError from EL2 when we unmask PSTATE.A from __guest_exit.
For SError that interrupt a guest and are routed to EL2 the existing
behaviour is to inject an impdef SError into the guest.
Add code to handle RAS SError based on the ESR. For uncontained and
uncategorized errors arm64_is_fatal_ras_serror() will panic(), these
errors compromise the host too. All other error types are contained:
For the fatal errors the vCPU can't make progress, so we inject a virtual
SError. We ignore contained errors where we can make progress as if
we're lucky, we may not hit them again.
If only some of the CPUs support RAS the guest will see the cpufeature
sanitised version of the id registers, but we may still take RAS SError
on this CPU. Move the SError handling out of handle_exit() into a new
handler that runs before we can be preempted. This allows us to use
this_cpu_has_cap(), via arm64_is_ras_serror().
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If we deliver a virtual SError to the guest, the guest may defer it
with an ESB instruction. The guest reads the deferred value via DISR_EL1,
but the guests view of DISR_EL1 is re-mapped to VDISR_EL2 when HCR_EL2.AMO
is set.
Add the KVM code to save/restore VDISR_EL2, and make it accessible to
userspace as DISR_EL1.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Prior to v8.2's RAS Extensions, the HCR_EL2.VSE 'virtual SError' feature
generated an SError with an implementation defined ESR_EL1.ISS, because we
had no mechanism to specify the ESR value.
On Juno this generates an all-zero ESR, the most significant bit 'ISV'
is clear indicating the remainder of the ISS field is invalid.
With the RAS Extensions we have a mechanism to specify this value, and the
most significant bit has a new meaning: 'IDS - Implementation Defined
Syndrome'. An all-zero SError ESR now means: 'RAS error: Uncategorized'
instead of 'no valid ISS'.
Add KVM support for the VSESR_EL2 register to specify an ESR value when
HCR_EL2.VSE generates a virtual SError. Change kvm_inject_vabt() to
specify an implementation-defined value.
We only need to restore the VSESR_EL2 value when HCR_EL2.VSE is set, KVM
save/restores this bit during __{,de}activate_traps() and hardware clears the
bit once the guest has consumed the virtual-SError.
Future patches may add an API (or KVM CAP) to pend a virtual SError with
a specified ESR.
Cc: Dongjiu Geng <gengdongjiu@huawei.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Non-VHE systems take an exception to EL2 in order to world-switch into the
guest. When returning from the guest KVM implicitly restores the DAIF
flags when it returns to the kernel at EL1.
With VHE none of this exception-level jumping happens, so KVMs
world-switch code is exposed to the host kernel's DAIF values, and KVM
spills the guest-exit DAIF values back into the host kernel.
On entry to a guest we have Debug and SError exceptions unmasked, KVM
has switched VBAR but isn't prepared to handle these. On guest exit
Debug exceptions are left disabled once we return to the host and will
stay this way until we enter user space.
Add a helper to mask/unmask DAIF around VHE guests. The unmask can only
happen after the hosts VBAR value has been synchronised by the isb in
__vhe_hyp_call (via kvm_call_hyp()). Masking could be as late as
setting KVMs VBAR value, but is kept here for symmetry.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
KVM would like to consume any pending SError (or RAS error) after guest
exit. Today it has to unmask SError and use dsb+isb to synchronise the
CPU. With the RAS extensions we can use ESB to synchronise any pending
SError.
Add the necessary macros to allow DISR to be read and converted to an
ESR.
We clear the DISR register when we enable the RAS cpufeature, and the
kernel has not executed any ESB instructions. Any value we find in DISR
must have belonged to firmware. Executing an ESB instruction is the
only way to update DISR, so we can expect firmware to have handled
any deferred SError. By the same logic we clear DISR in the idle path.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARM v8.2 has a feature to add implicit error synchronization barriers
whenever the CPU enters or returns from an exception level. Add this to the
features we always enable. CPUs that don't support this feature will treat
the bit as RES0.
This feature causes RAS errors that are not yet visible to software to
become pending SErrors. We expect to have firmware-first RAS support
so synchronised RAS errors will be take immediately to EL3.
Any system without firmware-first handling of errors will take the SError
either immediatly after exception return, or when we unmask SError after
entry.S's work.
Adding IESB to the ELx flags causes it to be enabled by KVM and kexec
too.
Platform level RAS support may require additional firmware support.
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Suggested-by: Will Deacon <will.deacon@arm.com>
Link: https://www.spinics.net/lists/kvm-arm/msg28192.html
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Prior to v8.2, SError is an uncontainable fatal exception. The v8.2 RAS
extensions use SError to notify software about RAS errors, these can be
contained by the Error Syncronization Barrier.
An ACPI system with firmware-first may use SError as its 'SEI'
notification. Future patches may add code to 'claim' this SError as a
notification.
Other systems can distinguish these RAS errors from the SError ESR and
use the AET bits and additional data from RAS-Error registers to handle
the error. Future patches may add this kernel-first handling.
Without support for either of these we will panic(), even if we received
a corrected error. Add code to decode the severity of RAS errors. We can
safely ignore contained errors where the CPU can continue to make
progress. For all other errors we continue to panic().
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARM's v8.2 Extentions add support for Reliability, Availability and
Serviceability (RAS). On CPUs with these extensions system software
can use additional barriers to isolate errors and determine if faults
are pending. Add cpufeature detection.
Platform level RAS support may require additional firmware support.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com>
[Rebased added config option, reworded commit message]
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
__cpu_setup() configures SCTLR_EL1 using some hard coded hex masks,
and el2_setup() duplicates some this when setting RES1 bits.
Lets make this the same as KVM's hyp_init, which uses named bits.
First, we add definitions for all the SCTLR_EL{1,2} bits, the RES{1,0}
bits, and those we want to set or clear.
Add a build_bug checks to ensures all bits are either set or clear.
This means we don't need to preserve endian-ness configuration
generated elsewhere.
Finally, move the head.S and proc.S users of these hard-coded masks
over to the macro versions.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When refactoring the sigreturn code to handle SVE, I changed the
sigreturn implementation to store the new FPSIMD state from the
user sigframe into task_struct before reloading the state into the
CPU regs. This makes it easier to convert the data for SVE when
needed.
However, it turns out that the fpsimd_state structure passed into
fpsimd_update_current_state is not fully initialised, so assigning
the structure as a whole corrupts current->thread.fpsimd_state.cpu
with uninitialised data.
This means that if the garbage data written to .cpu happens to be a
valid cpu number, and the task is subsequently migrated to the cpu
identified by the that number, and then tries to enter userspace,
the CPU FPSIMD regs will be assumed to be correct for the task and
not reloaded as they should be. This can result in returning to
userspace with the FPSIMD registers containing data that is stale or
that belongs to another task or to the kernel.
Knowingly handing around a kernel structure that is incompletely
initialised with user data is a potential source of mistakes,
especially across source file boundaries. To help avoid a repeat
of this issue, this patch adapts the relevant internal API to hand
around the user-accessible subset only: struct user_fpsimd_state.
To avoid future surprises, this patch also converts all uses of
struct fpsimd_state that really only access the user subset, to use
struct user_fpsimd_state. A few missing consts are added to
function prototypes for good measure.
Thanks to Will for spotting the cause of the bug here.
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The PUD macros (PUD_TABLE_BIT, PUD_TYPE_MASK, PUD_TYPE_SECT) use the
pgdval_t even when pudval_t is available. Even though the underlying
type for both (u64) is the same it is confusing and may lead to issues
in the future.
Fix this by using pudval_t to define the PUD_* macros.
Fixes: 084bd29810 ("ARM64: mm: HugeTLB support.")
Fixes: 206a2a73a6 ("arm64: mm: Create gigabyte kernel logical mappings where possible")
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
--EWB Added #ifdef CONFIG_X86_X32_ABI to arch/x86/kernel/signal_compat.c
Changed #ifdef CONFIG_X86_X32 to #ifdef CONFIG_X86_X32_ABI in
linux/compat.h
CONFIG_X86_X32 is set when the user requests X32 support.
CONFIG_X86_X32_ABI is set when the user requests X32 support
and the tool-chain has X32 allowing X32 support to be built.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
While ARM64 carries FPU state in the thread structure that is saved and
restored during signal handling, it doesn't need to declare a usercopy
whitelist, since existing accessors are all either using a bounce buffer
(for which whitelisting isn't checking the slab), are statically sized
(which will bypass the hardened usercopy check), or both.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Dave Martin <Dave.Martin@arm.com>
Cc: zijun_hu <zijun_hu@htc.com>
Cc: linux-arm-kernel@lists.infradead.org
Signed-off-by: Kees Cook <keescook@chromium.org>
The 'pos' argument is used to select where in TCR to write the value:
the IPS or PS bitfield.
Fixes: 787fd1d019 ("arm64: limit PA size to supported range")
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Commit fa2a8445b1 added support for extending the ID map to 52 bits,
but accidentally dropped a required change to __cpu_uses_extended_idmap.
As a result, the kernel fails to boot when VA_BITS = 48 and the ID map
text is in 52-bit physical memory, because we reduce TCR.T0SZ to cover
the ID map, but then never set it back to VA_BITS.
Add back the change, and also clean up some double parentheses.
Fixes: fa2a8445b1 ("arm64: allow ID map to be extended to 52 bits")
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The Kryo CPUs are also affected by the Falkor 1003 errata, so
we need to do the same workaround on Kryo CPUs. The MIDR is
slightly more complicated here, where the PART number is not
always the same when looking at all the bits from 15 to 4. Drop
the lower 8 bits and just look at the top 4 to see if it's '2'
and then consider those as Kryo CPUs. This covers all the
combinations without having to list them all out.
Fixes: 38fd94b027 ("arm64: Work around Falkor erratum 1003")
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently the early assembler page table code assumes that precisely
1xpgd, 1xpud, 1xpmd are sufficient to represent the early kernel text
mappings.
Unfortunately this is rarely the case when running with a 16KB granule,
and we also run into limits with 4KB granule when building much larger
kernels.
This patch re-writes the early page table logic to compute indices of
mappings for each level of page table, and if multiple indices are
required, the next-level page table is scaled up accordingly.
Also the required size of the swapper_pg_dir is computed at link time
to cover the mapping [KIMAGE_ADDR + VOFFSET, _end]. When KASLR is
enabled, an extra page is set aside for each level that may require extra
entries at runtime.
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently one resolves the location of the reserved_ttbr0 for PAN by
taking a positive offset from swapper_pg_dir. In a future patch we wish
to extend the swapper s.t. its size is determined at link time rather
than comile time, rendering SWAPPER_DIR_SIZE unsuitable for such a low
level calculation.
In this patch we re-arrange the order of the linker script s.t. instead
one computes reserved_ttbr0 by subtracting RESERVED_TTBR0_SIZE from
swapper_pg_dir.
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When CONFIG_UNMAP_KERNEL_AT_EL0 is set the SDEI entry point and the rest
of the kernel may be unmapped when we take an event. If this may be the
case, use an entry trampoline that can switch to the kernel page tables.
We can't use the provided PSTATE to determine whether to switch page
tables as we may have interrupted the kernel's entry trampoline, (or a
normal-priority event that interrupted the kernel's entry trampoline).
Instead test for a user ASID in ttbr1_el1.
Save a value in regs->addr_limit to indicate whether we need to restore
the original ASID when returning from this event. This value is only used
by do_page_fault(), which we don't call with the SDEI regs.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
SDEI needs to calculate an offset in the trampoline page too. Move
the extern char[] to sections.h.
This patch just moves code around.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>