Currently we use a spin lock to protect the red black tree that we use to
track block groups. Most accesses to that tree are actually read only and
for large filesystems, with thousands of block groups, it actually has
a bad impact on performance, as concurrent read only searches on the tree
are serialized.
Read only searches on the tree are very frequent and done when:
1) Pinning and unpinning extents, as we need to lookup the respective
block group from the tree;
2) Freeing the last reference of a tree block, regardless if we pin the
underlying extent or add it back to free space cache/tree;
3) During NOCOW writes, both buffered IO and direct IO, we need to check
if the block group that contains an extent is read only or not and to
increment the number of NOCOW writers in the block group. For those
operations we need to search for the block group in the tree.
Similarly, after creating the ordered extent for the NOCOW write, we
need to decrement the number of NOCOW writers from the same block
group, which requires searching for it in the tree;
4) Decreasing the number of extent reservations in a block group;
5) When allocating extents and freeing reserved extents;
6) Adding and removing free space to the free space tree;
7) When releasing delalloc bytes during ordered extent completion;
8) When relocating a block group;
9) During fitrim, to iterate over the block groups;
10) etc;
Write accesses to the tree, to add or remove block groups, are much less
frequent as they happen only when allocating a new block group or when
deleting a block group.
We also use the same spin lock to protect the list of currently caching
block groups. Additions to this list are made when we need to cache a
block group, because we don't have a free space cache for it (or we have
but it's invalid), and removals from this list are done when caching of
the block group's free space finishes. These cases are also not very
common, but when they happen, they happen only once when the filesystem
is mounted.
So switch the lock that protects the tree of block groups from a spinning
lock to a read/write lock.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We keep track of the start offset of the block group with the lowest start
offset at fs_info->first_logical_byte. This requires explicitly updating
that field every time we add, delete or lookup a block group to/from the
red black tree at fs_info->block_group_cache_tree.
Since the block group with the lowest start address happens to always be
the one that is the leftmost node of the tree, we can use a red black tree
that caches the left most node. Then when we need the start address of
that block group, we can just quickly get the leftmost node in the tree
and extract the start offset of that node's block group. This avoids the
need to explicitly keep track of that address in the dedicated member
fs_info->first_logical_byte, and it also allows the next patch in the
series to switch the lock that protects the red black tree from a spin
lock to a read/write lock - without this change it would be tricky
because block group searches also update fs_info->first_logical_byte.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reading a value from a different member of a union is not just a great
way to obfuscate code, but also creates an aliasing violation. Switch
btrfs_is_zoned to look at ->zone_size and remove the union.
Note: union was to simplify the detection of zoned filesystem but now
this is wrapped behind btrfs_is_zoned so we can drop the union.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add note ]
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a NOWAIT direct IO write, if we can NOCOW then it means we can
proceed with the non-blocking, NOWAIT path. However reserving the metadata
space and qgroup meta space can often result in blocking - flushing
delalloc, wait for ordered extents to complete, trigger transaction
commits, etc, going against the semantics of a NOWAIT write.
So make the NOWAIT write path to try to reserve all the metadata it needs
without resulting in a blocking behaviour - if we get -ENOSPC or -EDQUOT
then return -EAGAIN to make the caller fallback to a blocking direct IO
write.
This is part of a patchset comprised of the following patches:
btrfs: avoid blocking on page locks with nowait dio on compressed range
btrfs: avoid blocking nowait dio when locking file range
btrfs: avoid double nocow check when doing nowait dio writes
btrfs: stop allocating a path when checking if cross reference exists
btrfs: free path at can_nocow_extent() before checking for checksum items
btrfs: release path earlier at can_nocow_extent()
btrfs: avoid blocking when allocating context for nowait dio read/write
btrfs: avoid blocking on space revervation when doing nowait dio writes
The following test was run before and after applying this patchset:
$ cat io-uring-nodatacow-test.sh
#!/bin/bash
DEV=/dev/sdc
MNT=/mnt/sdc
MOUNT_OPTIONS="-o ssd -o nodatacow"
MKFS_OPTIONS="-R free-space-tree -O no-holes"
NUM_JOBS=4
FILE_SIZE=8G
RUN_TIME=300
cat <<EOF > /tmp/fio-job.ini
[io_uring_rw]
rw=randrw
fsync=0
fallocate=posix
group_reporting=1
direct=1
ioengine=io_uring
iodepth=64
bssplit=4k/20:8k/20:16k/20:32k/10:64k/10:128k/5:256k/5:512k/5:1m/5
filesize=$FILE_SIZE
runtime=$RUN_TIME
time_based
filename=foobar
directory=$MNT
numjobs=$NUM_JOBS
thread
EOF
echo performance | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $MNT &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
fio /tmp/fio-job.ini
umount $MNT
The test was run a 12 cores box with 64G of ram, using a non-debug kernel
config (Debian's default config) and a spinning disk.
Result before the patchset:
READ: bw=407MiB/s (427MB/s), 407MiB/s-407MiB/s (427MB/s-427MB/s), io=119GiB (128GB), run=300175-300175msec
WRITE: bw=407MiB/s (427MB/s), 407MiB/s-407MiB/s (427MB/s-427MB/s), io=119GiB (128GB), run=300175-300175msec
Result after the patchset:
READ: bw=436MiB/s (457MB/s), 436MiB/s-436MiB/s (457MB/s-457MB/s), io=128GiB (137GB), run=300044-300044msec
WRITE: bw=435MiB/s (456MB/s), 435MiB/s-435MiB/s (456MB/s-456MB/s), io=128GiB (137GB), run=300044-300044msec
That's about +7.2% throughput for reads and +6.9% for writes.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_cross_ref_exist() we always allocate a path, but we really don't
need to because all its callers (only 2) already have an allocated path
that is not being used when they call btrfs_cross_ref_exist(). So change
btrfs_cross_ref_exist() to take a path as an argument and update both
its callers to pass in the unused path they have when they call
btrfs_cross_ref_exist().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In order for end users to quickly react to new issues that come up in
production, it is proving useful to leverage this printk indexing
system. This printk index enables kernel developers to use calls to
printk() with changeable ad-hoc format strings, while still enabling end
users to detect changes and develop a semi-stable interface for
detecting and parsing these messages.
So that detailed Btrfs messages are captured by this printk index, this
patch wraps btrfs_printk and btrfs_handle_fs_error with macros.
Example of the generated list:
https://lore.kernel.org/lkml/12588e13d51a9c3bf59467d3fc1ac2162f1275c1.1647539056.git.jof@thejof.com
Signed-off-by: Jonathan Lassoff <jof@thejof.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have four different scenarios where we don't expect to find ordered
extents after locking a file range:
1) During plain fallocate;
2) During hole punching;
3) During zero range;
4) During reflinks (both cloning and deduplication).
This is because in all these cases we follow the pattern:
1) Lock the inode's VFS lock in exclusive mode;
2) Lock the inode's i_mmap_lock in exclusive node, to serialize with
mmap writes;
3) Flush delalloc in a file range and wait for all ordered extents
to complete - both done through btrfs_wait_ordered_range();
4) Lock the file range in the inode's io_tree.
So add a helper that asserts that we don't have ordered extents for a
given range. Make the four scenarios listed above use this helper after
locking the respective file range.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All of our inode creation code paths duplicate the calls to
btrfs_init_inode_security() and btrfs_add_link(). Subvolume creation
additionally duplicates property inheritance and the call to
btrfs_set_inode_index(). Fix this by moving the common code into
btrfs_create_new_inode(). This accomplishes a few things at once:
1. It reduces code duplication.
2. It allows us to set up the inode completely before inserting the
inode item, removing calls to btrfs_update_inode().
3. It fixes a leak of an inode on disk in some error cases. For example,
in btrfs_create(), if btrfs_new_inode() succeeds, then we have
inserted an inode item and its inode ref. However, if something after
that fails (e.g., btrfs_init_inode_security()), then we end the
transaction and then decrement the link count on the inode. If the
transaction is committed and the system crashes before the failed
inode is deleted, then we leak that inode on disk. Instead, this
refactoring aborts the transaction when we can't recover more
gracefully.
4. It exposes various ways that subvolume creation diverges from mkdir
in terms of inheriting flags, properties, permissions, and POSIX
ACLs, a lot of which appears to be accidental. This patch explicitly
does _not_ change the existing non-standard behavior, but it makes
those differences more clear in the code and documents them so that
we can discuss whether they should be changed.
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The various inode creation code paths do not account for the compression
property, POSIX ACLs, or the parent inode item when starting a
transaction. Fix it by refactoring all of these code paths to use a new
function, btrfs_new_inode_prepare(), which computes the correct number
of items. To do so, it needs to know whether POSIX ACLs will be created,
so move the ACL creation into that function. To reduce the number of
arguments that need to be passed around for inode creation, define
struct btrfs_new_inode_args containing all of the relevant information.
btrfs_new_inode_prepare() will also be a good place to set up the
fscrypt context and encrypted filename in the future.
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of calling new_inode() and inode_init_owner() inside of
btrfs_new_inode(), do it in the callers. This allows us to pass in just
the inode instead of the mnt_userns and mode and removes the need for
memalloc_nofs_{save,restores}() since we do it before starting a
transaction. In create_subvol(), it also means we no longer have to look
up the inode again to instantiate it. This also paves the way for some
more cleanups in later patches.
This also removes the comments about Smack checking i_op, which are no
longer true since commit 5d6c31910b ("xattr: Add
__vfs_{get,set,remove}xattr helpers"). Now it checks inode->i_opflags &
IOP_XATTR, which is set based on sb->s_xattr.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a common pattern when searching for a key in btrfs:
* Call btrfs_search_slot to find the slot for the key
* Enter an endless loop:
* If the found slot is larger than the no. of items in the current
leaf, check the next leaf
* If it's still not found in the next leaf, terminate the loop
* Otherwise do something with the found key
* Increment the current slot and continue
To reduce code duplication, we can replace this code pattern with an
iterator macro, similar to the existing for_each_X macros found
elsewhere in the kernel. This also makes the code easier to understand
for newcomers by putting a name to the encapsulated functionality.
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Signed-off-by: Gabriel Niebler <gniebler@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmJnGGIACgkQxWXV+ddt
WDumDw//cE1NcawdnVkEaKr20PetHfzPyFSIIr17nedtnVvWYyOFF/0uJlHNhv8Z
CZIfJ7fmH/pO5oWPXN84wKNfumDWNwc36QrvoXC67TrKUSiBN8BzL83HvAjGwYFH
G+LfZXGnVbqq8F1iYkIsuH0Oo1x/N/LPM3s6iZy3O4l8s96u+J4GRnc8Tr0AH4MA
zgz3fab8Ec378HTG9fvdAQNLxFEe0VatD6WrzILnmM8UgeQK7g73dqH9Ni9gz2DW
2GDlO6aevQ1G6dm2AJ0ItExnbHH7TfOThkG56Gdqrzb/d39GzrVpeob7QiorETus
EWS1rXaeikUiD4Bzt/RszUNL80yMN1DjcN3QBkiDf3ShSDFteoHMPw3e6jcQCy1m
Dxf5oditQqltuFNLeSiVbZEMw2kXqBP7RoPiirF9rdvrDNLHhAE9wu0kpSGSSvT7
Tyu9JyLw2axU6wGTi1GHAXurlW2ItRRyFAewWWul1lLkuz/6YXI4F/EHm3Mbh6Nh
pMIFMNr4Oafdx+3Ful8ZA4PynirXub/xVDefcFBibz/PTGEnHG4ZVzRudmVnowh7
GP2pql1+Y/TFkXdD98V8GWD+E10JAmNCkQSoiggJooNWR28whukmDVX/HY8lGmWg
DjxwGkte3SltUBWNOTGnO7546hMwOxOPZHENPh+gffYkeMeIxPI=
=xDWz
-----END PGP SIGNATURE-----
Merge tag 'for-5.18-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- direct IO fixes:
- restore passing file offset to correctly calculate checksums
when repairing on read and bio split happens
- use correct bio when sumitting IO on zoned filesystem
- zoned mode fixes:
- fix selection of device to correctly calculate device
capabilities when allocating a new bio
- use a dedicated lock for exclusion during relocation
- fix leaked plug after failure syncing log
- fix assertion during scrub and relocation
* tag 'for-5.18-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: zoned: use dedicated lock for data relocation
btrfs: fix assertion failure during scrub due to block group reallocation
btrfs: fix direct I/O writes for split bios on zoned devices
btrfs: fix direct I/O read repair for split bios
btrfs: fix and document the zoned device choice in alloc_new_bio
btrfs: fix leaked plug after failure syncing log on zoned filesystems
Currently, we use btrfs_inode_{lock,unlock}() to grant an exclusive
writeback of the relocation data inode in
btrfs_zoned_data_reloc_{lock,unlock}(). However, that can cause a deadlock
in the following path.
Thread A takes btrfs_inode_lock() and waits for metadata reservation by
e.g, waiting for writeback:
prealloc_file_extent_cluster()
- btrfs_inode_lock(&inode->vfs_inode, 0);
- btrfs_prealloc_file_range()
...
- btrfs_replace_file_extents()
- btrfs_start_transaction
...
- btrfs_reserve_metadata_bytes()
Thread B (e.g, doing a writeback work) needs to wait for the inode lock to
continue writeback process:
do_writepages
- btrfs_writepages
- extent_writpages
- btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
- btrfs_inode_lock()
The deadlock is caused by relying on the vfs_inode's lock. By using it, we
introduced unnecessary exclusion of writeback and
btrfs_prealloc_file_range(). Also, the lock at this point is useless as we
don't have any dirty pages in the inode yet.
Introduce fs_info->zoned_data_reloc_io_lock and use it for the exclusive
writeback.
Fixes: 35156d8527 ("btrfs: zoned: only allow one process to add pages to a relocation inode")
CC: stable@vger.kernel.org # 5.16.x: 869f4cdc73: btrfs: zoned: encapsulate inode locking for zoned relocation
CC: stable@vger.kernel.org # 5.16.x
CC: stable@vger.kernel.org # 5.17
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Primarily this series converts some of the address_space operations
to take a folio instead of a page.
->is_partially_uptodate() takes a folio instead of a page and changes the
type of the 'from' and 'count' arguments to make it obvious they're bytes.
->invalidatepage() becomes ->invalidate_folio() and has a similar type change.
->launder_page() becomes ->launder_folio()
->set_page_dirty() becomes ->dirty_folio() and adds the address_space as
an argument.
There are a couple of other misc changes up front that weren't worth
separating into their own pull request.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEejHryeLBw/spnjHrDpNsjXcpgj4FAmI4hqMACgkQDpNsjXcp
gj7r7Af/fVJ7m8kKqjP/IayX3HiJRuIDQw+vM++BlRNXdjz+IyED6whdmFGxJeOY
BMyT+8ApOAz7ErS4G+7fAv4ScJK/aEgFUsnSeAiCp0PliiEJ5NNJzElp6sVmQ7H5
SX7+Ek444FZUGsQuy0qL7/ELpR3ditnD7x+5U2g0p5TeaHGUQn84crRyfR4xuhNG
EBD9D71BOb7OxUcOHe93pTkK51QsQ0aCrcIsB1tkK5KR0BAthn1HqF7ehL90Rvrr
omx5M7aDWGY4oj7IKrhlAs+55Ah2WaOzrZBp0FXNbr4UENDBKWKyUxErwa4xPkf6
Gm1iQG/CspOHnxN3YWsd5WjtlL3A+A==
=cOiq
-----END PGP SIGNATURE-----
Merge tag 'folio-5.18b' of git://git.infradead.org/users/willy/pagecache
Pull filesystem folio updates from Matthew Wilcox:
"Primarily this series converts some of the address_space operations to
take a folio instead of a page.
Notably:
- a_ops->is_partially_uptodate() takes a folio instead of a page and
changes the type of the 'from' and 'count' arguments to make it
obvious they're bytes.
- a_ops->invalidatepage() becomes ->invalidate_folio() and has a
similar type change.
- a_ops->launder_page() becomes ->launder_folio()
- a_ops->set_page_dirty() becomes ->dirty_folio() and adds the
address_space as an argument.
There are a couple of other misc changes up front that weren't worth
separating into their own pull request"
* tag 'folio-5.18b' of git://git.infradead.org/users/willy/pagecache: (53 commits)
fs: Remove aops ->set_page_dirty
fb_defio: Use noop_dirty_folio()
fs: Convert __set_page_dirty_no_writeback to noop_dirty_folio
fs: Convert __set_page_dirty_buffers to block_dirty_folio
nilfs: Convert nilfs_set_page_dirty() to nilfs_dirty_folio()
mm: Convert swap_set_page_dirty() to swap_dirty_folio()
ubifs: Convert ubifs_set_page_dirty to ubifs_dirty_folio
f2fs: Convert f2fs_set_node_page_dirty to f2fs_dirty_node_folio
f2fs: Convert f2fs_set_data_page_dirty to f2fs_dirty_data_folio
f2fs: Convert f2fs_set_meta_page_dirty to f2fs_dirty_meta_folio
afs: Convert afs_dir_set_page_dirty() to afs_dir_dirty_folio()
btrfs: Convert extent_range_redirty_for_io() to use folios
fs: Convert trivial uses of __set_page_dirty_nobuffers to filemap_dirty_folio
btrfs: Convert from set_page_dirty to dirty_folio
fscache: Convert fscache_set_page_dirty() to fscache_dirty_folio()
fs: Add aops->dirty_folio
fs: Remove aops->launder_page
orangefs: Convert launder_page to launder_folio
nfs: Convert from launder_page to launder_folio
fuse: Convert from launder_page to launder_folio
...
A lot of the underlying infrastructure in btrfs needs to be switched
over to folios, but this at least documents that invalidatepage can't
be passed a tail page.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Tested-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Acked-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Tested-by: Mike Marshall <hubcap@omnibond.com> # orangefs
Tested-by: David Howells <dhowells@redhat.com> # afs
We don't need a root here, we just need the btrfs_fs_info, we can just
get the specific roots we need from fs_info.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When a filesystem goes read-only due to an error, multiple errors tend
to be reported, some of which are knock-on failures. Logging fs_states,
in btrfs_handle_fs_error() and btrfs_printk() helps distinguish the
first error from subsequent messages which may only exist due to an
error state.
Under the new format, most initial errors will look like:
`BTRFS: error (device loop0) in ...`
while subsequent errors will begin with:
`error (device loop0: state E) in ...`
An initial transaction abort error will look like
`error (device loop0: state A) in ...`
and subsequent messages will contain
`(device loop0: state EA) in ...`
In addition to the error states we can also print other states that are
temporary, like remounting, device replace, or indicate a global state
that may affect functionality.
Now implemented:
E - filesystem error detected
A - transaction aborted
L - log tree errors
M - remounting in progress
R - device replace in progress
C - data checksums not verified (mounted with ignoredatacsums)
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The implementation resembles direct I/O: we have to flush any ordered
extents, invalidate the page cache, and do the io tree/delalloc/extent
map/ordered extent dance. From there, we can reuse the compression code
with a minor modification to distinguish the write from writeback. This
also creates inline extents when possible.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are 4 main cases:
1. Inline extents: we copy the data straight out of the extent buffer.
2. Hole/preallocated extents: we fill in zeroes.
3. Regular, uncompressed extents: we read the sectors we need directly
from disk.
4. Regular, compressed extents: we read the entire compressed extent
from disk and indicate what subset of the decompressed extent is in
the file.
This initial implementation simplifies a few things that can be improved
in the future:
- Cases 1, 3, and 4 allocate temporary memory to read into before
copying out to userspace.
- We don't do read repair, because it turns out that read repair is
currently broken for compressed data.
- We hold the inode lock during the operation.
Note that we don't need to hold the mmap lock. We may race with
btrfs_page_mkwrite() and read the old data from before the page was
dirtied:
btrfs_page_mkwrite btrfs_encoded_read
---------------------------------------------------
(enter) (enter)
btrfs_wait_ordered_range
lock_extent_bits
btrfs_page_set_dirty
unlock_extent_cached
(exit)
lock_extent_bits
read extent (dirty page hasn't been flushed,
so this is the old data)
unlock_extent_cached
(exit)
we read the old data from before the page was dirtied. But, that's true
even if we were to hold the mmap lock:
btrfs_page_mkwrite btrfs_encoded_read
-------------------------------------------------------------------
(enter) (enter)
btrfs_inode_lock(BTRFS_ILOCK_MMAP)
down_read(i_mmap_lock) (blocked)
btrfs_wait_ordered_range
lock_extent_bits
read extent (page hasn't been dirtied,
so this is the old data)
unlock_extent_cached
btrfs_inode_unlock(BTRFS_ILOCK_MMAP)
down_read(i_mmap_lock) returns
lock_extent_bits
btrfs_page_set_dirty
unlock_extent_cached
In other words, this is inherently racy, so it's fine that we return the
old data in this tiny window.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, we always reserve the same extent size in the file and extent
size on disk for delalloc because the former is the worst case for the
latter. For BTRFS_IOC_ENCODED_WRITE writes, we know the exact size of
the extent on disk, which may be less than or greater than (for
bookends) the size in the file. Add a disk_num_bytes parameter to
btrfs_delalloc_reserve_metadata() so that we can reserve the correct
amount of csum bytes. No functional change.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_csum_one_bio() loops over each filesystem block in the bio while
keeping a cursor of its current logical position in the file in order to
look up the ordered extent to add the checksums to. However, this
doesn't make much sense for compressed extents, as a sector on disk does
not correspond to a sector of decompressed file data. It happens to work
because:
1) the compressed bio always covers one ordered extent
2) the size of the bio is always less than the size of the ordered
extent
However, the second point will not always be true for encoded writes.
Let's add a boolean parameter to btrfs_csum_one_bio() to indicate that
it can assume that the bio only covers one ordered extent. Since we're
already changing the signature, let's get rid of the contig parameter
and make it implied by the offset parameter, similar to the change we
recently made to btrfs_lookup_bio_sums(). Additionally, let's rename
nr_sectors to blockcount to make it clear that it's the number of
filesystem blocks, not the number of 512-byte sectors.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The static_assert introduced in 6bab69c650 ("build_bug.h: add wrapper
for _Static_assert") has been supported by compilers for a long time
(gcc 4.6, clang 3.0) and can be used in header files. We don't need to
put BUILD_BUG_ON to random functions but rather keep it next to the
definition.
The exception here is the UAPI header btrfs_tree.h that could be
potentially included by userspace code and the static assert is not
defined (nor used in any other header).
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With extent tree v2 you will be able to create multiple csum, extent,
and free space trees. They will be used based on the block group, which
will now use the block_group_item->chunk_objectid to point to the set of
global roots that it will use. When allocating new block groups we'll
simply mod the gigabyte offset of the block group against the number of
global roots we have and that will be the block groups global id.
>From there we can take the bytenr that we're modifying in the respective
tree, look up the block group and get that block groups corresponding
global root id. From there we can get to the appropriate global root
for that bytenr.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This code adds the on disk structures for the block group root, which
will hold the block group items for extent tree v2.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This adds the initial definition of the EXTENT_TREE_V2 incompat feature
flag. This also hides the support behind CONFIG_BTRFS_DEBUG.
THIS IS A IN DEVELOPMENT FORMAT CHANGE, DO NOT USE UNLESS YOU ARE A
DEVELOPER OR A TESTER.
The format is in flux and will be added in stages, any fs will need to
be re-made between updates to the format.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We hit a bug with a recovering relocation on mount for one of our file
systems in production. I reproduced this locally by injecting errors
into snapshot delete with balance running at the same time. This
presented as an error while looking up an extent item
WARNING: CPU: 5 PID: 1501 at fs/btrfs/extent-tree.c:866 lookup_inline_extent_backref+0x647/0x680
CPU: 5 PID: 1501 Comm: btrfs-balance Not tainted 5.16.0-rc8+ #8
RIP: 0010:lookup_inline_extent_backref+0x647/0x680
RSP: 0018:ffffae0a023ab960 EFLAGS: 00010202
RAX: 0000000000000001 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 000000000000000c RDI: 0000000000000000
RBP: ffff943fd2a39b60 R08: 0000000000000000 R09: 0000000000000001
R10: 0001434088152de0 R11: 0000000000000000 R12: 0000000001d05000
R13: ffff943fd2a39b60 R14: ffff943fdb96f2a0 R15: ffff9442fc923000
FS: 0000000000000000(0000) GS:ffff944e9eb40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1157b1fca8 CR3: 000000010f092000 CR4: 0000000000350ee0
Call Trace:
<TASK>
insert_inline_extent_backref+0x46/0xd0
__btrfs_inc_extent_ref.isra.0+0x5f/0x200
? btrfs_merge_delayed_refs+0x164/0x190
__btrfs_run_delayed_refs+0x561/0xfa0
? btrfs_search_slot+0x7b4/0xb30
? btrfs_update_root+0x1a9/0x2c0
btrfs_run_delayed_refs+0x73/0x1f0
? btrfs_update_root+0x1a9/0x2c0
btrfs_commit_transaction+0x50/0xa50
? btrfs_update_reloc_root+0x122/0x220
prepare_to_merge+0x29f/0x320
relocate_block_group+0x2b8/0x550
btrfs_relocate_block_group+0x1a6/0x350
btrfs_relocate_chunk+0x27/0xe0
btrfs_balance+0x777/0xe60
balance_kthread+0x35/0x50
? btrfs_balance+0xe60/0xe60
kthread+0x16b/0x190
? set_kthread_struct+0x40/0x40
ret_from_fork+0x22/0x30
</TASK>
Normally snapshot deletion and relocation are excluded from running at
the same time by the fs_info->cleaner_mutex. However if we had a
pending balance waiting to get the ->cleaner_mutex, and a snapshot
deletion was running, and then the box crashed, we would come up in a
state where we have a half deleted snapshot.
Again, in the normal case the snapshot deletion needs to complete before
relocation can start, but in this case relocation could very well start
before the snapshot deletion completes, as we simply add the root to the
dead roots list and wait for the next time the cleaner runs to clean up
the snapshot.
Fix this by setting a bit on the fs_info if we have any DEAD_ROOT's that
had a pending drop_progress key. If they do then we know we were in the
middle of the drop operation and set a flag on the fs_info. Then
balance can wait until this flag is cleared to start up again.
If there are DEAD_ROOT's that don't have a drop_progress set then we're
safe to start balance right away as we'll be properly protected by the
cleaner_mutex.
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a big gap between inode_should_defrag() and autodefrag extent
size threshold. For inode_should_defrag() it has a flexible
@small_write value. For compressed extent is 16K, and for non-compressed
extent it's 64K.
However for autodefrag extent size threshold, it's always fixed to the
default value (256K).
This means, the following write sequence will trigger autodefrag to
defrag ranges which didn't trigger autodefrag:
pwrite 0 8k
sync
pwrite 8k 128K
sync
The latter 128K write will also be considered as a defrag target (if
other conditions are met). While only that 8K write is really
triggering autodefrag.
Such behavior can cause extra IO for autodefrag.
Close the gap, by copying the @small_write value into inode_defrag, so
that later autodefrag can use the same @small_write value which
triggered autodefrag.
With the existing transid value, this allows autodefrag really to scan
the ranges which triggered autodefrag.
Although this behavior change is mostly reducing the extent_thresh value
for autodefrag, I believe in the future we should allow users to specify
the autodefrag extent threshold through mount options, but that's an
other problem to consider in the future.
CC: stable@vger.kernel.org # 5.16+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After the recent changes made by commit c2e3930529 ("btrfs: clear
extent buffer uptodate when we fail to write it") and its followup fix,
commit 651740a502 ("btrfs: check WRITE_ERR when trying to read an
extent buffer"), we can now end up not cleaning up space reservations of
log tree extent buffers after a transaction abort happens, as well as not
cleaning up still dirty extent buffers.
This happens because if writeback for a log tree extent buffer failed,
then we have cleared the bit EXTENT_BUFFER_UPTODATE from the extent buffer
and we have also set the bit EXTENT_BUFFER_WRITE_ERR on it. Later on,
when trying to free the log tree with free_log_tree(), which iterates
over the tree, we can end up getting an -EIO error when trying to read
a node or a leaf, since read_extent_buffer_pages() returns -EIO if an
extent buffer does not have EXTENT_BUFFER_UPTODATE set and has the
EXTENT_BUFFER_WRITE_ERR bit set. Getting that -EIO means that we return
immediately as we can not iterate over the entire tree.
In that case we never update the reserved space for an extent buffer in
the respective block group and space_info object.
When this happens we get the following traces when unmounting the fs:
[174957.284509] BTRFS: error (device dm-0) in cleanup_transaction:1913: errno=-5 IO failure
[174957.286497] BTRFS: error (device dm-0) in free_log_tree:3420: errno=-5 IO failure
[174957.399379] ------------[ cut here ]------------
[174957.402497] WARNING: CPU: 2 PID: 3206883 at fs/btrfs/block-group.c:127 btrfs_put_block_group+0x77/0xb0 [btrfs]
[174957.407523] Modules linked in: btrfs overlay dm_zero (...)
[174957.424917] CPU: 2 PID: 3206883 Comm: umount Tainted: G W 5.16.0-rc5-btrfs-next-109 #1
[174957.426689] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[174957.428716] RIP: 0010:btrfs_put_block_group+0x77/0xb0 [btrfs]
[174957.429717] Code: 21 48 8b bd (...)
[174957.432867] RSP: 0018:ffffb70d41cffdd0 EFLAGS: 00010206
[174957.433632] RAX: 0000000000000001 RBX: ffff8b09c3848000 RCX: ffff8b0758edd1c8
[174957.434689] RDX: 0000000000000001 RSI: ffffffffc0b467e7 RDI: ffff8b0758edd000
[174957.436068] RBP: ffff8b0758edd000 R08: 0000000000000000 R09: 0000000000000000
[174957.437114] R10: 0000000000000246 R11: 0000000000000000 R12: ffff8b09c3848148
[174957.438140] R13: ffff8b09c3848198 R14: ffff8b0758edd188 R15: dead000000000100
[174957.439317] FS: 00007f328fb82800(0000) GS:ffff8b0a2d200000(0000) knlGS:0000000000000000
[174957.440402] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[174957.441164] CR2: 00007fff13563e98 CR3: 0000000404f4e005 CR4: 0000000000370ee0
[174957.442117] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[174957.443076] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[174957.443948] Call Trace:
[174957.444264] <TASK>
[174957.444538] btrfs_free_block_groups+0x255/0x3c0 [btrfs]
[174957.445238] close_ctree+0x301/0x357 [btrfs]
[174957.445803] ? call_rcu+0x16c/0x290
[174957.446250] generic_shutdown_super+0x74/0x120
[174957.446832] kill_anon_super+0x14/0x30
[174957.447305] btrfs_kill_super+0x12/0x20 [btrfs]
[174957.447890] deactivate_locked_super+0x31/0xa0
[174957.448440] cleanup_mnt+0x147/0x1c0
[174957.448888] task_work_run+0x5c/0xa0
[174957.449336] exit_to_user_mode_prepare+0x1e5/0x1f0
[174957.449934] syscall_exit_to_user_mode+0x16/0x40
[174957.450512] do_syscall_64+0x48/0xc0
[174957.450980] entry_SYSCALL_64_after_hwframe+0x44/0xae
[174957.451605] RIP: 0033:0x7f328fdc4a97
[174957.452059] Code: 03 0c 00 f7 (...)
[174957.454320] RSP: 002b:00007fff13564ec8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[174957.455262] RAX: 0000000000000000 RBX: 00007f328feea264 RCX: 00007f328fdc4a97
[174957.456131] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000560b8ae51dd0
[174957.457118] RBP: 0000560b8ae51ba0 R08: 0000000000000000 R09: 00007fff13563c40
[174957.458005] R10: 00007f328fe49fc0 R11: 0000000000000246 R12: 0000000000000000
[174957.459113] R13: 0000560b8ae51dd0 R14: 0000560b8ae51cb0 R15: 0000000000000000
[174957.460193] </TASK>
[174957.460534] irq event stamp: 0
[174957.461003] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[174957.461947] hardirqs last disabled at (0): [<ffffffffb0e94214>] copy_process+0x934/0x2040
[174957.463147] softirqs last enabled at (0): [<ffffffffb0e94214>] copy_process+0x934/0x2040
[174957.465116] softirqs last disabled at (0): [<0000000000000000>] 0x0
[174957.466323] ---[ end trace bc7ee0c490bce3af ]---
[174957.467282] ------------[ cut here ]------------
[174957.468184] WARNING: CPU: 2 PID: 3206883 at fs/btrfs/block-group.c:3976 btrfs_free_block_groups+0x330/0x3c0 [btrfs]
[174957.470066] Modules linked in: btrfs overlay dm_zero (...)
[174957.483137] CPU: 2 PID: 3206883 Comm: umount Tainted: G W 5.16.0-rc5-btrfs-next-109 #1
[174957.484691] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[174957.486853] RIP: 0010:btrfs_free_block_groups+0x330/0x3c0 [btrfs]
[174957.488050] Code: 00 00 00 ad de (...)
[174957.491479] RSP: 0018:ffffb70d41cffde0 EFLAGS: 00010206
[174957.492520] RAX: ffff8b08d79310b0 RBX: ffff8b09c3848000 RCX: 0000000000000000
[174957.493868] RDX: 0000000000000001 RSI: fffff443055ee600 RDI: ffffffffb1131846
[174957.495183] RBP: ffff8b08d79310b0 R08: 0000000000000000 R09: 0000000000000000
[174957.496580] R10: 0000000000000001 R11: 0000000000000000 R12: ffff8b08d7931000
[174957.498027] R13: ffff8b09c38492b0 R14: dead000000000122 R15: dead000000000100
[174957.499438] FS: 00007f328fb82800(0000) GS:ffff8b0a2d200000(0000) knlGS:0000000000000000
[174957.500990] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[174957.502117] CR2: 00007fff13563e98 CR3: 0000000404f4e005 CR4: 0000000000370ee0
[174957.503513] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[174957.504864] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[174957.506167] Call Trace:
[174957.506654] <TASK>
[174957.507047] close_ctree+0x301/0x357 [btrfs]
[174957.507867] ? call_rcu+0x16c/0x290
[174957.508567] generic_shutdown_super+0x74/0x120
[174957.509447] kill_anon_super+0x14/0x30
[174957.510194] btrfs_kill_super+0x12/0x20 [btrfs]
[174957.511123] deactivate_locked_super+0x31/0xa0
[174957.511976] cleanup_mnt+0x147/0x1c0
[174957.512610] task_work_run+0x5c/0xa0
[174957.513309] exit_to_user_mode_prepare+0x1e5/0x1f0
[174957.514231] syscall_exit_to_user_mode+0x16/0x40
[174957.515069] do_syscall_64+0x48/0xc0
[174957.515718] entry_SYSCALL_64_after_hwframe+0x44/0xae
[174957.516688] RIP: 0033:0x7f328fdc4a97
[174957.517413] Code: 03 0c 00 f7 d8 (...)
[174957.521052] RSP: 002b:00007fff13564ec8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[174957.522514] RAX: 0000000000000000 RBX: 00007f328feea264 RCX: 00007f328fdc4a97
[174957.523950] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000560b8ae51dd0
[174957.525375] RBP: 0000560b8ae51ba0 R08: 0000000000000000 R09: 00007fff13563c40
[174957.526763] R10: 00007f328fe49fc0 R11: 0000000000000246 R12: 0000000000000000
[174957.528058] R13: 0000560b8ae51dd0 R14: 0000560b8ae51cb0 R15: 0000000000000000
[174957.529404] </TASK>
[174957.529843] irq event stamp: 0
[174957.530256] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[174957.531061] hardirqs last disabled at (0): [<ffffffffb0e94214>] copy_process+0x934/0x2040
[174957.532075] softirqs last enabled at (0): [<ffffffffb0e94214>] copy_process+0x934/0x2040
[174957.533083] softirqs last disabled at (0): [<0000000000000000>] 0x0
[174957.533865] ---[ end trace bc7ee0c490bce3b0 ]---
[174957.534452] BTRFS info (device dm-0): space_info 4 has 1070841856 free, is not full
[174957.535404] BTRFS info (device dm-0): space_info total=1073741824, used=2785280, pinned=0, reserved=49152, may_use=0, readonly=65536 zone_unusable=0
[174957.537029] BTRFS info (device dm-0): global_block_rsv: size 0 reserved 0
[174957.537859] BTRFS info (device dm-0): trans_block_rsv: size 0 reserved 0
[174957.538697] BTRFS info (device dm-0): chunk_block_rsv: size 0 reserved 0
[174957.539552] BTRFS info (device dm-0): delayed_block_rsv: size 0 reserved 0
[174957.540403] BTRFS info (device dm-0): delayed_refs_rsv: size 0 reserved 0
This also means that in case we have log tree extent buffers that are
still dirty, we can end up not cleaning them up in case we find an
extent buffer with EXTENT_BUFFER_WRITE_ERR set on it, as in that case
we have no way for iterating over the rest of the tree.
This issue is very often triggered with test cases generic/475 and
generic/648 from fstests.
The issue could almost be fixed by iterating over the io tree attached to
each log root which keeps tracks of the range of allocated extent buffers,
log_root->dirty_log_pages, however that does not work and has some
inconveniences:
1) After we sync the log, we clear the range of the extent buffers from
the io tree, so we can't find them after writeback. We could keep the
ranges in the io tree, with a separate bit to signal they represent
extent buffers already written, but that means we need to hold into
more memory until the transaction commits.
How much more memory is used depends a lot on whether we are able to
allocate contiguous extent buffers on disk (and how often) for a log
tree - if we are able to, then a single extent state record can
represent multiple extent buffers, otherwise we need multiple extent
state record structures to track each extent buffer.
In fact, my earlier approach did that:
https://lore.kernel.org/linux-btrfs/3aae7c6728257c7ce2279d6660ee2797e5e34bbd.1641300250.git.fdmanana@suse.com/
However that can cause a very significant negative impact on
performance, not only due to the extra memory usage but also because
we get a larger and deeper dirty_log_pages io tree.
We got a report that, on beefy machines at least, we can get such
performance drop with fsmark for example:
https://lore.kernel.org/linux-btrfs/20220117082426.GE32491@xsang-OptiPlex-9020/
2) We would be doing it only to deal with an unexpected and exceptional
case, which is basically failure to read an extent buffer from disk
due to IO failures. On a healthy system we don't expect transaction
aborts to happen after all;
3) Instead of relying on iterating the log tree or tracking the ranges
of extent buffers in the dirty_log_pages io tree, using the radix
tree that tracks extent buffers (fs_info->buffer_radix) to find all
log tree extent buffers is not reliable either, because after writeback
of an extent buffer it can be evicted from memory by the release page
callback of the btree inode (btree_releasepage()).
Since there's no way to be able to properly cleanup a log tree without
being able to read its extent buffers from disk and without using more
memory to track the logical ranges of the allocated extent buffers do
the following:
1) When we fail to cleanup a log tree, setup a flag that indicates that
failure;
2) Trigger writeback of all log tree extent buffers that are still dirty,
and wait for the writeback to complete. This is just to cleanup their
state, page states, page leaks, etc;
3) When unmounting the fs, ignore if the number of bytes reserved in a
block group and in a space_info is not 0 if, and only if, we failed to
cleanup a log tree. Also ignore only for metadata block groups and the
metadata space_info object.
This is far from a perfect solution, but it serves to silence test
failures such as those from generic/475 and generic/648. However having
a non-zero value for the reserved bytes counters on unmount after a
transaction abort, is not such a terrible thing and it's completely
harmless, it does not affect the filesystem integrity in any way.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently there is only one user for btrfs metadata readahead, and
that's scrub.
But even for the single user, it's not providing the correct
functionality it needs, as scrub needs reada for commit root, which
current readahead can't provide. (Although it's pretty easy to add such
feature).
Despite this, there are some extra problems related to metadata
readahead:
- Duplicated feature with btrfs_path::reada
- Partly duplicated feature of btrfs_fs_info::buffer_radix
Btrfs already caches its metadata in buffer_radix, while readahead
tries to read the tree block no matter if it's already cached.
- Poor layer separation
Metadata readahead works kinda at device level.
This is definitely not the correct layer it should be, since metadata
is at btrfs logical address space, it should not bother device at all.
This brings extra chance for bugs to sneak in, while brings
unnecessary complexity.
- Dead code
In the very beginning of scrub.c we have #undef DEBUG, rendering all
the debug related code useless and unable to test.
Thus here I purpose to remove the metadata readahead mechanism
completely.
[BENCHMARK]
There is a full benchmark for the scrub performance difference using the
old btrfs_reada_add() and btrfs_path::reada.
For the worst case (no dirty metadata, slow HDD), there could be a 5%
performance drop for scrub.
For other cases (even SATA SSD), there is no distinguishable performance
difference.
The number is reported scrub speed, in MiB/s.
The resolution is limited by the reported duration, which only has a
resolution of 1 second.
Old New Diff
SSD 455.3 466.332 +2.42%
HDD 103.927 98.012 -5.69%
Comprehensive test methodology is in the cover letter of the patch.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is an inode item related manipulation with a few vfs related
adjustments. I'm going to remove the vfs related code from this helper
and simplify it a lot, but I want those changes to be easily seen via
git blame, so move this function now and then the simplification work
can be done.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a few helpers in inode-item.c, and I'm going to make a few
changes to how we do truncate in the future, so break out these
definitions into their own header file to trim down ctree.h some and
make it easier to do the work on truncate in the future.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Current set of exclusive operation states is not sufficient to handle
all practical use cases. In particular there is a need to be able to add
a device to a filesystem that have paused balance. Currently there is no
way to distinguish between a running and a paused balance. Fix this by
introducing BTRFS_EXCLOP_BALANCE_PAUSED which is going to be set in 2
occasions:
1. When a filesystem is mounted with skip_balance and there is an
unfinished balance it will now be into BALANCE_PAUSED instead of
simply BALANCE state.
2. When a running balance is paused.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't allow send and balance/relocation to run in parallel in order
to prevent send failing or silently producing some bad stream. This is
because while send is using an extent (specially metadata) or about to
read a metadata extent and expecting it belongs to a specific parent
node, relocation can run, the transaction used for the relocation is
committed and the extent gets reallocated while send is still using the
extent, so it ends up with a different content than expected. This can
result in just failing to read a metadata extent due to failure of the
validation checks (parent transid, level, etc), failure to find a
backreference for a data extent, and other unexpected failures. Besides
reallocation, there's also a similar problem of an extent getting
discarded when it's unpinned after the transaction used for block group
relocation is committed.
The restriction between balance and send was added in commit 9e967495e0
("Btrfs: prevent send failures and crashes due to concurrent relocation"),
kernel 5.3, while the more general restriction between send and relocation
was added in commit 1cea5cf0e6 ("btrfs: ensure relocation never runs
while we have send operations running"), kernel 5.14.
Both send and relocation can be very long running operations. Relocation
because it has to do a lot of IO and expensive backreference lookups in
case there are many snapshots, and send due to read IO when operating on
very large trees. This makes it inconvenient for users and tools to deal
with scheduling both operations.
For zoned filesystem we also have automatic block group relocation, so
send can fail with -EAGAIN when users least expect it or send can end up
delaying the block group relocation for too long. In the future we might
also get the automatic block group relocation for non zoned filesystems.
This change makes it possible for send and relocation to run in parallel.
This is achieved the following way:
1) For all tree searches, send acquires a read lock on the commit root
semaphore;
2) After each tree search, and before releasing the commit root semaphore,
the leaf is cloned and placed in the search path (struct btrfs_path);
3) After releasing the commit root semaphore, the changed_cb() callback
is invoked, which operates on the leaf and writes commands to the pipe
(or file in case send/receive is not used with a pipe). It's important
here to not hold a lock on the commit root semaphore, because if we did
we could deadlock when sending and receiving to the same filesystem
using a pipe - the send task blocks on the pipe because it's full, the
receive task, which is the only consumer of the pipe, triggers a
transaction commit when attempting to create a subvolume or reserve
space for a write operation for example, but the transaction commit
blocks trying to write lock the commit root semaphore, resulting in a
deadlock;
4) Before moving to the next key, or advancing to the next change in case
of an incremental send, check if a transaction used for relocation was
committed (or is about to finish its commit). If so, release the search
path(s) and restart the search, to where we were before, so that we
don't operate on stale extent buffers. The search restarts are always
possible because both the send and parent roots are RO, and no one can
add, remove of update keys (change their offset) in RO trees - the
only exception is deduplication, but that is still not allowed to run
in parallel with send;
5) Periodically check if there is contention on the commit root semaphore,
which means there is a transaction commit trying to write lock it, and
release the semaphore and reschedule if there is contention, so as to
avoid causing any significant delays to transaction commits.
This leaves some room for optimizations for send to have less path
releases and re searching the trees when there's relocation running, but
for now it's kept simple as it performs quite well (on very large trees
with resulting send streams in the order of a few hundred gigabytes).
Test case btrfs/187, from fstests, stresses relocation, send and
deduplication attempting to run in parallel, but without verifying if send
succeeds and if it produces correct streams. A new test case will be added
that exercises relocation happening in parallel with send and then checks
that send succeeds and the resulting streams are correct.
A final note is that for now this still leaves the mutual exclusion
between send operations and deduplication on files belonging to a root
used by send operations. A solution for that will be slightly more complex
but it will eventually be built on top of this change.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the future we are going to have multiple copies of these trees. To
facilitate this we need a way to lookup the different roots we are
looking for. Handle this by adding a global root rb tree that is
indexed on the root->root_key. Then instead of loading the roots at
mount time with individually targeted keys, simply search the tree_root
for anything with the specific objectid we want. This will make it
straightforward to support both old style and new style file systems.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're going to have multiple free space roots in the future, so adjust
all the users of the free space root to use a helper to access the root.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are going to have multiple csum roots in the future, so convert all
users of ->csum_root to btrfs_csum_root() and rename ->csum_root to
->_csum_root so we can easily find remaining users in the future.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a few places where we skip doing csums if we mounted with one of
the rescue options that ignores bad csum roots. In the future when
there are multiple csum roots it'll be costly to check and see if there
are any missing csum roots, so simply add a flag to indicate the fs
should skip loading csums in case of errors.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we start having multiple extent roots we'll need to use a helper to
get to the correct extent_root. Rename fs_info->extent_root to
_extent_root and convert all of the users of the extent root to using
the btrfs_extent_root() helper. This will allow us to easily clean up
the remaining direct accesses in the future.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we do this awful thing where we get another ref on a trans
handle, async off that handle and commit the transaction from that work.
Because we do this we have to mess with current->journal_info and the
freeze counting stuff.
We already have an async thing to kick for the transaction commit, the
transaction kthread. Replace this work struct with a flag on the
fs_info to tell the kthread to go ahead and commit even if it's before
our timeout. Then we can drastically simplify the async transaction
commit path.
Note: this can be simplified and functionality based on the pending
operation COMMIT.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
[ add note ]
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is no longer used, the -o nobarrier is handled by
BTRFS_MOUNT_NOBARRIER. Remove the flag.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we don't care about the stage of the orphan_cleanup_state,
simply replace it with a bit on ->state to make sure we don't call the
orphan cleanup every time we wander into this root.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The name btrfs_item_end_nr() is a bit of a misnomer, as it's actually
the offset of the end of the data the item points to. In fact all of
the helpers that we use btrfs_item_end_nr() use data in their name, like
BTRFS_LEAF_DATA_SIZE() and leaf_data(). Rename to btrfs_item_data_end()
to make it clear what this helper is giving us.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're only using btrfs_item_end() from btrfs_item_end_nr(), so this can
be collapsed.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all call sites are using the slot number to modify item values,
rename the SETGET helpers to raw_item_*(), and then rework the _nr()
helpers to be the btrfs_item_*() btrfs_set_item_*() helpers, and then
rename all of the callers to the new helpers.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The last remaining place where we have the pattern of
item = btrfs_item_nr(slot)
<do something with the item>
are the token helpers. Handle this by introducing token helpers that
will do the btrfs_item_nr() work inside of the helper itself, and then
convert all users of the btrfs_item token helpers to the new _nr()
variants.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of getting the btrfs_item for this, simply pass in the slot of
the item and then use the btrfs_item_size_nr() helper inside of
btrfs_file_extent_inline_item_len().
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have the pattern of
item = btrfs_item_nr(slot);
btrfs_set_item_*(leaf, item);
in a bunch of places in our code. Fix this by adding
btrfs_set_item_*_nr() helpers which will do the appropriate work, and
replace those calls with
btrfs_set_item_*_nr(leaf, slot);
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When creating a subvolume, at ioctl.c:create_subvol(), if we fail to
insert the new root's root item into the root tree, we are freeing the
metadata extent we reserved for the new root to prevent a metadata
extent leak, as we don't abort the transaction at that point (since
there is nothing at that point that is irreversible).
However we allocated the metadata extent for the new root which we are
creating for the new subvolume, so its delayed reference refers to the
ID of this new root. But when we free the metadata extent we pass the
root of the subvolume where the new subvolume is located to
btrfs_free_tree_block() - this is incorrect because this will generate
a delayed reference that refers to the ID of the parent subvolume's root,
and not to ID of the new root.
This results in a failure when running delayed references that leads to
a transaction abort and a trace like the following:
[3868.738042] RIP: 0010:__btrfs_free_extent+0x709/0x950 [btrfs]
[3868.739857] Code: 68 0f 85 e6 fb ff (...)
[3868.742963] RSP: 0018:ffffb0e9045cf910 EFLAGS: 00010246
[3868.743908] RAX: 00000000fffffffe RBX: 00000000fffffffe RCX: 0000000000000002
[3868.745312] RDX: 00000000fffffffe RSI: 0000000000000002 RDI: ffff90b0cd793b88
[3868.746643] RBP: 000000000e5d8000 R08: 0000000000000000 R09: ffff90b0cd793b88
[3868.747979] R10: 0000000000000002 R11: 00014ded97944d68 R12: 0000000000000000
[3868.749373] R13: ffff90b09afe4a28 R14: 0000000000000000 R15: ffff90b0cd793b88
[3868.750725] FS: 00007f281c4a8b80(0000) GS:ffff90b3ada00000(0000) knlGS:0000000000000000
[3868.752275] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[3868.753515] CR2: 00007f281c6a5000 CR3: 0000000108a42006 CR4: 0000000000370ee0
[3868.754869] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[3868.756228] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[3868.757803] Call Trace:
[3868.758281] <TASK>
[3868.758655] ? btrfs_merge_delayed_refs+0x178/0x1c0 [btrfs]
[3868.759827] __btrfs_run_delayed_refs+0x2b1/0x1250 [btrfs]
[3868.761047] btrfs_run_delayed_refs+0x86/0x210 [btrfs]
[3868.762069] ? lock_acquired+0x19f/0x420
[3868.762829] btrfs_commit_transaction+0x69/0xb20 [btrfs]
[3868.763860] ? _raw_spin_unlock+0x29/0x40
[3868.764614] ? btrfs_block_rsv_release+0x1c2/0x1e0 [btrfs]
[3868.765870] create_subvol+0x1d8/0x9a0 [btrfs]
[3868.766766] btrfs_mksubvol+0x447/0x4c0 [btrfs]
[3868.767669] ? preempt_count_add+0x49/0xa0
[3868.768444] __btrfs_ioctl_snap_create+0x123/0x190 [btrfs]
[3868.769639] ? _copy_from_user+0x66/0xa0
[3868.770391] btrfs_ioctl_snap_create_v2+0xbb/0x140 [btrfs]
[3868.771495] btrfs_ioctl+0xd1e/0x35c0 [btrfs]
[3868.772364] ? __slab_free+0x10a/0x360
[3868.773198] ? rcu_read_lock_sched_held+0x12/0x60
[3868.774121] ? lock_release+0x223/0x4a0
[3868.774863] ? lock_acquired+0x19f/0x420
[3868.775634] ? rcu_read_lock_sched_held+0x12/0x60
[3868.776530] ? trace_hardirqs_on+0x1b/0xe0
[3868.777373] ? _raw_spin_unlock_irqrestore+0x3e/0x60
[3868.778280] ? kmem_cache_free+0x321/0x3c0
[3868.779011] ? __x64_sys_ioctl+0x83/0xb0
[3868.779718] __x64_sys_ioctl+0x83/0xb0
[3868.780387] do_syscall_64+0x3b/0xc0
[3868.781059] entry_SYSCALL_64_after_hwframe+0x44/0xae
[3868.781953] RIP: 0033:0x7f281c59e957
[3868.782585] Code: 3c 1c 48 f7 d8 4c (...)
[3868.785867] RSP: 002b:00007ffe1f83e2b8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
[3868.787198] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f281c59e957
[3868.788450] RDX: 00007ffe1f83e2c0 RSI: 0000000050009418 RDI: 0000000000000003
[3868.789748] RBP: 00007ffe1f83f300 R08: 0000000000000000 R09: 00007ffe1f83fe36
[3868.791214] R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000003
[3868.792468] R13: 0000000000000003 R14: 00007ffe1f83e2c0 R15: 00000000000003cc
[3868.793765] </TASK>
[3868.794037] irq event stamp: 0
[3868.794548] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[3868.795670] hardirqs last disabled at (0): [<ffffffff98294214>] copy_process+0x934/0x2040
[3868.797086] softirqs last enabled at (0): [<ffffffff98294214>] copy_process+0x934/0x2040
[3868.798309] softirqs last disabled at (0): [<0000000000000000>] 0x0
[3868.799284] ---[ end trace be24c7002fe27747 ]---
[3868.799928] BTRFS info (device dm-0): leaf 241188864 gen 1268 total ptrs 214 free space 469 owner 2
[3868.801133] BTRFS info (device dm-0): refs 2 lock_owner 225627 current 225627
[3868.802056] item 0 key (237436928 169 0) itemoff 16250 itemsize 33
[3868.802863] extent refs 1 gen 1265 flags 2
[3868.803447] ref#0: tree block backref root 1610
(...)
[3869.064354] item 114 key (241008640 169 0) itemoff 12488 itemsize 33
[3869.065421] extent refs 1 gen 1268 flags 2
[3869.066115] ref#0: tree block backref root 1689
(...)
[3869.403834] BTRFS error (device dm-0): unable to find ref byte nr 241008640 parent 0 root 1622 owner 0 offset 0
[3869.405641] BTRFS: error (device dm-0) in __btrfs_free_extent:3076: errno=-2 No such entry
[3869.407138] BTRFS: error (device dm-0) in btrfs_run_delayed_refs:2159: errno=-2 No such entry
Fix this by passing the new subvolume's root ID to btrfs_free_tree_block().
This requires changing the root argument of btrfs_free_tree_block() from
struct btrfs_root * to a u64, since at this point during the subvolume
creation we have not yet created the struct btrfs_root for the new
subvolume, and btrfs_free_tree_block() only needs a root ID and nothing
else from a struct btrfs_root.
This was triggered by test case generic/475 from fstests.
Fixes: 67addf2900 ("btrfs: fix metadata extent leak after failure to create subvolume")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The root argument passed to btrfs_unlink_inode() and its callee,
__btrfs_unlink_inode(), always matches the root of the given directory and
the given inode. So remove the argument and make __btrfs_unlink_inode()
use the root of the directory.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's a common practice to avoid use sizeof(struct btrfs_super_block)
(3531), but to use BTRFS_SUPER_INFO_SIZE (4096).
The problem is that, sizeof(struct btrfs_super_block) doesn't match
BTRFS_SUPER_INFO_SIZE from the very beginning.
Furthermore, for all call sites except selftests, we always allocate
BTRFS_SUPER_INFO_SIZE space for super block, there isn't any real reason
to use the smaller value, and it doesn't really save any space.
So let's get rid of such confusing behavior, and unify those two values.
This modification also adds a new static_assert() to verify the size,
and moves the BTRFS_SUPER_INFO_* macros to the definition of
btrfs_super_block for the static_assert().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>