There is a race with multi-threaded applications between context switch and
pagetable upgrade. In switch_mm() a new user_asce is built from mm->pgd and
mm->context.asce_bits, w/o holding any locks. A concurrent mmap with a
pagetable upgrade on another thread in crst_table_upgrade() could already
have set new asce_bits, but not yet the new mm->pgd. This would result in a
corrupt user_asce in switch_mm(), and eventually in a kernel panic from a
translation exception.
Fix this by storing the complete asce instead of just the asce_bits, which
can then be read atomically from switch_mm(), so that it either sees the
old value or the new value, but no mixture. Both cases are OK. Having the
old value would result in a page fault on access to the higher level memory,
but the fault handler would see the new mm->pgd, if it was a valid access
after the mmap on the other thread has completed. So as worst-case scenario
we would have a page fault loop for the racing thread until the next time
slice.
Also remove dead code and simplify the upgrade/downgrade path, there are no
upgrades from 2 levels, and only downgrades from 3 levels for compat tasks.
There are also no concurrent upgrades, because the mmap_sem is held with
down_write() in do_mmap, so the flush and table checks during upgrade can
be removed.
Reported-by: Michael Munday <munday@ca.ibm.com>
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Pull x86 protection key support from Ingo Molnar:
"This tree adds support for a new memory protection hardware feature
that is available in upcoming Intel CPUs: 'protection keys' (pkeys).
There's a background article at LWN.net:
https://lwn.net/Articles/643797/
The gist is that protection keys allow the encoding of
user-controllable permission masks in the pte. So instead of having a
fixed protection mask in the pte (which needs a system call to change
and works on a per page basis), the user can map a (handful of)
protection mask variants and can change the masks runtime relatively
cheaply, without having to change every single page in the affected
virtual memory range.
This allows the dynamic switching of the protection bits of large
amounts of virtual memory, via user-space instructions. It also
allows more precise control of MMU permission bits: for example the
executable bit is separate from the read bit (see more about that
below).
This tree adds the MM infrastructure and low level x86 glue needed for
that, plus it adds a high level API to make use of protection keys -
if a user-space application calls:
mmap(..., PROT_EXEC);
or
mprotect(ptr, sz, PROT_EXEC);
(note PROT_EXEC-only, without PROT_READ/WRITE), the kernel will notice
this special case, and will set a special protection key on this
memory range. It also sets the appropriate bits in the Protection
Keys User Rights (PKRU) register so that the memory becomes unreadable
and unwritable.
So using protection keys the kernel is able to implement 'true'
PROT_EXEC on x86 CPUs: without protection keys PROT_EXEC implies
PROT_READ as well. Unreadable executable mappings have security
advantages: they cannot be read via information leaks to figure out
ASLR details, nor can they be scanned for ROP gadgets - and they
cannot be used by exploits for data purposes either.
We know about no user-space code that relies on pure PROT_EXEC
mappings today, but binary loaders could start making use of this new
feature to map binaries and libraries in a more secure fashion.
There is other pending pkeys work that offers more high level system
call APIs to manage protection keys - but those are not part of this
pull request.
Right now there's a Kconfig that controls this feature
(CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) that is default enabled
(like most x86 CPU feature enablement code that has no runtime
overhead), but it's not user-configurable at the moment. If there's
any serious problem with this then we can make it configurable and/or
flip the default"
* 'mm-pkeys-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits)
x86/mm/pkeys: Fix mismerge of protection keys CPUID bits
mm/pkeys: Fix siginfo ABI breakage caused by new u64 field
x86/mm/pkeys: Fix access_error() denial of writes to write-only VMA
mm/core, x86/mm/pkeys: Add execute-only protection keys support
x86/mm/pkeys: Create an x86 arch_calc_vm_prot_bits() for VMA flags
x86/mm/pkeys: Allow kernel to modify user pkey rights register
x86/fpu: Allow setting of XSAVE state
x86/mm: Factor out LDT init from context init
mm/core, x86/mm/pkeys: Add arch_validate_pkey()
mm/core, arch, powerpc: Pass a protection key in to calc_vm_flag_bits()
x86/mm/pkeys: Actually enable Memory Protection Keys in the CPU
x86/mm/pkeys: Add Kconfig prompt to existing config option
x86/mm/pkeys: Dump pkey from VMA in /proc/pid/smaps
x86/mm/pkeys: Dump PKRU with other kernel registers
mm/core, x86/mm/pkeys: Differentiate instruction fetches
x86/mm/pkeys: Optimize fault handling in access_error()
mm/core: Do not enforce PKEY permissions on remote mm access
um, pkeys: Add UML arch_*_access_permitted() methods
mm/gup, x86/mm/pkeys: Check VMAs and PTEs for protection keys
x86/mm/gup: Simplify get_user_pages() PTE bit handling
...
The fork of a process with four page table levels is broken since
git commit 6252d702c5 "[S390] dynamic page tables."
All new mm contexts are created with three page table levels and
an asce limit of 4TB. If the parent has four levels dup_mmap will
add vmas to the new context which are outside of the asce limit.
The subsequent call to copy_page_range will walk the three level
page table structure of the new process with non-zero pgd and pud
indexes. This leads to memory clobbers as the pgd_index *and* the
pud_index is added to the mm->pgd pointer without a pgd_deref
in between.
The init_new_context() function is selecting the number of page
table levels for a new context. The function is used by mm_init()
which in turn is called by dup_mm() and mm_alloc(). These two are
used by fork() and exec(). The init_new_context() function can
distinguish the two cases by looking at mm->context.asce_limit,
for fork() the mm struct has been copied and the number of page
table levels may not change. For exec() the mm_alloc() function
set the new mm structure to zero, in this case a three-level page
table is created as the temporary stack space is located at
STACK_TOP_MAX = 4TB.
This fixes CVE-2016-2143.
Reported-by: Marcin Kościelnicki <koriakin@0x04.net>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: stable@vger.kernel.org
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
As discussed earlier, we attempt to enforce protection keys in
software.
However, the code checks all faults to ensure that they are not
violating protection key permissions. It was assumed that all
faults are either write faults where we check PKRU[key].WD (write
disable) or read faults where we check the AD (access disable)
bit.
But, there is a third category of faults for protection keys:
instruction faults. Instruction faults never run afoul of
protection keys because they do not affect instruction fetches.
So, plumb the PF_INSTR bit down in to the
arch_vma_access_permitted() function where we do the protection
key checks.
We also add a new FAULT_FLAG_INSTRUCTION. This is because
handle_mm_fault() is not passed the architecture-specific
error_code where we keep PF_INSTR, so we need to encode the
instruction fetch information in to the arch-generic fault
flags.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20160212210224.96928009@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We try to enforce protection keys in software the same way that we
do in hardware. (See long example below).
But, we only want to do this when accessing our *own* process's
memory. If GDB set PKRU[6].AD=1 (disable access to PKEY 6), then
tried to PTRACE_POKE a target process which just happened to have
some mprotect_pkey(pkey=6) memory, we do *not* want to deny the
debugger access to that memory. PKRU is fundamentally a
thread-local structure and we do not want to enforce it on access
to _another_ thread's data.
This gets especially tricky when we have workqueues or other
delayed-work mechanisms that might run in a random process's context.
We can check that we only enforce pkeys when operating on our *own* mm,
but delayed work gets performed when a random user context is active.
We might end up with a situation where a delayed-work gup fails when
running randomly under its "own" task but succeeds when running under
another process. We want to avoid that.
To avoid that, we use the new GUP flag: FOLL_REMOTE and add a
fault flag: FAULT_FLAG_REMOTE. They indicate that we are
walking an mm which is not guranteed to be the same as
current->mm and should not be subject to protection key
enforcement.
Thanks to Jerome Glisse for pointing out this scenario.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dominik Dingel <dingel@linux.vnet.ibm.com>
Cc: Dominik Vogt <vogt@linux.vnet.ibm.com>
Cc: Eric B Munson <emunson@akamai.com>
Cc: Geliang Tang <geliangtang@163.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Low <jason.low2@hp.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Shachar Raindel <raindel@mellanox.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xie XiuQi <xiexiuqi@huawei.com>
Cc: iommu@lists.linux-foundation.org
Cc: linux-arch@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: linux-s390@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Today, for normal faults and page table walks, we check the VMA
and/or PTE to ensure that it is compatible with the action. For
instance, if we get a write fault on a non-writeable VMA, we
SIGSEGV.
We try to do the same thing for protection keys. Basically, we
try to make sure that if a user does this:
mprotect(ptr, size, PROT_NONE);
*ptr = foo;
they see the same effects with protection keys when they do this:
mprotect(ptr, size, PROT_READ|PROT_WRITE);
set_pkey(ptr, size, 4);
wrpkru(0xffffff3f); // access disable pkey 4
*ptr = foo;
The state to do that checking is in the VMA, but we also
sometimes have to do it on the page tables only, like when doing
a get_user_pages_fast() where we have no VMA.
We add two functions and expose them to generic code:
arch_pte_access_permitted(pte_flags, write)
arch_vma_access_permitted(vma, write)
These are, of course, backed up in x86 arch code with checks
against the PTE or VMA's protection key.
But, there are also cases where we do not want to respect
protection keys. When we ptrace(), for instance, we do not want
to apply the tracer's PKRU permissions to the PTEs from the
process being traced.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: David Hildenbrand <dahi@linux.vnet.ibm.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dominik Dingel <dingel@linux.vnet.ibm.com>
Cc: Dominik Vogt <vogt@linux.vnet.ibm.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Low <jason.low2@hp.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Shachar Raindel <raindel@mellanox.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: linux-arch@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: linux-s390@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Link: http://lkml.kernel.org/r/20160212210219.14D5D715@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Replacing a 2K page table with a 4K page table while a VMA is active
for the affected memory region is fundamentally broken. Rip out the
page table reallocation code and replace it with a simple system
control 'vm.allocate_pgste'. If the system control is set the page
tables for all processes are allocated as full 4K pages, even for
processes that do not need it.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Remove the 31 bit support in order to reduce maintenance cost and
effectively remove dead code. Since a couple of years there is no
distribution left that comes with a 31 bit kernel.
The 31 bit kernel also has been broken since more than a year before
anybody noticed. In addition I added a removal warning to the kernel
shown at ipl for 5 minutes: a960062e58 ("s390: add 31 bit warning
message") which let everybody know about the plan to remove 31 bit
code. We didn't get any response.
Given that the last 31 bit only machine was introduced in 1999 let's
remove the code.
Anybody with 31 bit user space code can still use the compat mode.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The switch_mm function does nothing in case the prev and next mm
are the same. It can happen that a crst_table_downgrade has changed
the top-level pgd in the meantime on a different CPU. Always store
the new ASCE to be picked up in entry.S.
[heiko.carstens@de.ibm.com]: Bug was introduced with git commit
53e857f308 ("s390/mm,tlb: race of lazy TLB flush vs. recreation
of TLB entries") and causes random crashes due to broken page tables
being used.
Reported-by: Dominik Vogt <vogt@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
The x86 MPX patch set calls arch_unmap() and arch_bprm_mm_init()
from fs/exec.c, so we need at least a stub for them in all
architectures. They are only called under an #ifdef for
CONFIG_MMU=y, so we can at least restict this to architectures
with MMU support.
blackfin/c6x have no MMU support, so do not call arch_unmap().
They also do not include mm_hooks.h or mmu_context.h at all and
do not need to be touched.
s390, um and unicore32 do not use asm-generic/mm_hooks.h, so got
their own arch_unmap() versions. (I also moved um's
arch_dup_mmap() to be closer to the other mm_hooks.h functions).
xtensa only includes mm_hooks when MMU=y, which should be fine
since arch_unmap() is called only from MMU=y code.
For the rest, we use the stub copies of these functions in
asm-generic/mm_hook.h.
I cross compiled defconfigs for cris (to check NOMMU) and s390
to make sure that this works. I also checked a 64-bit build
of UML and all my normal x86 builds including PARAVIRT on and
off.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: linux-arch@vger.kernel.org
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/20141118182350.8B4AA2C2@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch fixes a problem introduced with git commit beef560b4c
"s390/uaccess: simplify control register updates".
The switch_mm function is not called if the next process is a kernel
thread without an attached mm or is a nop if the mm does not change.
But CR1 still needs to be loaded with the kernel ASCE in case the
code returns to a uaccess function that uses the secondary space mode.
In addition move the set_fs call from finish_arch_switch to
finish_arch_post_lock_switch and then remove finish_arch_switch.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
was a pretty active cycle for KVM. Changes include:
- a lot of s390 changes: optimizations, support for migration,
GDB support and more
- ARM changes are pretty small: support for the PSCI 0.2 hypercall
interface on both the guest and the host (the latter acked by Catalin)
- initial POWER8 and little-endian host support
- support for running u-boot on embedded POWER targets
- pretty large changes to MIPS too, completing the userspace interface
and improving the handling of virtualized timer hardware
- for x86, a larger set of changes is scheduled for 3.17. Still,
we have a few emulator bugfixes and support for running nested
fully-virtualized Xen guests (para-virtualized Xen guests have
always worked). And some optimizations too.
The only missing architecture here is ia64. It's not a coincidence
that support for KVM on ia64 is scheduled for removal in 3.17.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABAgAGBQJTjtlBAAoJEBvWZb6bTYbyMOUP/2NAePghE3IjG99ikHFdn+BX
BfrURsuR6GD0AhYQnBidBmpFbAmN/LwSJxv/M7sV7OBRWLu3qbt69DrPTU2e/FK1
j9q25peu8jRyHzJ1q9rBroo74nD9lQYuVr3uXNxxcg0DRnw14JHGlM3y8LDEknO8
W+gpWTeAQ+2AuOX98MpRbCRMuzziCSv5bP5FhBVnsWHiZfvMbcUrbeJt+zYSiDAZ
0tHm/5dFKzfj/vVrrnjD4EZcRr688Bs5rztG96hY6aoVJryjZGLtLp92wCWkRRmH
CCvZwd245NmNthuKHzcs27/duSWfU0uOlu7AMrD44QYhzeDGyB/2nbCxbGqLLoBA
nnOviXH4cC65/CnisZ79zfo979HbZcX+Lzg747EjBgCSxJmLlwgiG8yXtDvk5otB
TH6GUeGDiEEPj//JD3XtgSz0sF2NvjREWRyemjDMvhz6JC/bLytXKb3sn+NXSj8m
ujzF9eQoa4qKDcBL4IQYGTJ4z5nY3Pd68dHFIPHB7n82OxFLSQUBKxXw8/1fb5og
VVb8PL4GOcmakQlAKtTMlFPmuy4bbL2r/2iV5xJiOZKmXIu8Hs1JezBE3SFAltbl
3cAGwSM9/dDkKxUbTFblyOE9bkKbg4WYmq0LkdzsPEomb3IZWntOT25rYnX+LrBz
bAknaZpPiOrW11Et1htY
=j5Od
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm into next
Pull KVM updates from Paolo Bonzini:
"At over 200 commits, covering almost all supported architectures, this
was a pretty active cycle for KVM. Changes include:
- a lot of s390 changes: optimizations, support for migration, GDB
support and more
- ARM changes are pretty small: support for the PSCI 0.2 hypercall
interface on both the guest and the host (the latter acked by
Catalin)
- initial POWER8 and little-endian host support
- support for running u-boot on embedded POWER targets
- pretty large changes to MIPS too, completing the userspace
interface and improving the handling of virtualized timer hardware
- for x86, a larger set of changes is scheduled for 3.17. Still, we
have a few emulator bugfixes and support for running nested
fully-virtualized Xen guests (para-virtualized Xen guests have
always worked). And some optimizations too.
The only missing architecture here is ia64. It's not a coincidence
that support for KVM on ia64 is scheduled for removal in 3.17"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (203 commits)
KVM: add missing cleanup_srcu_struct
KVM: PPC: Book3S PR: Rework SLB switching code
KVM: PPC: Book3S PR: Use SLB entry 0
KVM: PPC: Book3S HV: Fix machine check delivery to guest
KVM: PPC: Book3S HV: Work around POWER8 performance monitor bugs
KVM: PPC: Book3S HV: Make sure we don't miss dirty pages
KVM: PPC: Book3S HV: Fix dirty map for hugepages
KVM: PPC: Book3S HV: Put huge-page HPTEs in rmap chain for base address
KVM: PPC: Book3S HV: Fix check for running inside guest in global_invalidates()
KVM: PPC: Book3S: Move KVM_REG_PPC_WORT to an unused register number
KVM: PPC: Book3S: Add ONE_REG register names that were missed
KVM: PPC: Add CAP to indicate hcall fixes
KVM: PPC: MPIC: Reset IRQ source private members
KVM: PPC: Graciously fail broken LE hypercalls
PPC: ePAPR: Fix hypercall on LE guest
KVM: PPC: BOOK3S: Remove open coded make_dsisr in alignment handler
KVM: PPC: BOOK3S: Always use the saved DAR value
PPC: KVM: Make NX bit available with magic page
KVM: PPC: Disable NX for old magic page using guests
KVM: PPC: BOOK3S: HV: Add mixed page-size support for guest
...
The oi and ni instructions used in entry[64].S to set and clear bits
in the thread-flags are not guaranteed to be atomic in regard to other
CPUs. Split the TIF bits into CPU, pt_regs and thread-info specific
bits. Updates on the TIF bits are done with atomic instructions,
updates on CPU and pt_regs bits are done with non-atomic instructions.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Always switch to the kernel ASCE in switch_mm. Load the secondary
space ASCE in finish_arch_post_lock_switch after checking that
any pending page table operations have completed. The primary
ASCE is loaded in entry[64].S. With this the update_primary_asce
call can be removed from the switch_to macro and from the start
of switch_mm function. Remove the load_primary argument from
update_user_asce/clear_user_asce, rename update_user_asce to
set_user_asce and rename update_primary_asce to load_kernel_asce.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The first invocation of storage key operations on a given cpu will be intercepted.
On these intercepts we will enable storage keys for the guest and remove the
previously added intercepts.
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
For lazy storage key handling, we need a mechanism to track if the
process ever issued a storage key operation.
This patch adds the basic infrastructure for making the storage
key handling optional, but still leaves it enabled for now by default.
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The current uaccess code uses a page table walk in some circumstances,
e.g. in case of the in atomic futex operations or if running on old
hardware which doesn't support the mvcos instruction.
However it turned out that the page table walk code does not correctly
lock page tables when accessing page table entries.
In other words: a different cpu may invalidate a page table entry while
the current cpu inspects the pte. This may lead to random data corruption.
Adding correct locking however isn't trivial for all uaccess operations.
Especially copy_in_user() is problematic since that requires to hold at
least two locks, but must be protected against ABBA deadlock when a
different cpu also performs a copy_in_user() operation.
So the solution is a different approach where we change address spaces:
User space runs in primary address mode, or access register mode within
vdso code, like it currently already does.
The kernel usually also runs in home space mode, however when accessing
user space the kernel switches to primary or secondary address mode if
the mvcos instruction is not available or if a compare-and-swap (futex)
instruction on a user space address is performed.
KVM however is special, since that requires the kernel to run in home
address space while implicitly accessing user space with the sie
instruction.
So we end up with:
User space:
- runs in primary or access register mode
- cr1 contains the user asce
- cr7 contains the user asce
- cr13 contains the kernel asce
Kernel space:
- runs in home space mode
- cr1 contains the user or kernel asce
-> the kernel asce is loaded when a uaccess requires primary or
secondary address mode
- cr7 contains the user or kernel asce, (changed with set_fs())
- cr13 contains the kernel asce
In case of uaccess the kernel changes to:
- primary space mode in case of a uaccess (copy_to_user) and uses
e.g. the mvcp instruction to access user space. However the kernel
will stay in home space mode if the mvcos instruction is available
- secondary space mode in case of futex atomic operations, so that the
instructions come from primary address space and data from secondary
space
In case of kvm the kernel runs in home space mode, but cr1 gets switched
to contain the gmap asce before the sie instruction gets executed. When
the sie instruction is finished cr1 will be switched back to contain the
user asce.
A context switch between two processes will always load the kernel asce
for the next process in cr1. So the first exit to user space is a bit
more expensive (one extra load control register instruction) than before,
however keeps the code rather simple.
In sum this means there is no need to perform any error prone page table
walks anymore when accessing user space.
The patch seems to be rather large, however it mainly removes the
the page table walk code and restores the previously deleted "standard"
uaccess code, with a couple of changes.
The uaccess without mvcos mode can be enforced with the "uaccess_primary"
kernel parameter.
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The zEC12 machines introduced the local-clearing control for the IDTE
and IPTE instruction. If the control is set only the TLB of the local
CPU is cleared of entries, either all entries of a single address space
for IDTE, or the entry for a single page-table entry for IPTE.
Without the local-clearing control the TLB flush is broadcasted to all
CPUs in the configuration, which is expensive.
The reset of the bit mask of the CPUs that need flushing after a
non-local IDTE is tricky. As TLB entries for an address space remain
in the TLB even if the address space is detached a new bit field is
required to keep track of attached CPUs vs. CPUs in the need of a
flush. After a non-local flush with IDTE the bit-field of attached CPUs
is copied to the bit-field of CPUs in need of a flush. The ordering
of operations on cpu_attach_mask, attach_count and mm_cpumask(mm) is
such that an underindication in mm_cpumask(mm) is prevented but an
overindication in mm_cpumask(mm) is possible.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The principles of operations states that the CPU is allowed to create
TLB entries for an address space anytime while an ASCE is loaded to
the control register. This is true even if the CPU is running in the
kernel and the user address space is not (actively) accessed.
In theory this can affect two aspects of the TLB flush logic.
For full-mm flushes the ASCE of the dying process is still attached.
The approach to flush first with IDTE and then just free all page
tables can in theory lead to stale TLB entries. Use the batched
free of page tables for the full-mm flushes as well.
For operations that can have a stale ASCE in the control register,
e.g. a delayed update_user_asce in switch_mm, load the kernel ASCE
to prevent invalid TLBs from being created.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Git commit 050eef364a "[S390] fix tlb flushing vs. concurrent
/proc accesses" introduced the attach counter to avoid using the
mm_users value to decide between IPTE for every PTE and lazy TLB
flushing with IDTE. That fixed the problem with mm_users but it
introduced another subtle race, fortunately one that is very hard
to hit.
The background is the requirement of the architecture that a valid
PTE may not be changed while it can be used concurrently by another
cpu. The decision between IPTE and lazy TLB flushing needs to be
done while the PTE is still valid. Now if the virtual cpu is
temporarily stopped after the decision to use lazy TLB flushing but
before the invalid bit of the PTE has been set, another cpu can attach
the mm, find that flush_mm is set, do the IDTE, return to userspace,
and recreate a TLB that uses the PTE in question. When the first,
stopped cpu continues it will change the PTE while it is attached on
another cpu. The first cpu will do another IDTE shortly after the
modification of the PTE which makes the race window quite short.
To fix this race the CPU that wants to attach the address space of a
user space thread needs to wait for the end of the PTE modification.
The number of concurrent TLB flushers for an mm is tracked in the
upper 16 bits of the attach_count and finish_arch_post_lock_switch
is used to wait for the end of the flush operation if required.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Simplify the uaccess code by removing the user_mode=home option.
The kernel will now always run in the home space mode.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Pull KVM updates from Gleb Natapov:
"The highlights of the release are nested EPT and pv-ticketlocks
support (hypervisor part, guest part, which is most of the code, goes
through tip tree). Apart of that there are many fixes for all arches"
Fix up semantic conflicts as discussed in the pull request thread..
* 'next' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (88 commits)
ARM: KVM: Add newlines to panic strings
ARM: KVM: Work around older compiler bug
ARM: KVM: Simplify tracepoint text
ARM: KVM: Fix kvm_set_pte assignment
ARM: KVM: vgic: Bump VGIC_NR_IRQS to 256
ARM: KVM: Bugfix: vgic_bytemap_get_reg per cpu regs
ARM: KVM: vgic: fix GICD_ICFGRn access
ARM: KVM: vgic: simplify vgic_get_target_reg
KVM: MMU: remove unused parameter
KVM: PPC: Book3S PR: Rework kvmppc_mmu_book3s_64_xlate()
KVM: PPC: Book3S PR: Make instruction fetch fallback work for system calls
KVM: PPC: Book3S PR: Don't corrupt guest state when kernel uses VMX
KVM: x86: update masterclock when kvmclock_offset is calculated (v2)
KVM: PPC: Book3S: Fix compile error in XICS emulation
KVM: PPC: Book3S PR: return appropriate error when allocation fails
arch: powerpc: kvm: add signed type cast for comparation
KVM: x86: add comments where MMIO does not return to the emulator
KVM: vmx: count exits to userspace during invalid guest emulation
KVM: rename __kvm_io_bus_sort_cmp to kvm_io_bus_cmp
kvm: optimize away THP checks in kvm_is_mmio_pfn()
...
Isolate the logic of IDTE vs. IPTE flushing of ptes in two functions,
ptep_flush_lazy and __tlb_flush_mm_lazy.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Improve the code to upgrade the standard 2K page tables to 4K page tables
with PGSTEs to allow the operation to happen when the program is already
multi-threaded.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Renaming the globally visible variable "user_mode" to "addressing_mode" in
order to fix a name clash was not a good idea. (Commit 37fe1d73 "s390/mm:
rename user_mode variable to addressing_mode")
Looking at the code after a couple of weeks one thinks: addressing mode of
what?
So rename the variable again. This time to s390_user_mode. Which hopefully
makes more sense.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Fix name clash with user_mode() define which is also used in common code.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The downgrade of the 4 level page table created by init_new_context is
currently done only in start_thread31. If a 31 bit process forks the
new mm uses a 4 level page table, including the task size of 2<<42
that goes along with it. This is incorrect as now a 31 bit process
can map memory beyond 2GB. Define arch_dup_mmap to do the downgrade
after fork.
Cc: stable@vger.kernel.org
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Remove the file name from the comment at top of many files. In most
cases the file name was wrong anyway, so it's rather pointless.
Also unify the IBM copyright statement. We did have a lot of sightly
different statements and wanted to change them one after another
whenever a file gets touched. However that never happened. Instead
people start to take the old/"wrong" statements to use as a template
for new files.
So unify all of them in one go.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Replace __s390x__ with CONFIG_64BIT in all places that are not exported
to userspace or guarded with #ifdef __KERNEL__.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The noexec support on s390 does not rely on a bit in the page table
entry but utilizes the secondary space mode to distinguish between
memory accesses for instructions vs. data. The noexec code relies
on the assumption that the cpu will always use the secondary space
page table for data accesses while it is running in the secondary
space mode. Up to the z9-109 class machines this has been the case.
Unfortunately this is not true anymore with z10 and later machines.
The load-relative-long instructions lrl, lgrl and lgfrl access the
memory operand using the same addressing-space mode that has been
used to fetch the instruction.
This breaks the noexec mode for all user space binaries compiled
with march=z10 or later. The only option is to remove the current
noexec support.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Processes started with kernel_execve from a kernel thread will have
current->mm==NULL. Reading current->mm->context.alloc_pgste will
read a more or less random bit from lowcore in this case. If the
bit turns out to be set the whole process tree started this way
will allocate page table extensions although they have no need
for it.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The tlb flushing code uses the mm_users field of the mm_struct to
decide if each page table entry needs to be flushed individually with
IPTE or if a global flush for the mm_struct is sufficient after all page
table updates have been done. The comment for mm_users says "How many
users with user space?" but the /proc code increases mm_users after it
found the process structure by pid without creating a new user process.
Which makes mm_users useless for the decision between the two tlb
flusing methods. The current code can be confused to not flush tlb
entries by a concurrent access to /proc files if e.g. a fork is in
progres. The solution for this problem is to make the tlb flushing
logic independent from the mm_users field.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Introduce user_mode to replace the two variables switch_amode and
s390_noexec. There are three valid combinations of the old values:
1) switch_amode == 0 && s390_noexec == 0
2) switch_amode == 1 && s390_noexec == 0
3) switch_amode == 1 && s390_noexec == 1
They get replaced by
1) user_mode == HOME_SPACE_MODE
2) user_mode == PRIMARY_SPACE_MODE
3) user_mode == SECONDARY_SPACE_MODE
The new kernel parameter user_mode=[primary,secondary,home] lets
you choose the address space mode the user space processes should
use. In addition the CONFIG_S390_SWITCH_AMODE config option
is removed.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Makes code futureproof against the impending change to mm->cpu_vm_mask.
It's also a chance to use the new cpumask_ ops which take a pointer
(the older ones are deprecated, but there's no hurry for arch code).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The current enable_sie code sets the mm->context.pgstes bit to tell
dup_mm that the new mm should have extended page tables. This bit is also
used by the s390 specific page table primitives to decide about the page
table layout - which means context.pgstes has two meanings. This can cause
any kind of bugs. For example - e.g. shrink_zone can call
ptep_clear_flush_young while enable_sie is running. ptep_clear_flush_young
will test for context.pgstes. Since enable_sie changed that value of the old
struct mm without changing the page table layout ptep_clear_flush_young will
do the wrong thing.
The solution is to split pgstes into two bits
- one for the allocation
- one for the current state
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>