Commit Graph

245 Commits

Author SHA1 Message Date
Filipe Manana
b84b8390d6 Btrfs: fix file read corruption after extent cloning and fsync
If we partially clone one extent of a file into a lower offset of the
file, fsync the file, power fail and then mount the fs to trigger log
replay, we can get multiple checksum items in the csum tree that overlap
each other and result in checksum lookup failures later. Those failures
can make file data read requests assume a checksum value of 0, but they
will not return an error (-EIO for example) to userspace exactly because
the expected checksum value 0 is a special value that makes the read bio
endio callback return success and set all the bytes of the corresponding
page with the value 0x01 (at fs/btrfs/inode.c:__readpage_endio_check()).
From a userspace perspective this is equivalent to file corruption
because we are not returning what was written to the file.

Details about how this can happen, and why, are included inline in the
following reproducer test case for fstests and the comment added to
tree-log.c.

  seq=`basename $0`
  seqres=$RESULT_DIR/$seq
  echo "QA output created by $seq"
  tmp=/tmp/$$
  status=1	# failure is the default!
  trap "_cleanup; exit \$status" 0 1 2 3 15

  _cleanup()
  {
      _cleanup_flakey
      rm -f $tmp.*
  }

  # get standard environment, filters and checks
  . ./common/rc
  . ./common/filter
  . ./common/dmflakey

  # real QA test starts here
  _need_to_be_root
  _supported_fs btrfs
  _supported_os Linux
  _require_scratch
  _require_dm_flakey
  _require_cloner
  _require_metadata_journaling $SCRATCH_DEV

  rm -f $seqres.full

  _scratch_mkfs >>$seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create our test file with a single 100K extent starting at file
  # offset 800K. We fsync the file here to make the fsync log tree gets
  # a single csum item that covers the whole 100K extent, which causes
  # the second fsync, done after the cloning operation below, to not
  # leave in the log tree two csum items covering two sub-ranges
  # ([0, 20K[ and [20K, 100K[)) of our extent.
  $XFS_IO_PROG -f -c "pwrite -S 0xaa 800K 100K"  \
                  -c "fsync"                     \
                   $SCRATCH_MNT/foo | _filter_xfs_io

  # Now clone part of our extent into file offset 400K. This adds a file
  # extent item to our inode's metadata that points to the 100K extent
  # we created before, using a data offset of 20K and a data length of
  # 20K, so that it refers to the sub-range [20K, 40K[ of our original
  # extent.
  $CLONER_PROG -s $((800 * 1024 + 20 * 1024)) -d $((400 * 1024)) \
      -l $((20 * 1024)) $SCRATCH_MNT/foo $SCRATCH_MNT/foo

  # Now fsync our file to make sure the extent cloning is durably
  # persisted. This fsync will not add a second csum item to the log
  # tree containing the checksums for the blocks in the sub-range
  # [20K, 40K[ of our extent, because there was already a csum item in
  # the log tree covering the whole extent, added by the first fsync
  # we did before.
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo

  echo "File digest before power failure:"
  md5sum $SCRATCH_MNT/foo | _filter_scratch

  # Silently drop all writes and ummount to simulate a crash/power
  # failure.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  # Allow writes again, mount to trigger log replay and validate file
  # contents.
  # The fsync log replay first processes the file extent item
  # corresponding to the file offset 400K (the one which refers to the
  # [20K, 40K[ sub-range of our 100K extent) and then processes the file
  # extent item for file offset 800K. It used to happen that when
  # processing the later, it erroneously left in the csum tree 2 csum
  # items that overlapped each other, 1 for the sub-range [20K, 40K[ and
  # 1 for the whole range of our extent. This introduced a problem where
  # subsequent lookups for the checksums of blocks within the range
  # [40K, 100K[ of our extent would not find anything because lookups in
  # the csum tree ended up looking only at the smaller csum item, the
  # one covering the subrange [20K, 40K[. This made read requests assume
  # an expected checksum with a value of 0 for those blocks, which caused
  # checksum verification failure when the read operations finished.
  # However those checksum failure did not result in read requests
  # returning an error to user space (like -EIO for e.g.) because the
  # expected checksum value had the special value 0, and in that case
  # btrfs set all bytes of the corresponding pages with the value 0x01
  # and produce the following warning in dmesg/syslog:
  #
  #  "BTRFS warning (device dm-0): csum failed ino 257 off 917504 csum\
  #   1322675045 expected csum 0"
  #
  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  echo "File digest after log replay:"
  # Must match the same digest he had after cloning the extent and
  # before the power failure happened.
  md5sum $SCRATCH_MNT/foo | _filter_scratch

  _unmount_flakey

  status=0
  exit

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-19 14:27:46 -07:00
Zhaolei
60d53eb310 btrfs: Remove unused arguments in tree-log.c
Following arguments are not used in tree-log.c:
 insert_one_name(): path, type
 wait_log_commit(): trans
 wait_for_writer(): trans

This patch remove them.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-19 14:25:15 -07:00
Zhaolei
34eb2a5249 btrfs: Remove useless condition in start_log_trans()
Dan Carpenter <dan.carpenter@oracle.com> reported a smatch warning
for start_log_trans():
 fs/btrfs/tree-log.c:178 start_log_trans()
 warn: we tested 'root->log_root' before and it was 'false'

 fs/btrfs/tree-log.c
 147          if (root->log_root) {
 We test "root->log_root" here.
 ...

Reason:
 Condition of:
 fs/btrfs/tree-log.c:178: if (!root->log_root) {
 is not necessary after commit: 7237f1833

 It caused a smatch warning, and no functionally error.

Fix:
 Deleting above condition will make smatch shut up,
 but a better way is to do cleanup for start_log_trans()
 to remove duplicated code and make code more readable.

Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-19 14:24:49 -07:00
Filipe Manana
18aa092297 Btrfs: fix stale dir entries after removing a link and fsync
We have one more case where after a log tree is replayed we get
inconsistent metadata leading to stale directory entries, due to
some directories having entries pointing to some inode while the
inode does not have a matching BTRFS_INODE_[REF|EXTREF]_KEY item.

To trigger the problem we need to have a file with multiple hard links
belonging to different parent directories. Then if one of those hard
links is removed and we fsync the file using one of its other links
that belongs to a different parent directory, we end up not logging
the fact that the removed hard link doesn't exists anymore in the
parent directory.

Simple reproducer:

  seq=`basename $0`
  seqres=$RESULT_DIR/$seq
  echo "QA output created by $seq"
  tmp=/tmp/$$
  status=1	# failure is the default!
  trap "_cleanup; exit \$status" 0 1 2 3 15

  _cleanup()
  {
      _cleanup_flakey
      rm -f $tmp.*
  }

  # get standard environment, filters and checks
  . ./common/rc
  . ./common/filter
  . ./common/dmflakey

  # real QA test starts here
  _need_to_be_root
  _supported_fs generic
  _supported_os Linux
  _require_scratch
  _require_dm_flakey
  _require_metadata_journaling $SCRATCH_DEV

  rm -f $seqres.full

  _scratch_mkfs >>$seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create our test directory and file.
  mkdir $SCRATCH_MNT/testdir
  touch $SCRATCH_MNT/foo
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/testdir/foo2
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/testdir/foo3

  # Make sure everything done so far is durably persisted.
  sync

  # Now we remove one of our file's hardlinks in the directory testdir.
  unlink $SCRATCH_MNT/testdir/foo3

  # We now fsync our file using the "foo" link, which has a parent that
  # is not the directory "testdir".
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo

  # Silently drop all writes and unmount to simulate a crash/power
  # failure.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  # Allow writes again, mount to trigger journal/log replay.
  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  # After the journal/log is replayed we expect to not see the "foo3"
  # link anymore and we should be able to remove all names in the
  # directory "testdir" and then remove it (no stale directory entries
  # left after the journal/log replay).
  echo "Entries in testdir:"
  ls -1 $SCRATCH_MNT/testdir

  rm -f $SCRATCH_MNT/testdir/*
  rmdir $SCRATCH_MNT/testdir

  _unmount_flakey

  status=0
  exit

The test fails with:

  $ ./check generic/107
  FSTYP         -- btrfs
  PLATFORM      -- Linux/x86_64 debian3 4.1.0-rc6-btrfs-next-11+
  MKFS_OPTIONS  -- /dev/sdc
  MOUNT_OPTIONS -- /dev/sdc /home/fdmanana/btrfs-tests/scratch_1

  generic/107 3s ... - output mismatch (see .../results/generic/107.out.bad)
    --- tests/generic/107.out	2015-08-01 01:39:45.807462161 +0100
    +++ /home/fdmanana/git/hub/xfstests/results//generic/107.out.bad
    @@ -1,3 +1,5 @@
     QA output created by 107
     Entries in testdir:
     foo2
    +foo3
    +rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/testdir': Directory not empty
    ...
    _check_btrfs_filesystem: filesystem on /dev/sdc is inconsistent \
      (see /home/fdmanana/git/hub/xfstests/results//generic/107.full)
    _check_dmesg: something found in dmesg (see .../results/generic/107.dmesg)
  Ran: generic/107
  Failures: generic/107
  Failed 1 of 1 tests

  $ cat /home/fdmanana/git/hub/xfstests/results//generic/107.full
  (...)
  checking fs roots
  root 5 inode 257 errors 200, dir isize wrong
	unresolved ref dir 257 index 3 namelen 4 name foo3 filetype 1 errors 5, no dir item, no inode ref
  (...)

And produces the following warning in dmesg:

  [127298.759064] BTRFS info (device dm-0): failed to delete reference to foo3, inode 258 parent 257
  [127298.762081] ------------[ cut here ]------------
  [127298.763311] WARNING: CPU: 10 PID: 7891 at fs/btrfs/inode.c:3956 __btrfs_unlink_inode+0x182/0x35a [btrfs]()
  [127298.767327] BTRFS: Transaction aborted (error -2)
  (...)
  [127298.788611] Call Trace:
  [127298.789137]  [<ffffffff8145f077>] dump_stack+0x4f/0x7b
  [127298.790090]  [<ffffffff81095de5>] ? console_unlock+0x356/0x3a2
  [127298.791157]  [<ffffffff8104b3b0>] warn_slowpath_common+0xa1/0xbb
  [127298.792323]  [<ffffffffa065ad09>] ? __btrfs_unlink_inode+0x182/0x35a [btrfs]
  [127298.793633]  [<ffffffff8104b410>] warn_slowpath_fmt+0x46/0x48
  [127298.794699]  [<ffffffffa065ad09>] __btrfs_unlink_inode+0x182/0x35a [btrfs]
  [127298.797640]  [<ffffffffa065be8f>] btrfs_unlink_inode+0x1e/0x40 [btrfs]
  [127298.798876]  [<ffffffffa065bf11>] btrfs_unlink+0x60/0x9b [btrfs]
  [127298.800154]  [<ffffffff8116fb48>] vfs_unlink+0x9c/0xed
  [127298.801303]  [<ffffffff81173481>] do_unlinkat+0x12b/0x1fb
  [127298.802450]  [<ffffffff81253855>] ? lockdep_sys_exit_thunk+0x12/0x14
  [127298.803797]  [<ffffffff81174056>] SyS_unlinkat+0x29/0x2b
  [127298.805017]  [<ffffffff81465197>] system_call_fastpath+0x12/0x6f
  [127298.806310] ---[ end trace bbfddacb7aaada7b ]---
  [127298.807325] BTRFS warning (device dm-0): __btrfs_unlink_inode:3956: Aborting unused transaction(No such entry).

So fix this by logging all parent inodes, current and old ones, to make
sure we do not get stale entries after log replay. This is not a simple
solution such as triggering a full transaction commit because it would
imply full transaction commit when an inode is fsynced in the same
transaction that modified it and reloaded it after eviction (because its
last_unlink_trans is set to the same value as its last_trans as of the
commit with the title "Btrfs: fix stale dir entries after unlink, inode
eviction and fsync"), and it would also make fstest generic/066 fail
since one of the fsyncs triggers a full commit and the next fsync will
not find the inode in the log anymore (therefore not removing the xattr).

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-09 06:17:04 -07:00
Filipe Manana
bb53eda902 Btrfs: fix stale directory entries after fsync log replay
We have another case where after an fsync log replay we get an inode with
a wrong link count (smaller than it should be) and a number of directory
entries greater than its link count. This happens when we add a new link
hard link to our inode A and then we fsync some other inode B that has
the side effect of logging the parent directory inode too. In this case
at log replay time we add the new hard link to our inode (the item with
key BTRFS_INODE_REF_KEY) when processing the parent directory but we
never adjust the link count of our inode A. As a result we get stale dir
entries for our inode A that can never be deleted and therefore it makes
it impossible to remove the parent directory (as its i_size can never
decrease back to 0).

A simple reproducer for fstests that triggers this issue:

  seq=`basename $0`
  seqres=$RESULT_DIR/$seq
  echo "QA output created by $seq"
  tmp=/tmp/$$
  status=1	# failure is the default!
  trap "_cleanup; exit \$status" 0 1 2 3 15

  _cleanup()
  {
      _cleanup_flakey
      rm -f $tmp.*
  }

  # get standard environment, filters and checks
  . ./common/rc
  . ./common/filter
  . ./common/dmflakey

  # real QA test starts here
  _need_to_be_root
  _supported_fs generic
  _supported_os Linux
  _require_scratch
  _require_dm_flakey
  _require_metadata_journaling $SCRATCH_DEV

  rm -f $seqres.full

  _scratch_mkfs >>$seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create our test directory and files.
  mkdir $SCRATCH_MNT/testdir
  touch $SCRATCH_MNT/testdir/foo
  touch $SCRATCH_MNT/testdir/bar

  # Make sure everything done so far is durably persisted.
  sync

  # Create one hard link for file foo and another one for file bar. After
  # that fsync only the file bar.
  ln $SCRATCH_MNT/testdir/bar $SCRATCH_MNT/testdir/bar_link
  ln $SCRATCH_MNT/testdir/foo $SCRATCH_MNT/testdir/foo_link
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/testdir/bar

  # Silently drop all writes on scratch device to simulate power failure.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  # Allow writes again and mount the fs to trigger log/journal replay.
  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  # Now verify both our files have a link count of 2.
  echo "Link count for file foo: $(stat --format=%h $SCRATCH_MNT/testdir/foo)"
  echo "Link count for file bar: $(stat --format=%h $SCRATCH_MNT/testdir/bar)"

  # We should be able to remove all the links of our files in testdir, and
  # after that the parent directory should become empty and therefore
  # possible to remove it.
  rm -f $SCRATCH_MNT/testdir/*
  rmdir $SCRATCH_MNT/testdir

  _unmount_flakey

  # The fstests framework will call fsck against our filesystem which will verify
  # that all metadata is in a consistent state.

  status=0
  exit

The test fails with:

 -Link count for file foo: 2
 +Link count for file foo: 1
  Link count for file bar: 2
 +rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/testdir/foo_link': Stale file handle
 +rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/testdir': Directory not empty
 (...)
 _check_btrfs_filesystem: filesystem on /dev/sdc is inconsistent

And fsck's output:

  (...)
  checking fs roots
  root 5 inode 258 errors 2001, no inode item, link count wrong
      unresolved ref dir 257 index 5 namelen 8 name foo_link filetype 1 errors 4, no inode ref
  Checking filesystem on /dev/sdc
  (...)

So fix this by marking inodes for link count fixup at log replay time
whenever a directory entry is replayed if the entry was created in the
transaction where the fsync was made and if it points to a non-directory
inode.

This isn't a new problem/regression, the issue exists for a long time,
possibly since the log tree feature was added (2008).

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-09 06:16:56 -07:00
Filipe Manana
a89ca6f24f Btrfs: fix fsync after truncate when no_holes feature is enabled
When we have the no_holes feature enabled, if a we truncate a file to a
smaller size, truncate it again but to a size greater than or equals to
its original size and fsync it, the log tree will not have any information
about the hole covering the range [truncate_1_offset, new_file_size[.
Which means if the fsync log is replayed, the file will remain with the
state it had before both truncate operations.

Without the no_holes feature this does not happen, since when the inode
is logged (full sync flag is set) it will find in the fs/subvol tree a
leaf with a generation matching the current transaction id that has an
explicit extent item representing the hole.

Fix this by adding an explicit extent item representing a hole between
the last extent and the inode's i_size if we are doing a full sync.

The issue is easy to reproduce with the following test case for fstests:

  . ./common/rc
  . ./common/filter
  . ./common/dmflakey

  _need_to_be_root
  _supported_fs generic
  _supported_os Linux
  _require_scratch
  _require_dm_flakey

  # This test was motivated by an issue found in btrfs when the btrfs
  # no-holes feature is enabled (introduced in kernel 3.14). So enable
  # the feature if the fs being tested is btrfs.
  if [ $FSTYP == "btrfs" ]; then
      _require_btrfs_fs_feature "no_holes"
      _require_btrfs_mkfs_feature "no-holes"
      MKFS_OPTIONS="$MKFS_OPTIONS -O no-holes"
  fi

  rm -f $seqres.full

  _scratch_mkfs >>$seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create our test files and make sure everything is durably persisted.
  $XFS_IO_PROG -f -c "pwrite -S 0xaa 0 64K"         \
                  -c "pwrite -S 0xbb 64K 61K"       \
                  $SCRATCH_MNT/foo | _filter_xfs_io
  $XFS_IO_PROG -f -c "pwrite -S 0xee 0 64K"         \
                  -c "pwrite -S 0xff 64K 61K"       \
                  $SCRATCH_MNT/bar | _filter_xfs_io
  sync

  # Now truncate our file foo to a smaller size (64Kb) and then truncate
  # it to the size it had before the shrinking truncate (125Kb). Then
  # fsync our file. If a power failure happens after the fsync, we expect
  # our file to have a size of 125Kb, with the first 64Kb of data having
  # the value 0xaa and the second 61Kb of data having the value 0x00.
  $XFS_IO_PROG -c "truncate 64K" \
               -c "truncate 125K" \
               -c "fsync" \
               $SCRATCH_MNT/foo

  # Do something similar to our file bar, but the first truncation sets
  # the file size to 0 and the second truncation expands the size to the
  # double of what it was initially.
  $XFS_IO_PROG -c "truncate 0" \
               -c "truncate 253K" \
               -c "fsync" \
               $SCRATCH_MNT/bar

  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  # Allow writes again, mount to trigger log replay and validate file
  # contents.
  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  # We expect foo to have a size of 125Kb, the first 64Kb of data all
  # having the value 0xaa and the remaining 61Kb to be a hole (all bytes
  # with value 0x00).
  echo "File foo content after log replay:"
  od -t x1 $SCRATCH_MNT/foo

  # We expect bar to have a size of 253Kb and no extents (any byte read
  # from bar has the value 0x00).
  echo "File bar content after log replay:"
  od -t x1 $SCRATCH_MNT/bar

  status=0
  exit

The expected file contents in the golden output are:

  File foo content after log replay:
  0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
  *
  0200000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  *
  0372000
  File bar content after log replay:
  0000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  *
  0772000

Without this fix, their contents are:

  File foo content after log replay:
  0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
  *
  0200000 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb
  *
  0372000
  File bar content after log replay:
  0000000 ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee
  *
  0200000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
  *
  0372000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  *
  0772000

A test case submission for fstests follows soon.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-07-01 17:17:12 -07:00
Filipe Manana
36283bf777 Btrfs: fix fsync xattr loss in the fast fsync path
After commit 4f764e5153 ("Btrfs: remove deleted xattrs on fsync log
replay"), we can end up in a situation where during log replay we end up
deleting xattrs that were never deleted when their file was last fsynced.

This happens in the fast fsync path (flag BTRFS_INODE_NEEDS_FULL_SYNC is
not set in the inode) if the inode has the flag BTRFS_INODE_COPY_EVERYTHING
set, the xattr was added in a past transaction and the leaf where the
xattr is located was not updated (COWed or created) in the current
transaction. In this scenario the xattr item never ends up in the log
tree and therefore at log replay time, which makes the replay code delete
the xattr from the fs/subvol tree as it thinks that xattr was deleted
prior to the last fsync.

Fix this by always logging all xattrs, which is the simplest and most
reliable way to detect deleted xattrs and replay the deletes at log replay
time.

This issue is reproducible with the following test case for fstests:

  seq=`basename $0`
  seqres=$RESULT_DIR/$seq
  echo "QA output created by $seq"

  here=`pwd`
  tmp=/tmp/$$
  status=1	# failure is the default!

  _cleanup()
  {
      _cleanup_flakey
      rm -f $tmp.*
  }
  trap "_cleanup; exit \$status" 0 1 2 3 15

  # get standard environment, filters and checks
  . ./common/rc
  . ./common/filter
  . ./common/dmflakey
  . ./common/attr

  # real QA test starts here

  # We create a lot of xattrs for a single file. Only btrfs and xfs are currently
  # able to store such a large mount of xattrs per file, other filesystems such
  # as ext3/4 and f2fs for example, fail with ENOSPC even if we attempt to add
  # less than 1000 xattrs with very small values.
  _supported_fs btrfs xfs
  _supported_os Linux
  _need_to_be_root
  _require_scratch
  _require_dm_flakey
  _require_attrs
  _require_metadata_journaling $SCRATCH_DEV

  rm -f $seqres.full

  _scratch_mkfs >> $seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create the test file with some initial data and make sure everything is
  # durably persisted.
  $XFS_IO_PROG -f -c "pwrite -S 0xaa 0 32k" $SCRATCH_MNT/foo | _filter_xfs_io
  sync

  # Add many small xattrs to our file.
  # We create such a large amount because it's needed to trigger the issue found
  # in btrfs - we need to have an amount that causes the fs to have at least 3
  # btree leafs with xattrs stored in them, and it must work on any leaf size
  # (maximum leaf/node size is 64Kb).
  num_xattrs=2000
  for ((i = 1; i <= $num_xattrs; i++)); do
      name="user.attr_$(printf "%04d" $i)"
      $SETFATTR_PROG -n $name -v "val_$(printf "%04d" $i)" $SCRATCH_MNT/foo
  done

  # Sync the filesystem to force a commit of the current btrfs transaction, this
  # is a necessary condition to trigger the bug on btrfs.
  sync

  # Now update our file's data and fsync the file.
  # After a successful fsync, if the fsync log/journal is replayed we expect to
  # see all the xattrs we added before with the same values (and the updated file
  # data of course). Btrfs used to delete some of these xattrs when it replayed
  # its fsync log/journal.
  $XFS_IO_PROG -c "pwrite -S 0xbb 8K 16K" \
               -c "fsync" \
               $SCRATCH_MNT/foo | _filter_xfs_io

  # Simulate a crash/power loss.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  # Allow writes again and mount. This makes the fs replay its fsync log.
  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  echo "File content after crash and log replay:"
  od -t x1 $SCRATCH_MNT/foo

  echo "File xattrs after crash and log replay:"
  for ((i = 1; i <= $num_xattrs; i++)); do
      name="user.attr_$(printf "%04d" $i)"
      echo -n "$name="
      $GETFATTR_PROG --absolute-names -n $name --only-values $SCRATCH_MNT/foo
      echo
  done

  status=0
  exit

The golden output expects all xattrs to be available, and with the correct
values, after the fsync log is replayed.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-06-30 14:36:47 -07:00
Filipe Manana
e4545de5b0 Btrfs: fix fsync data loss after append write
If we do an append write to a file (which increases its inode's i_size)
that does not have the flag BTRFS_INODE_NEEDS_FULL_SYNC set in its inode,
and the previous transaction added a new hard link to the file, which sets
the flag BTRFS_INODE_COPY_EVERYTHING in the file's inode, and then fsync
the file, the inode's new i_size isn't logged. This has the consequence
that after the fsync log is replayed, the file size remains what it was
before the append write operation, which means users/applications will
not be able to read the data that was successsfully fsync'ed before.

This happens because neither the inode item nor the delayed inode get
their i_size updated when the append write is made - doing so would
require starting a transaction in the buffered write path, something that
we do not do intentionally for performance reasons.

Fix this by making sure that when the flag BTRFS_INODE_COPY_EVERYTHING is
set the inode is logged with its current i_size (log the in-memory inode
into the log tree).

This issue is not a recent regression and is easy to reproduce with the
following test case for fstests:

  seq=`basename $0`
  seqres=$RESULT_DIR/$seq
  echo "QA output created by $seq"

  here=`pwd`
  tmp=/tmp/$$
  status=1	# failure is the default!

  _cleanup()
  {
          _cleanup_flakey
          rm -f $tmp.*
  }
  trap "_cleanup; exit \$status" 0 1 2 3 15

  # get standard environment, filters and checks
  . ./common/rc
  . ./common/filter
  . ./common/dmflakey

  # real QA test starts here
  _supported_fs generic
  _supported_os Linux
  _need_to_be_root
  _require_scratch
  _require_dm_flakey
  _require_metadata_journaling $SCRATCH_DEV

  _crash_and_mount()
  {
          # Simulate a crash/power loss.
          _load_flakey_table $FLAKEY_DROP_WRITES
          _unmount_flakey
          # Allow writes again and mount. This makes the fs replay its fsync log.
          _load_flakey_table $FLAKEY_ALLOW_WRITES
          _mount_flakey
  }

  rm -f $seqres.full

  _scratch_mkfs >> $seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create the test file with some initial data and then fsync it.
  # The fsync here is only needed to trigger the issue in btrfs, as it causes the
  # the flag BTRFS_INODE_NEEDS_FULL_SYNC to be removed from the btrfs inode.
  $XFS_IO_PROG -f -c "pwrite -S 0xaa 0 32k" \
                  -c "fsync" \
                  $SCRATCH_MNT/foo | _filter_xfs_io
  sync

  # Add a hard link to our file.
  # On btrfs this sets the flag BTRFS_INODE_COPY_EVERYTHING on the btrfs inode,
  # which is a necessary condition to trigger the issue.
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/bar

  # Sync the filesystem to force a commit of the current btrfs transaction, this
  # is a necessary condition to trigger the bug on btrfs.
  sync

  # Now append more data to our file, increasing its size, and fsync the file.
  # In btrfs because the inode flag BTRFS_INODE_COPY_EVERYTHING was set and the
  # write path did not update the inode item in the btree nor the delayed inode
  # item (in memory struture) in the current transaction (created by the fsync
  # handler), the fsync did not record the inode's new i_size in the fsync
  # log/journal. This made the data unavailable after the fsync log/journal is
  # replayed.
  $XFS_IO_PROG -c "pwrite -S 0xbb 32K 32K" \
               -c "fsync" \
               $SCRATCH_MNT/foo | _filter_xfs_io

  echo "File content after fsync and before crash:"
  od -t x1 $SCRATCH_MNT/foo

  _crash_and_mount

  echo "File content after crash and log replay:"
  od -t x1 $SCRATCH_MNT/foo

  status=0
  exit

The expected file output before and after the crash/power failure expects the
appended data to be available, which is:

  0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
  *
  0100000 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb
  *
  0200000

Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-06-30 14:36:47 -07:00
Liu Bo
0c304304fe Btrfs: remove csum_bytes_left
After commit 8407f55326
("Btrfs: fix data corruption after fast fsync and writeback error"),
during wait_ordered_extents(), we wait for ordered extent setting
BTRFS_ORDERED_IO_DONE or BTRFS_ORDERED_IOERR, at which point we've
already got checksum information, so we don't need to check
(csum_bytes_left == 0) in the whole logging path.

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-06-03 04:03:06 -07:00
Linus Torvalds
9ec3a646fe Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull fourth vfs update from Al Viro:
 "d_inode() annotations from David Howells (sat in for-next since before
  the beginning of merge window) + four assorted fixes"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  RCU pathwalk breakage when running into a symlink overmounting something
  fix I_DIO_WAKEUP definition
  direct-io: only inc/dec inode->i_dio_count for file systems
  fs/9p: fix readdir()
  VFS: assorted d_backing_inode() annotations
  VFS: fs/inode.c helpers: d_inode() annotations
  VFS: fs/cachefiles: d_backing_inode() annotations
  VFS: fs library helpers: d_inode() annotations
  VFS: assorted weird filesystems: d_inode() annotations
  VFS: normal filesystems (and lustre): d_inode() annotations
  VFS: security/: d_inode() annotations
  VFS: security/: d_backing_inode() annotations
  VFS: net/: d_inode() annotations
  VFS: net/unix: d_backing_inode() annotations
  VFS: kernel/: d_inode() annotations
  VFS: audit: d_backing_inode() annotations
  VFS: Fix up some ->d_inode accesses in the chelsio driver
  VFS: Cachefiles should perform fs modifications on the top layer only
  VFS: AF_UNIX sockets should call mknod on the top layer only
2015-04-26 17:22:07 -07:00
David Howells
2b0143b5c9 VFS: normal filesystems (and lustre): d_inode() annotations
that's the bulk of filesystem drivers dealing with inodes of their own

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-04-15 15:06:57 -04:00
Chris Mason
28ed1345a5 btrfs: actively run the delayed refs while deleting large files
When we are deleting large files with large extents, we are building up
a huge set of delayed refs for processing.  Truncate isn't checking
often enough to see if we need to back off and process those, or let
a commit proceed.

The end result is long stalls after the rm, and very long commit times.
During the commits, other processes back up waiting to start new
transactions and we get into trouble.

Signed-off-by: Chris Mason <clm@fb.com>
2015-04-10 14:00:14 -07:00
Filipe Manana
2f2ff0ee5e Btrfs: fix metadata inconsistencies after directory fsync
We can get into inconsistency between inodes and directory entries
after fsyncing a directory. The issue is that while a directory gets
the new dentries persisted in the fsync log and replayed at mount time,
the link count of the inode that directory entries point to doesn't
get updated, staying with an incorrect link count (smaller then the
correct value). This later leads to stale file handle errors when
accessing (including attempt to delete) some of the links if all the
other ones are removed, which also implies impossibility to delete the
parent directories, since the dentries can not be removed.

Another issue is that (unlike ext3/4, xfs, f2fs, reiserfs, nilfs2),
when fsyncing a directory, new files aren't logged (their metadata and
dentries) nor any child directories. So this patch fixes this issue too,
since it has the same resolution as the incorrect inode link count issue
mentioned before.

This is very easy to reproduce, and the following excerpt from my test
case for xfstests shows how:

  _scratch_mkfs >> $seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create our main test file and directory.
  $XFS_IO_PROG -f -c "pwrite -S 0xaa 0 8K" $SCRATCH_MNT/foo | _filter_xfs_io
  mkdir $SCRATCH_MNT/mydir

  # Make sure all metadata and data are durably persisted.
  sync

  # Add a hard link to 'foo' inside our test directory and fsync only the
  # directory. The btrfs fsync implementation had a bug that caused the new
  # directory entry to be visible after the fsync log replay but, the inode
  # of our file remained with a link count of 1.
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/foo_2

  # Add a few more links and new files.
  # This is just to verify nothing breaks or gives incorrect results after the
  # fsync log is replayed.
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/foo_3
  $XFS_IO_PROG -f -c "pwrite -S 0xff 0 64K" $SCRATCH_MNT/hello | _filter_xfs_io
  ln $SCRATCH_MNT/hello $SCRATCH_MNT/mydir/hello_2

  # Add some subdirectories and new files and links to them. This is to verify
  # that after fsyncing our top level directory 'mydir', all the subdirectories
  # and their files/links are registered in the fsync log and exist after the
  # fsync log is replayed.
  mkdir -p $SCRATCH_MNT/mydir/x/y/z
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/x/y/foo_y_link
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/x/y/z/foo_z_link
  touch $SCRATCH_MNT/mydir/x/y/z/qwerty

  # Now fsync only our top directory.
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/mydir

  # And fsync now our new file named 'hello', just to verify later that it has
  # the expected content and that the previous fsync on the directory 'mydir' had
  # no bad influence on this fsync.
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/hello

  # Simulate a crash/power loss.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  # Verify the content of our file 'foo' remains the same as before, 8192 bytes,
  # all with the value 0xaa.
  echo "File 'foo' content after log replay:"
  od -t x1 $SCRATCH_MNT/foo

  # Remove the first name of our inode. Because of the directory fsync bug, the
  # inode's link count was 1 instead of 5, so removing the 'foo' name ended up
  # deleting the inode and the other names became stale directory entries (still
  # visible to applications). Attempting to remove or access the remaining
  # dentries pointing to that inode resulted in stale file handle errors and
  # made it impossible to remove the parent directories since it was impossible
  # for them to become empty.
  echo "file 'foo' link count after log replay: $(stat -c %h $SCRATCH_MNT/foo)"
  rm -f $SCRATCH_MNT/foo

  # Now verify that all files, links and directories created before fsyncing our
  # directory exist after the fsync log was replayed.
  [ -f $SCRATCH_MNT/mydir/foo_2 ] || echo "Link mydir/foo_2 is missing"
  [ -f $SCRATCH_MNT/mydir/foo_3 ] || echo "Link mydir/foo_3 is missing"
  [ -f $SCRATCH_MNT/hello ] || echo "File hello is missing"
  [ -f $SCRATCH_MNT/mydir/hello_2 ] || echo "Link mydir/hello_2 is missing"
  [ -f $SCRATCH_MNT/mydir/x/y/foo_y_link ] || \
      echo "Link mydir/x/y/foo_y_link is missing"
  [ -f $SCRATCH_MNT/mydir/x/y/z/foo_z_link ] || \
      echo "Link mydir/x/y/z/foo_z_link is missing"
  [ -f $SCRATCH_MNT/mydir/x/y/z/qwerty ] || \
      echo "File mydir/x/y/z/qwerty is missing"

  # We expect our file here to have a size of 64Kb and all the bytes having the
  # value 0xff.
  echo "file 'hello' content after log replay:"
  od -t x1 $SCRATCH_MNT/hello

  # Now remove all files/links, under our test directory 'mydir', and verify we
  # can remove all the directories.
  rm -f $SCRATCH_MNT/mydir/x/y/z/*
  rmdir $SCRATCH_MNT/mydir/x/y/z
  rm -f $SCRATCH_MNT/mydir/x/y/*
  rmdir $SCRATCH_MNT/mydir/x/y
  rmdir $SCRATCH_MNT/mydir/x
  rm -f $SCRATCH_MNT/mydir/*
  rmdir $SCRATCH_MNT/mydir

  # An fsck, run by the fstests framework everytime a test finishes, also detected
  # the inconsistency and printed the following error message:
  #
  # root 5 inode 257 errors 2001, no inode item, link count wrong
  #    unresolved ref dir 258 index 2 namelen 5 name foo_2 filetype 1 errors 4, no inode ref
  #    unresolved ref dir 258 index 3 namelen 5 name foo_3 filetype 1 errors 4, no inode ref

  status=0
  exit

The expected golden output for the test is:

  wrote 8192/8192 bytes at offset 0
  XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
  wrote 65536/65536 bytes at offset 0
  XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
  File 'foo' content after log replay:
  0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
  *
  0020000
  file 'foo' link count after log replay: 5
  file 'hello' content after log replay:
  0000000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
  *
  0200000

Which is the output after this patch and when running the test against
ext3/4, xfs, f2fs, reiserfs or nilfs2. Without this patch, the test's
output is:

  wrote 8192/8192 bytes at offset 0
  XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
  wrote 65536/65536 bytes at offset 0
  XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
  File 'foo' content after log replay:
  0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
  *
  0020000
  file 'foo' link count after log replay: 1
  Link mydir/foo_2 is missing
  Link mydir/foo_3 is missing
  Link mydir/x/y/foo_y_link is missing
  Link mydir/x/y/z/foo_z_link is missing
  File mydir/x/y/z/qwerty is missing
  file 'hello' content after log replay:
  0000000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
  *
  0200000
  rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x/y/z': No such file or directory
  rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x/y': No such file or directory
  rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x': No such file or directory
  rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/foo_2': Stale file handle
  rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/foo_3': Stale file handle
  rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir': Directory not empty

Fsck, without this fix, also complains about the wrong link count:

  root 5 inode 257 errors 2001, no inode item, link count wrong
      unresolved ref dir 258 index 2 namelen 5 name foo_2 filetype 1 errors 4, no inode ref
      unresolved ref dir 258 index 3 namelen 5 name foo_3 filetype 1 errors 4, no inode ref

So fix this by logging the inodes that the dentries point to when
fsyncing a directory.

A test case for xfstests follows.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-26 17:56:23 -07:00
Filipe Manana
4f764e5153 Btrfs: remove deleted xattrs on fsync log replay
If we deleted xattrs from a file and fsynced the file, after a log replay
the xattrs would remain associated to the file. This was an unexpected
behaviour and differs from what other filesystems do, such as for example
xfs and ext3/4.

Fix this by, on fsync log replay, check if every xattr in the fs/subvol
tree (that belongs to a logged inode) has a matching xattr in the log,
and if it does not, delete it from the fs/subvol tree. This is a similar
approach to what we do for dentries when we replay a directory from the
fsync log.

This issue is trivial to reproduce, and the following excerpt from my
test for xfstests triggers the issue:

  _crash_and_mount()
  {
       # Simulate a crash/power loss.
       _load_flakey_table $FLAKEY_DROP_WRITES
       _unmount_flakey
       _load_flakey_table $FLAKEY_ALLOW_WRITES
       _mount_flakey
  }

  rm -f $seqres.full

  _scratch_mkfs >> $seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create out test file and add 3 xattrs to it.
  touch $SCRATCH_MNT/foobar
  $SETFATTR_PROG -n user.attr1 -v val1 $SCRATCH_MNT/foobar
  $SETFATTR_PROG -n user.attr2 -v val2 $SCRATCH_MNT/foobar
  $SETFATTR_PROG -n user.attr3 -v val3 $SCRATCH_MNT/foobar

  # Make sure everything is durably persisted.
  sync

  # Now delete the second xattr and fsync the inode.
  $SETFATTR_PROG -x user.attr2 $SCRATCH_MNT/foobar
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foobar

  _crash_and_mount

  # After the fsync log is replayed, the file should have only 2 xattrs, the ones
  # named user.attr1 and user.attr3. The btrfs fsync log replay bug left the file
  # with the 3 xattrs that we had before deleting the second one and fsyncing the
  # file.
  echo "xattr names and values after first fsync log replay:"
  $GETFATTR_PROG --absolute-names --dump $SCRATCH_MNT/foobar | _filter_scratch

  # Now write some data to our file, fsync it, remove the first xattr, add a new
  # hard link to our file and commit the fsync log by fsyncing some other new
  # file. This is to verify that after log replay our first xattr does not exist
  # anymore.
  echo "hello world!" >> $SCRATCH_MNT/foobar
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foobar
  $SETFATTR_PROG -x user.attr1 $SCRATCH_MNT/foobar
  ln $SCRATCH_MNT/foobar $SCRATCH_MNT/foobar_link
  touch $SCRATCH_MNT/qwerty
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/qwerty

  _crash_and_mount

  # Now only the xattr with name user.attr3 should be set in our file.
  echo "xattr names and values after second fsync log replay:"
  $GETFATTR_PROG --absolute-names --dump $SCRATCH_MNT/foobar | _filter_scratch

  status=0
  exit

The expected golden output, which is produced with this patch applied or
when testing against xfs or ext3/4, is:

  xattr names and values after first fsync log replay:
  # file: SCRATCH_MNT/foobar
  user.attr1="val1"
  user.attr3="val3"

  xattr names and values after second fsync log replay:
  # file: SCRATCH_MNT/foobar
  user.attr3="val3"

Without this patch applied, the output is:

  xattr names and values after first fsync log replay:
  # file: SCRATCH_MNT/foobar
  user.attr1="val1"
  user.attr2="val2"
  user.attr3="val3"

  xattr names and values after second fsync log replay:
  # file: SCRATCH_MNT/foobar
  user.attr1="val1"
  user.attr2="val2"
  user.attr3="val3"

A patch with a test case for xfstests follows soon.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-26 17:55:51 -07:00
Chris Mason
fc4c3c872f Merge branch 'cleanups-post-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.1
Signed-off-by: Chris Mason <clm@fb.com>

Conflicts:
	fs/btrfs/disk-io.c
2015-03-25 10:52:48 -07:00
Linus Torvalds
84399bb075 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "Outside of misc fixes, Filipe has a few fsync corners and we're
  pulling in one more of Josef's fixes from production use here"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs:__add_inode_ref: out of bounds memory read when looking for extended ref.
  Btrfs: fix data loss in the fast fsync path
  Btrfs: remove extra run_delayed_refs in update_cowonly_root
  Btrfs: incremental send, don't rename a directory too soon
  btrfs: fix lost return value due to variable shadowing
  Btrfs: do not ignore errors from btrfs_lookup_xattr in do_setxattr
  Btrfs: fix off-by-one logic error in btrfs_realloc_node
  Btrfs: add missing inode update when punching hole
  Btrfs: abort the transaction if we fail to update the free space cache inode
  Btrfs: fix fsync race leading to ordered extent memory leaks
2015-03-06 13:52:54 -08:00
Quentin Casasnovas
dd9ef135e3 Btrfs:__add_inode_ref: out of bounds memory read when looking for extended ref.
Improper arithmetics when calculting the address of the extended ref could
lead to an out of bounds memory read and kernel panic.

Signed-off-by: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
cc: stable@vger.kernel.org # v3.7+
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-05 17:28:33 -08:00
Linus Torvalds
2b9fb532d4 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs updates from Chris Mason:
 "This pull is mostly cleanups and fixes:

   - The raid5/6 cleanups from Zhao Lei fixup some long standing warts
     in the code and add improvements on top of the scrubbing support
     from 3.19.

   - Josef has round one of our ENOSPC fixes coming from large btrfs
     clusters here at FB.

   - Dave Sterba continues a long series of cleanups (thanks Dave), and
     Filipe continues hammering on corner cases in fsync and others

  This all was held up a little trying to track down a use-after-free in
  btrfs raid5/6.  It's not clear yet if this is just made easier to
  trigger with this pull or if its a new bug from the raid5/6 cleanups.
  Dave Sterba is the only one to trigger it so far, but he has a
  consistent way to reproduce, so we'll get it nailed shortly"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (68 commits)
  Btrfs: don't remove extents and xattrs when logging new names
  Btrfs: fix fsync data loss after adding hard link to inode
  Btrfs: fix BUG_ON in btrfs_orphan_add() when delete unused block group
  Btrfs: account for large extents with enospc
  Btrfs: don't set and clear delalloc for O_DIRECT writes
  Btrfs: only adjust outstanding_extents when we do a short write
  btrfs: Fix out-of-space bug
  Btrfs: scrub, fix sleep in atomic context
  Btrfs: fix scheduler warning when syncing log
  Btrfs: Remove unnecessary placeholder in btrfs_err_code
  btrfs: cleanup init for list in free-space-cache
  btrfs: delete chunk allocation attemp when setting block group ro
  btrfs: clear bio reference after submit_one_bio()
  Btrfs: fix scrub race leading to use-after-free
  Btrfs: add missing cleanup on sysfs init failure
  Btrfs: fix race between transaction commit and empty block group removal
  btrfs: add more checks to btrfs_read_sys_array
  btrfs: cleanup, rename a few variables in btrfs_read_sys_array
  btrfs: add checks for sys_chunk_array sizes
  btrfs: more superblock checks, lower bounds on devices and sectorsize/nodesize
  ...
2015-02-19 14:36:00 -08:00
Daniel Dressler
01d58472a8 Btrfs: disk-io: replace root args iff only fs_info used
This is the 3rd independent patch of a larger project to cleanup btrfs's
internal usage of btrfs_root. Many functions take btrfs_root only to
grab the fs_info struct.

By requiring a root these functions cause programmer overhead. That
these functions can accept any valid root is not obvious until
inspection.

This patch reduces the specificity of such functions to accept the
fs_info directly.

These patches can be applied independently and thus are not being
submitted as a patch series. There should be about 26 patches by the
project's completion. Each patch will cleanup between 1 and 34 functions
apiece.  Each patch covers a single file's functions.

This patch affects the following function(s):
  1) csum_tree_block
  2) csum_dirty_buffer
  3) check_tree_block_fsid
  4) btrfs_find_tree_block
  5) clean_tree_block

Signed-off-by: Daniel Dressler <danieru.dressler@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:43 +01:00
Filipe Manana
a742994aa2 Btrfs: don't remove extents and xattrs when logging new names
If we are recording in the tree log that an inode has new names (new hard
links were added), we would drop items, belonging to the inode, that we
shouldn't:

1) When the flag BTRFS_INODE_COPY_EVERYTHING is set in the inode's runtime
   flags, we ended up dropping all the extent and xattr items that were
   previously logged. This was done only in memory, since logging a new
   name doesn't imply syncing the log;

2) When the flag BTRFS_INODE_COPY_EVERYTHING is set in the inode's runtime
   flags, we ended up dropping all the xattr items that were previously
   logged. Like the case before, this was done only in memory because
   logging a new name doesn't imply syncing the log.

This led to some surprises in scenarios such as the following:

1) write some extents to an inode;
2) fsync the inode;
3) truncate the inode or delete/modify some of its xattrs
4) add a new hard link for that inode
5) fsync some other file, to force the log tree to be durably persisted
6) power failure happens

The next time the fs is mounted, the fsync log replay code is executed,
and the resulting file doesn't have the content it had when the last fsync
against it was performed, instead if has a content matching what it had
when the last transaction commit happened.

So change the behaviour such that when a new name is logged, only the inode
item and reference items are processed.

This is easy to reproduce with the test I just made for xfstests, whose
main body is:

  _scratch_mkfs >> $seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create our test file with some data.
  $XFS_IO_PROG -f -c "pwrite -S 0xaa -b 8K 0 8K" \
      $SCRATCH_MNT/foo | _filter_xfs_io

  # Make sure the file is durably persisted.
  sync

  # Append some data to our file, to increase its size.
  $XFS_IO_PROG -f -c "pwrite -S 0xcc -b 4K 8K 4K" \
      $SCRATCH_MNT/foo | _filter_xfs_io

  # Fsync the file, so from this point on if a crash/power failure happens, our
  # new data is guaranteed to be there next time the fs is mounted.
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo

  # Now shrink our file to 5000 bytes.
  $XFS_IO_PROG -c "truncate 5000" $SCRATCH_MNT/foo

  # Now do an expanding truncate to a size larger than what we had when we last
  # fsync'ed our file. This is just to verify that after power failure and
  # replaying the fsync log, our file matches what it was when we last fsync'ed
  # it - 12Kb size, first 8Kb of data had a value of 0xaa and the last 4Kb of
  # data had a value of 0xcc.
  $XFS_IO_PROG -c "truncate 32K" $SCRATCH_MNT/foo

  # Add one hard link to our file. This made btrfs drop all of our file's
  # metadata from the fsync log, including the metadata relative to the
  # extent we just wrote and fsync'ed. This change was made only to the fsync
  # log in memory, so adding the hard link alone doesn't change the persisted
  # fsync log. This happened because the previous truncates set the runtime
  # flag BTRFS_INODE_NEEDS_FULL_SYNC in the btrfs inode structure.
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link

  # Now make sure the in memory fsync log is durably persisted.
  # Creating and fsync'ing another file will do it.
  # After this our persisted fsync log will no longer have metadata for our file
  # foo that points to the extent we wrote and fsync'ed before.
  touch $SCRATCH_MNT/bar
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/bar

  # As expected, before the crash/power failure, we should be able to see a file
  # with a size of 32Kb, with its first 5000 bytes having the value 0xaa and all
  # the remaining bytes with value 0x00.
  echo "File content before:"
  od -t x1 $SCRATCH_MNT/foo

  # Simulate a crash/power loss.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  # After mounting the fs again, the fsync log was replayed.
  # The expected result is to see a file with a size of 12Kb, with its first 8Kb
  # of data having the value 0xaa and its last 4Kb of data having a value of 0xcc.
  # The btrfs bug used to leave the file as it used te be as of the last
  # transaction commit - that is, with a size of 8Kb with all bytes having a
  # value of 0xaa.
  echo "File content after:"
  od -t x1 $SCRATCH_MNT/foo

The test case for xfstests follows soon.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-14 08:22:49 -08:00
Filipe Manana
1a4bcf470c Btrfs: fix fsync data loss after adding hard link to inode
We have a scenario where after the fsync log replay we can lose file data
that had been previously fsync'ed if we added an hard link for our inode
and after that we sync'ed the fsync log (for example by fsync'ing some
other file or directory).

This is because when adding an hard link we updated the inode item in the
log tree with an i_size value of 0. At that point the new inode item was
in memory only and a subsequent fsync log replay would not make us lose
the file data. However if after adding the hard link we sync the log tree
to disk, by fsync'ing some other file or directory for example, we ended
up losing the file data after log replay, because the inode item in the
persisted log tree had an an i_size of zero.

This is easy to reproduce, and the following excerpt from my test for
xfstests shows this:

  _scratch_mkfs >> $seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create one file with data and fsync it.
  # This made the btrfs fsync log persist the data and the inode metadata with
  # a correct inode->i_size (4096 bytes).
  $XFS_IO_PROG -f -c "pwrite -S 0xaa -b 4K 0 4K" -c "fsync" \
       $SCRATCH_MNT/foo | _filter_xfs_io

  # Now add one hard link to our file. This made the btrfs code update the fsync
  # log, in memory only, with an inode metadata having a size of 0.
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link

  # Now force persistence of the fsync log to disk, for example, by fsyncing some
  # other file.
  touch $SCRATCH_MNT/bar
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/bar

  # Before a power loss or crash, we could read the 4Kb of data from our file as
  # expected.
  echo "File content before:"
  od -t x1 $SCRATCH_MNT/foo

  # Simulate a crash/power loss.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  # After the fsync log replay, because the fsync log had a value of 0 for our
  # inode's i_size, we couldn't read anymore the 4Kb of data that we previously
  # wrote and fsync'ed. The size of the file became 0 after the fsync log replay.
  echo "File content after:"
  od -t x1 $SCRATCH_MNT/foo

Another alternative test, that doesn't need to fsync an inode in the same
transaction it was created, is:

  _scratch_mkfs >> $seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create our test file with some data.
  $XFS_IO_PROG -f -c "pwrite -S 0xaa -b 8K 0 8K" \
       $SCRATCH_MNT/foo | _filter_xfs_io

  # Make sure the file is durably persisted.
  sync

  # Append some data to our file, to increase its size.
  $XFS_IO_PROG -f -c "pwrite -S 0xcc -b 4K 8K 4K" \
       $SCRATCH_MNT/foo | _filter_xfs_io

  # Fsync the file, so from this point on if a crash/power failure happens, our
  # new data is guaranteed to be there next time the fs is mounted.
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo

  # Add one hard link to our file. This made btrfs write into the in memory fsync
  # log a special inode with generation 0 and an i_size of 0 too. Note that this
  # didn't update the inode in the fsync log on disk.
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link

  # Now make sure the in memory fsync log is durably persisted.
  # Creating and fsync'ing another file will do it.
  touch $SCRATCH_MNT/bar
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/bar

  # As expected, before the crash/power failure, we should be able to read the
  # 12Kb of file data.
  echo "File content before:"
  od -t x1 $SCRATCH_MNT/foo

  # Simulate a crash/power loss.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  # After mounting the fs again, the fsync log was replayed.
  # The btrfs fsync log replay code didn't update the i_size of the persisted
  # inode because the inode item in the log had a special generation with a
  # value of 0 (and it couldn't know the correct i_size, since that inode item
  # had a 0 i_size too). This made the last 4Kb of file data inaccessible and
  # effectively lost.
  echo "File content after:"
  od -t x1 $SCRATCH_MNT/foo

This isn't a new issue/regression. This problem has been around since the
log tree code was added in 2008:

  Btrfs: Add a write ahead tree log to optimize synchronous operations
  (commit e02119d5a7)

Test cases for xfstests follow soon.

CC: <stable@vger.kernel.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-14 08:22:49 -08:00
Filipe Manana
575849ecf5 Btrfs: fix scheduler warning when syncing log
We try to lock a mutex while the current task state is not TASK_RUNNING,
which results in the following warning when CONFIG_DEBUG_LOCK_ALLOC=y:

[30736.772501] ------------[ cut here ]------------
[30736.774545] WARNING: CPU: 9 PID: 19972 at kernel/sched/core.c:7300 __might_sleep+0x8b/0xa8()
[30736.783453] do not call blocking ops when !TASK_RUNNING; state=2 set at [<ffffffff8107499b>] prepare_to_wait+0x43/0x89
[30736.786261] Modules linked in: dm_flakey dm_mod crc32c_generic btrfs xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop parport_pc psmouse parport pcspkr microcode serio_raw evdev processor thermal_sys i2c_piix4 i2c_core button ext4 crc16 jbd2 mbcache sg sr_mod cdrom sd_mod ata_generic virtio_scsi floppy ata_piix libata virtio_pci virtio_ring e1000 virtio scsi_mod
[30736.794323] CPU: 9 PID: 19972 Comm: fsstress Not tainted 3.19.0-rc7-btrfs-next-5+ #1
[30736.795821] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[30736.798788]  0000000000000009 ffff88042743fbd8 ffffffff814248ed ffff88043d32f2d8
[30736.800504]  ffff88042743fc28 ffff88042743fc18 ffffffff81045338 0000000000000001
[30736.802131]  ffffffff81064514 ffffffff817c52d1 000000000000026d 0000000000000000
[30736.803676] Call Trace:
[30736.804256]  [<ffffffff814248ed>] dump_stack+0x4c/0x65
[30736.805245]  [<ffffffff81045338>] warn_slowpath_common+0xa1/0xbb
[30736.806360]  [<ffffffff81064514>] ? __might_sleep+0x8b/0xa8
[30736.807391]  [<ffffffff81045398>] warn_slowpath_fmt+0x46/0x48
[30736.808511]  [<ffffffff8107499b>] ? prepare_to_wait+0x43/0x89
[30736.809620]  [<ffffffff8107499b>] ? prepare_to_wait+0x43/0x89
[30736.810691]  [<ffffffff81064514>] __might_sleep+0x8b/0xa8
[30736.811703]  [<ffffffff81426eaf>] mutex_lock_nested+0x2f/0x3a0
[30736.812889]  [<ffffffff8107bfa1>] ? trace_hardirqs_on_caller+0x18f/0x1ab
[30736.814138]  [<ffffffff8107bfca>] ? trace_hardirqs_on+0xd/0xf
[30736.819878]  [<ffffffffa038cfff>] wait_for_writer.isra.12+0x91/0xaa [btrfs]
[30736.821260]  [<ffffffff810748bd>] ? signal_pending_state+0x31/0x31
[30736.822410]  [<ffffffffa0391f0a>] btrfs_sync_log+0x160/0x947 [btrfs]
[30736.823574]  [<ffffffff8107bfa1>] ? trace_hardirqs_on_caller+0x18f/0x1ab
[30736.824847]  [<ffffffff8107bfca>] ? trace_hardirqs_on+0xd/0xf
[30736.825972]  [<ffffffffa036e555>] btrfs_sync_file+0x2b0/0x319 [btrfs]
[30736.827684]  [<ffffffff8117901a>] vfs_fsync_range+0x21/0x23
[30736.828932]  [<ffffffff81179038>] vfs_fsync+0x1c/0x1e
[30736.829917]  [<ffffffff8117928b>] do_fsync+0x34/0x4e
[30736.830862]  [<ffffffff811794b3>] SyS_fsync+0x10/0x14
[30736.831819]  [<ffffffff8142a512>] system_call_fastpath+0x12/0x17
[30736.832982] ---[ end trace c0b57df60d32ae5c ]---

Fix this my acquiring the mutex after calling finish_wait(), which sets the
task's state to TASK_RUNNING.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-14 08:19:14 -08:00
Forrest Liu
3da5ab5648 Btrfs: add missing blk_finish_plug in btrfs_sync_log()
Add missing blk_finish_plug in btrfs_sync_log()

Signed-off-by: Forrest Liu <forrestl@synology.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-04 18:02:37 -08:00
David Sterba
a937b9791e btrfs: kill btrfs_inode_*time helpers
They just opencode taking address of the timespec member.

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-02 18:39:07 -08:00
Filipe Manana
df8d116ffa Btrfs: fix fsync log replay for inodes with a mix of regular refs and extrefs
If we have an inode with a large number of hard links, some of which may
be extrefs, turn a regular ref into an extref, fsync the inode and then
replay the fsync log (after a crash/reboot), we can endup with an fsync
log that makes the replay code always fail with -EOVERFLOW when processing
the inode's references.

This is easy to reproduce with the test case I made for xfstests. Its steps
are the following:

   _scratch_mkfs "-O extref" >> $seqres.full 2>&1
   _init_flakey
   _mount_flakey

   # Create a test file with 3001 hard links. This number is large enough to
   # make btrfs start using extrefs at some point even if the fs has the maximum
   # possible leaf/node size (64Kb).
   echo "hello world" > $SCRATCH_MNT/foo
   for i in `seq 1 3000`; do
       ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_`printf "%04d" $i`
   done

   # Make sure all metadata and data are durably persisted.
   sync

   # Now remove one link, add a new one with a new name, add another new one with
   # the same name as the one we just removed and fsync the inode.
   rm -f $SCRATCH_MNT/foo_link_0001
   ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_3001
   ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_0001
   rm -f $SCRATCH_MNT/foo_link_0002
   ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_3002
   ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_3003
   $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo

   # Simulate a crash/power loss. This makes sure the next mount
   # will see an fsync log and will replay that log.

   _load_flakey_table $FLAKEY_DROP_WRITES
   _unmount_flakey

   _load_flakey_table $FLAKEY_ALLOW_WRITES
   _mount_flakey

   # Check that the number of hard links is correct, we are able to remove all
   # the hard links and read the file's data. This is just to verify we don't
   # get stale file handle errors (due to dangling directory index entries that
   # point to inodes that no longer exist).
   echo "Link count: $(stat --format=%h $SCRATCH_MNT/foo)"
   [ -f $SCRATCH_MNT/foo ] || echo "Link foo is missing"
   for ((i = 1; i <= 3003; i++)); do
       name=foo_link_`printf "%04d" $i`
       if [ $i -eq 2 ]; then
           [ -f $SCRATCH_MNT/$name ] && echo "Link $name found"
       else
           [ -f $SCRATCH_MNT/$name ] || echo "Link $name is missing"
       fi
   done
   rm -f $SCRATCH_MNT/foo_link_*
   cat $SCRATCH_MNT/foo
   rm -f $SCRATCH_MNT/foo

   status=0
   exit

The fix is simply to correct the overflow condition when overwriting a
reference item because it was wrong, trying to increase the item in the
fs/subvol tree by an impossible amount. Also ensure that we don't insert
one normal ref and one ext ref for the same dentry - this happened because
processing a dir index entry from the parent in the log happened when
the normal ref item was full, which made the logic insert an extref and
later when the normal ref had enough room, it would be inserted again
when processing the ref item from the child inode in the log.

This issue has been present since the introduction of the extrefs feature
(2012).

A test case for xfstests follows soon. This test only passes if the previous
patch titled "Btrfs: fix fsync when extend references are added to an inode"
is applied too.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:02:05 -08:00
Filipe Manana
2c2c452b0c Btrfs: fix fsync when extend references are added to an inode
If we added an extended reference to an inode and fsync'ed it, the log
replay code would make our inode have an incorrect link count, which
was lower then the expected/correct count.
This resulted in stale directory index entries after deleting some of
the hard links, and any access to the dangling directory entries resulted
in -ESTALE errors because the entries pointed to inode items that don't
exist anymore.

This is easy to reproduce with the test case I made for xfstests, and
the bulk of that test is:

    _scratch_mkfs "-O extref" >> $seqres.full 2>&1
    _init_flakey
    _mount_flakey

    # Create a test file with 3001 hard links. This number is large enough to
    # make btrfs start using extrefs at some point even if the fs has the maximum
    # possible leaf/node size (64Kb).
    echo "hello world" > $SCRATCH_MNT/foo
    for i in `seq 1 3000`; do
        ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_`printf "%04d" $i`
    done

    # Make sure all metadata and data are durably persisted.
    sync

    # Add one more link to the inode that ends up being a btrfs extref and fsync
    # the inode.
    ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_3001
    $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo

    # Simulate a crash/power loss. This makes sure the next mount
    # will see an fsync log and will replay that log.

    _load_flakey_table $FLAKEY_DROP_WRITES
    _unmount_flakey

    _load_flakey_table $FLAKEY_ALLOW_WRITES
    _mount_flakey

    # Now after the fsync log replay btrfs left our inode with a wrong link count N,
    # which was smaller than the correct link count M (N < M).
    # So after removing N hard links, the remaining M - N directory entries were
    # still visible to user space but it was impossible to do anything with them
    # because they pointed to an inode that didn't exist anymore. This resulted in
    # stale file handle errors (-ESTALE) when accessing those dentries for example.
    #
    # So remove all hard links except the first one and then attempt to read the
    # file, to verify we don't get an -ESTALE error when accessing the inodel
    #
    # The btrfs fsck tool also detected the incorrect inode link count and it
    # reported an error message like the following:
    #
    # root 5 inode 257 errors 2001, no inode item, link count wrong
    #   unresolved ref dir 256 index 2978 namelen 13 name foo_link_2976 filetype 1 errors 4, no inode ref
    #
    # The fstests framework automatically calls fsck after a test is run, so we
    # don't need to call fsck explicitly here.

    rm -f $SCRATCH_MNT/foo_link_*
    cat $SCRATCH_MNT/foo

    status=0
    exit

So make sure an fsync always flushes the delayed inode item, so that the
fsync log contains it (needed in order to trigger the link count fixup
code) and fix the extref counting function, which always return -ENOENT
to its caller (and made it assume there were always 0 extrefs).

This issue has been present since the introduction of the extrefs feature
(2012).

A test case for xfstests follows soon.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:02:04 -08:00
Filipe Manana
d36808e0d4 Btrfs: fix directory inconsistency after fsync log replay
If we have an inode (file) with a link count greater than 1, remove
one of its hard links, fsync the inode, power fail/crash and then
replay the fsync log on the next mount, we end up getting the parent
directory's metadata inconsistent - its i_size still reflects the
deleted hard link and has dangling index entries (with no matching
inode reference entries). This prevents the directory from ever being
deletable, as its i_size can never decrease to BTRFS_EMPTY_DIR_SIZE
even if all of its children inodes are deleted, and the dangling index
entries can never be removed (as they point to an inode that does not
exist anymore).

This is easy to reproduce with the following excerpt from the test case
for xfstests that I just made:

    _scratch_mkfs >> $seqres.full 2>&1

    _init_flakey
    _mount_flakey

    # Create a test file with 2 hard links in the same directory.
    mkdir -p $SCRATCH_MNT/a/b
    echo "hello world" > $SCRATCH_MNT/a/b/foo
    ln $SCRATCH_MNT/a/b/foo $SCRATCH_MNT/a/b/bar

    # Make sure all metadata and data are durably persisted.
    sync

    # Now remove one of the hard links and fsync the inode.
    rm -f $SCRATCH_MNT/a/b/bar
    $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/a/b/foo

    # Simulate a crash/power loss. This makes sure the next mount
    # will see an fsync log and will replay that log.

    _load_flakey_table $FLAKEY_DROP_WRITES
    _unmount_flakey

    _load_flakey_table $FLAKEY_ALLOW_WRITES
    _mount_flakey

    # Remove the last hard link of the file and attempt to remove its parent
    # directory - this failed in btrfs because the fsync log and replay code
    # didn't decrement the parent directory's i_size and left dangling directory
    # index entries - this made the btrfs rmdir implementation always fail with
    # the error -ENOTEMPTY.
    #
    # The dangling directory index entries were visible to user space, but it was
    # impossible to do anything on them (unlink, open, read, write, stat, etc)
    # because the inode they pointed to did not exist anymore.
    #
    # The parent directory's metadata inconsistency (stale index entries) was
    # also detected by btrfs' fsck tool, which is run automatically by the fstests
    # framework when the test finishes. The error message reported by fsck was:
    #
    # root 5 inode 259 errors 2001, no inode item, link count wrong
    #   unresolved ref dir 258 index 3 namelen 3 name bar filetype 1 errors 4, no inode ref
    #
    rm -f $SCRATCH_MNT/a/b/*
    rmdir $SCRATCH_MNT/a/b
    rmdir $SCRATCH_MNT/a

To fix this just make sure that after an unlink, if the inode is fsync'ed,
he parent inode is fully logged in the fsync log.

A test case for xfstests follows soon.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:02:04 -08:00
Chris Mason
57bbddd7fb Merge branch 'cleanup/blocksize-diet-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus 2015-01-21 17:49:35 -08:00
David Sterba
9c4f61f01d btrfs: simplify insert_orphan_item
We can search and add the orphan item in one go,
btrfs_insert_orphan_item will find out if the item already exists.

Signed-off-by: David Sterba <dsterba@suse.cz>
2015-01-14 19:23:48 +01:00
David Sterba
381cf6587f btrfs: fix leak of path in btrfs_find_item
If btrfs_find_item is called with NULL path it allocates one locally but
does not free it. Affected paths are inserting an orphan item for a file
and for a subvol root.

Move the path allocation to the callers.

CC: <stable@vger.kernel.org> # 3.14+
Fixes: 3f870c2899 ("btrfs: expand btrfs_find_item() to include find_orphan_item functionality")
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-01-14 19:23:46 +01:00
David Sterba
a83fffb75d btrfs: sink blocksize parameter to btrfs_find_create_tree_block
Finally it's clear that the requested blocksize is always equal to
nodesize, with one exception, the superblock.

Superblock has fixed size regardless of the metadata block size, but
uses the same helpers to initialize sys array/chunk tree and to work
with the chunk items. So it pretends to be an extent_buffer for a
moment, btrfs_read_sys_array is full of special cases, we're adding one
more.

Signed-off-by: David Sterba <dsterba@suse.cz>
2014-12-12 18:07:21 +01:00
Filipe Manana
b38ef71cb1 Btrfs: ensure ordered extent errors aren't missed on fsync
When doing a fsync with a fast path we have a time window where we can miss
the fact that writeback of some file data failed, and therefore we endup
returning success (0) from fsync when we should return an error.
The steps that lead to this are the following:

1) We start all ordered extents by calling filemap_fdatawrite_range();

2) We do some other work like locking the inode's i_mutex, start a transaction,
   start a log transaction, etc;

3) We enter btrfs_log_inode(), acquire the inode's log_mutex and collect all the
   ordered extents from inode's ordered tree into a list;

4) But by the time we do ordered extent collection, some ordered extents we started
   at step 1) might have already completed with an error, and therefore we didn't
   found them in the ordered tree and had no idea they finished with an error. This
   makes our fsync return success (0) to userspace, but has no bad effects on the log
   like for example insertion of file extent items into the log that point to unwritten
   extents, because the invalid extent maps were removed before the ordered extent
   completed (in inode.c:btrfs_finish_ordered_io).

So after collecting the ordered extents just check if the inode's i_mapping has any
error flags set (AS_EIO or AS_ENOSPC) and leave with an error if it does. Whenever
writeback fails for a page of an ordered extent, we call mapping_set_error (done in
extent_io.c:end_extent_writepage, called by extent_io.c:end_bio_extent_writepage)
that sets one of those error flags in the inode's i_mapping flags.

This change also has the side effect of fixing the issue where for fast fsyncs we
never checked/cleared the error flags from the inode's i_mapping flags, which means
that a full fsync performed after a fast fsync could get such errors that belonged
to the fast fsync - because the full fsync calls btrfs_wait_ordered_range() which
calls filemap_fdatawait_range(), and the later checks for and clears those flags,
while for fast fsyncs we never call filemap_fdatawait_range() or anything else
that checks for and clears the error flags from the inode's i_mapping.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-21 11:59:57 -08:00
Filipe Manana
0870295b23 Btrfs: collect only the necessary ordered extents on ranged fsync
Instead of collecting all ordered extents from the inode's ordered tree
and then wait for all of them to complete, just collect the ones that
overlap the fsync range.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-21 11:59:56 -08:00
Filipe Manana
5ab5e44a36 Btrfs: don't ignore log btree writeback errors
If an error happens during writeback of log btree extents, make sure the
error is returned to the caller (fsync), so that it takes proper action
(commit current transaction) instead of writing a superblock that points
to log btrees with all or some nodes that weren't durably persisted.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-21 11:59:55 -08:00
Josef Bacik
50d9aa99bd Btrfs: make sure logged extents complete in the current transaction V3
Liu Bo pointed out that my previous fix would lose the generation update in the
scenario I described.  It is actually much worse than that, we could lose the
entire extent if we lose power right after the transaction commits.  Consider
the following

write extent 0-4k
log extent in log tree
commit transaction
	< power fail happens here
ordered extent completes

We would lose the 0-4k extent because it hasn't updated the actual fs tree, and
the transaction commit will reset the log so it isn't replayed.  If we lose
power before the transaction commit we are save, otherwise we are not.

Fix this by keeping track of all extents we logged in this transaction.  Then
when we go to commit the transaction make sure we wait for all of those ordered
extents to complete before proceeding.  This will make sure that if we lose
power after the transaction commit we still have our data.  This also fixes the
problem of the improperly updated extent generation.  Thanks,

cc: stable@vger.kernel.org
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-21 11:58:32 -08:00
Josef Bacik
9dba8cf128 Btrfs: make sure we wait on logged extents when fsycning two subvols
If we have two fsync()'s race on different subvols one will do all of its work
to get into the log_tree, wait on it's outstanding IO, and then allow the
log_tree to finish it's commit.  The problem is we were just free'ing that
subvols logged extents instead of waiting on them, so whoever lost the race
wouldn't really have their data on disk.  Fix this by waiting properly instead
of freeing the logged extents.  Thanks,

cc: stable@vger.kernel.org
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-20 17:20:10 -08:00
Linus Torvalds
4f4274af70 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "Filipe is nailing down some problems with our skinny extent variation,
  and Dave's patch fixes endian problems in the new super block checks"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: fix race that makes btrfs_lookup_extent_info miss skinny extent items
  Btrfs: properly clean up btrfs_end_io_wq_cache
  Btrfs: fix invalid leaf slot access in btrfs_lookup_extent()
  btrfs: use macro accessors in superblock validation checks
2014-11-01 10:41:26 -07:00
Filipe Manana
1a4ed8fdca Btrfs: fix invalid leaf slot access in btrfs_lookup_extent()
If we couldn't find our extent item, we accessed the current slot
(path->slots[0]) to check if it corresponds to an equivalent skinny
metadata item. However this slot could be beyond our last item in the
leaf (i.e. path->slots[0] >= btrfs_header_nritems(leaf)), in which case
we shouldn't process it.

Since btrfs_lookup_extent() is only used to find extent items for data
extents, fix this by removing completely the logic that looks up for an
equivalent skinny metadata item, since it can not exist.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-10-27 13:16:52 -07:00
Linus Torvalds
90d0c376f5 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs updates from Chris Mason:
 "The largest set of changes here come from Miao Xie.  He's cleaning up
  and improving read recovery/repair for raid, and has a number of
  related fixes.

  I've merged another set of fsync fixes from Filipe, and he's also
  improved the way we handle metadata write errors to make sure we force
  the FS readonly if things go wrong.

  Otherwise we have a collection of fixes and cleanups.  Dave Sterba
  gets a cookie for removing the most lines (thanks Dave)"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (139 commits)
  btrfs: Fix compile error when CONFIG_SECURITY is not set.
  Btrfs: fix compiles when CONFIG_BTRFS_FS_RUN_SANITY_TESTS is off
  btrfs: Make btrfs handle security mount options internally to avoid losing security label.
  Btrfs: send, don't delay dir move if there's a new parent inode
  btrfs: add more superblock checks
  Btrfs: fix race in WAIT_SYNC ioctl
  Btrfs: be aware of btree inode write errors to avoid fs corruption
  Btrfs: remove redundant btrfs_verify_qgroup_counts declaration.
  btrfs: fix shadow warning on cmp
  Btrfs: fix compilation errors under DEBUG
  Btrfs: fix crash of btrfs_release_extent_buffer_page
  Btrfs: add missing end_page_writeback on submit_extent_page failure
  btrfs: Fix the wrong condition judgment about subset extent map
  Btrfs: fix build_backref_tree issue with multiple shared blocks
  Btrfs: cleanup error handling in build_backref_tree
  btrfs: move checks for DUMMY_ROOT into a helper
  btrfs: new define for the inline extent data start
  btrfs: kill extent_buffer_page helper
  btrfs: drop constant param from btrfs_release_extent_buffer_page
  btrfs: hide typecast to definition of BTRFS_SEND_TRANS_STUB
  ...
2014-10-11 08:03:52 -04:00
Linus Torvalds
28596c9722 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
Pull "trivial tree" updates from Jiri Kosina:
 "Usual pile from trivial tree everyone is so eagerly waiting for"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (39 commits)
  Remove MN10300_PROC_MN2WS0038
  mei: fix comments
  treewide: Fix typos in Kconfig
  kprobes: update jprobe_example.c for do_fork() change
  Documentation: change "&" to "and" in Documentation/applying-patches.txt
  Documentation: remove obsolete pcmcia-cs from Changes
  Documentation: update links in Changes
  Documentation: Docbook: Fix generated DocBook/kernel-api.xml
  score: Remove GENERIC_HAS_IOMAP
  gpio: fix 'CONFIG_GPIO_IRQCHIP' comments
  tty: doc: Fix grammar in serial/tty
  dma-debug: modify check_for_stack output
  treewide: fix errors in printk
  genirq: fix reference in devm_request_threaded_irq comment
  treewide: fix synchronize_rcu() in comments
  checkstack.pl: port to AArch64
  doc: queue-sysfs: minor fixes
  init/do_mounts: better syntax description
  MIPS: fix comment spelling
  powerpc/simpleboot: fix comment
  ...
2014-10-07 21:16:26 -04:00
Filipe Manana
8407f55326 Btrfs: fix data corruption after fast fsync and writeback error
When we do a fast fsync, we start all ordered operations and then while
they're running in parallel we visit the list of modified extent maps
and construct their matching file extent items and write them to the
log btree. After that, in btrfs_sync_log() we wait for all the ordered
operations to finish (via btrfs_wait_logged_extents).

The problem with this is that we were completely ignoring errors that
can happen in the extent write path, such as -ENOSPC, a temporary -ENOMEM
or -EIO errors for example. When such error happens, it means we have parts
of the on disk extent that weren't written to, and so we end up logging
file extent items that point to these extents that contain garbage/random
data - so after a crash/reboot plus log replay, we get our inode's metadata
pointing to those extents.

This worked in contrast with the full (non-fast) fsync path, where we
start all ordered operations, wait for them to finish and then write
to the log btree. In this path, after each ordered operation completes
we check if it's flagged with an error (BTRFS_ORDERED_IOERR) and return
-EIO if so (via btrfs_wait_ordered_range).

So if an error happens with any ordered operation, just return a -EIO
error to userspace, so that it knows that not all of its previous writes
were durably persisted and the application can take proper action (like
redo the writes for e.g.) - and definitely not leave any file extent items
in the log refer to non fully written extents.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-09-19 06:57:51 -07:00
Filipe Manana
a2cc11db24 Btrfs: fix directory recovery from fsync log
When replaying a directory from the fsync log, if a directory entry
exists both in the fs/subvol tree and in the log, the directory's inode
got its i_size updated incorrectly, accounting for the dentry's name
twice.

Reproducer, from a test for xfstests:

    _scratch_mkfs >> $seqres.full 2>&1
    _init_flakey
    _mount_flakey

    touch $SCRATCH_MNT/foo
    sync

    touch $SCRATCH_MNT/bar
    xfs_io -c "fsync" $SCRATCH_MNT
    xfs_io -c "fsync" $SCRATCH_MNT/bar

    _load_flakey_table $FLAKEY_DROP_WRITES
    _unmount_flakey

    _load_flakey_table $FLAKEY_ALLOW_WRITES
    _mount_flakey

    [ -f $SCRATCH_MNT/foo ] || echo "file foo is missing"
    [ -f $SCRATCH_MNT/bar ] || echo "file bar is missing"

    _unmount_flakey
    _check_scratch_fs $FLAKEY_DEV

The filesystem check at the end failed with the message:
"root 5 root dir 256 error".

A test case for xfstests follows.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-09-17 13:38:27 -07:00
Filipe Manana
f98de9b9c0 Btrfs: make btrfs_search_forward return with nodes unlocked
None of the uses of btrfs_search_forward() need to have the path
nodes (level >= 1) read locked, only the leaf needs to be locked
while the caller processes it. Therefore make it return a path
with all nodes unlocked, except for the leaf.

This change is motivated by the observation that during a file
fsync we repeatdly call btrfs_search_forward() and process the
returned leaf while upper nodes of the returned path (level >= 1)
are read locked, which unnecessarily blocks other tasks that want
to write to the same fs/subvol btree.
Therefore instead of modifying the fsync code to unlock all nodes
with level >= 1 immediately after calling btrfs_search_forward(),
change btrfs_search_forward() to do it, so that it benefits all
callers.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-09-17 13:38:02 -07:00
David Sterba
707e8a0715 btrfs: use nodesize everywhere, kill leafsize
The nodesize and leafsize were never of different values. Unify the
usage and make nodesize the one. Cleanup the redundant checks and
helpers.

Shaves a few bytes from .text:

  text    data     bss     dec     hex filename
852418   24560   23112  900090   dbbfa btrfs.ko.before
851074   24584   23112  898770   db6d2 btrfs.ko.after

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2014-09-17 13:37:14 -07:00
David Sterba
962a298f35 btrfs: kill the key type accessor helpers
btrfs_set_key_type and btrfs_key_type are used inconsistently along with
open coded variants. Other members of btrfs_key are accessed directly
without any helpers anyway.

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2014-09-17 13:37:12 -07:00
Filipe Manana
125c4cf9f3 Btrfs: set inode's logged_trans/last_log_commit after ranged fsync
When a ranged fsync finishes if there are still extent maps in the modified
list, still set the inode's logged_trans and last_log_commit. This is important
in case an inode is fsync'ed and unlinked in the same transaction, to ensure its
inode ref gets deleted from the log and the respective dentries in its parent
are deleted too from the log (if the parent directory was fsync'ed in the same
transaction).

Instead make btrfs_inode_in_log() return false if the list of modified extent
maps isn't empty.

This is an incremental on top of the v4 version of the patch:

    "Btrfs: fix fsync data loss after a ranged fsync"

which was added to its v5, but didn't make it on time.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-09-16 16:12:19 -07:00
Filipe Manana
49dae1bc1c Btrfs: fix fsync data loss after a ranged fsync
While we're doing a full fsync (when the inode has the flag
BTRFS_INODE_NEEDS_FULL_SYNC set) that is ranged too (covers only a
portion of the file), we might have ordered operations that are started
before or while we're logging the inode and that fall outside the fsync
range.

Therefore when a full ranged fsync finishes don't remove every extent
map from the list of modified extent maps - as for some of them, that
fall outside our fsync range, their respective ordered operation hasn't
finished yet, meaning the corresponding file extent item wasn't inserted
into the fs/subvol tree yet and therefore we didn't log it, and we must
let the next fast fsync (one that checks only the modified list) see this
extent map and log a matching file extent item to the log btree and wait
for its ordered operation to finish (if it's still ongoing).

A test case for xfstests follows.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-09-08 13:56:43 -07:00
Rasmus Villemoes
a71db86e86 fs/btrfs/tree-log.c: Fix closing brace followed by if
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2014-08-26 09:35:51 +02:00
Filipe Manana
74121f7cbb Btrfs: fix hole detection during file fsync
The file hole detection logic during a file fsync wasn't correct,
because it didn't look back (in a previous leaf) for the last file
extent item that can be in a leaf to the left of our leaf and that
has a generation lower than the current transaction id. This made it
assume that a hole exists when it really doesn't exist in the file.

Such false positive hole detection happens in the following scenario:

* We have a file that has many file extent items, covering 3 or more
  btree leafs (the first leaf must contain non file extent items too).

* Two ranges of the file are modified, with their extent items being
  located at 2 different leafs and those leafs aren't consecutive.

* When processing the second modified leaf, we weren't checking if
  some file extent item exists that is located in some leaf that is
  between our 2 modified leafs, and therefore assumed the range defined
  between the last file extent item in the first leaf and the first file
  extent item in the second leaf matched a hole.

Fortunately this didn't result in overriding the log with wrong data,
instead it made the last loop in copy_items() attempt to insert a
duplicated key (for a hole file extent item), which makes the file
fsync code return with -EEXIST to file.c:btrfs_sync_file() which in
turn ends up doing a full transaction commit, which is much more
expensive then writing only to the log tree and wait for it to be
durably persisted (as well as the file's modified extents/pages).
Therefore fix the hole detection logic, so that we don't pay the
cost of doing full transaction commits.

I could trigger this issue with the following test for xfstests (which
never fails, either without or with this patch). The last fsync call
results in a full transaction commit, due to the -EEXIST error mentioned
above. I could also observe this behaviour happening frequently when
running xfstests/generic/075 in a loop.

Test:

    _cleanup()
    {
        _cleanup_flakey
        rm -fr $tmp
    }

    # get standard environment, filters and checks
    . ./common/rc
    . ./common/filter
    . ./common/dmflakey

    # real QA test starts here
    _supported_fs btrfs
    _supported_os Linux
    _require_scratch
    _require_dm_flakey
    _need_to_be_root

    rm -f $seqres.full

    # Create a file with many file extent items, each representing a 4Kb extent.
    # These items span 3 btree leaves, of 16Kb each (default mkfs.btrfs leaf size
    # as of btrfs-progs 3.12).
    _scratch_mkfs -l 16384 >/dev/null 2>&1
    _init_flakey
    SAVE_MOUNT_OPTIONS="$MOUNT_OPTIONS"
    MOUNT_OPTIONS="$MOUNT_OPTIONS -o commit=999"
    _mount_flakey

    # First fsync, inode has BTRFS_INODE_NEEDS_FULL_SYNC flag set.
    $XFS_IO_PROG -f -c "pwrite -S 0x01 -b 4096 0 4096" -c "fsync" \
            $SCRATCH_MNT/foo | _filter_xfs_io

    # For any of the following fsync calls, inode doesn't have the flag
    # BTRFS_INODE_NEEDS_FULL_SYNC set.
    for ((i = 1; i <= 500; i++)); do
        OFFSET=$((4096 * i))
        LEN=4096
        $XFS_IO_PROG -c "pwrite -S 0x01 $OFFSET $LEN" -c "fsync" \
                $SCRATCH_MNT/foo | _filter_xfs_io
    done

    # Commit transaction and bump next transaction's id (to 7).
    sync

    # Truncate will set the BTRFS_INODE_NEEDS_FULL_SYNC flag in the btrfs's
    # inode runtime flags.
    $XFS_IO_PROG -c "truncate 2048000" $SCRATCH_MNT/foo

    # Commit transaction and bump next transaction's id (to 8).
    sync

    # Touch 1 extent item from the first leaf and 1 from the last leaf. The leaf
    # in the middle, containing only file extent items, isn't touched. So the
    # next fsync, when calling btrfs_search_forward(), won't visit that middle
    # leaf. First and 3rd leaf have now a generation with value 8, while the
    # middle leaf remains with a generation with value 6.
    $XFS_IO_PROG \
        -c "pwrite -S 0xee -b 4096 0 4096" \
        -c "pwrite -S 0xff -b 4096 2043904 4096" \
        -c "fsync" \
        $SCRATCH_MNT/foo | _filter_xfs_io

    _load_flakey_table $FLAKEY_DROP_WRITES
    md5sum $SCRATCH_MNT/foo | _filter_scratch
    _unmount_flakey

    _load_flakey_table $FLAKEY_ALLOW_WRITES
    # During mount, we'll replay the log created by the fsync above, and the file's
    # md5 digest should be the same we got before the unmount.
    _mount_flakey
    md5sum $SCRATCH_MNT/foo | _filter_scratch
    _unmount_flakey
    MOUNT_OPTIONS="$SAVE_MOUNT_OPTIONS"

    status=0
    exit

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-08-21 07:55:24 -07:00
Miao Xie
995946dd29 Btrfs: use helpers for last_trans_log_full_commit instead of opencode
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:45 -07:00