The only user of thread_saved_pc() in non-arch-specific code was removed
in commit 8243d55977 ("sched/core: Remove pointless printout in
sched_show_task()"). Remove the implementations as well.
Some architectures use thread_saved_pc() in their arch-specific code.
Leave their thread_saved_pc() intact.
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Neither soft poweroff (transition to ACPI power state S5) nor
suspend-to-RAM (transition to state S3) works on the Macbook Pro 11,4 and
11,5.
The problem is related to the [mem 0x7fa00000-0x7fbfffff] space. When we
use that space, e.g., by assigning it to the 00:1c.0 Root Port, the ACPI
Power Management 1 Control Register (PM1_CNT) at [io 0x1804] doesn't work
anymore.
Linux does a soft poweroff (transition to S5) by writing to PM1_CNT. The
theory about why this doesn't work is:
- The write to PM1_CNT causes an SMI
- The BIOS SMI handler depends on something in
[mem 0x7fa00000-0x7fbfffff]
- When Linux assigns [mem 0x7fa00000-0x7fbfffff] to the 00:1c.0 Port, it
covers up whatever the SMI handler uses, so the SMI handler no longer
works correctly
Reserve the [mem 0x7fa00000-0x7fbfffff] space so we don't assign it to
anything.
This is voodoo programming, since we don't know what the real conflict is,
but we've failed to find the root cause.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=103211
Tested-by: thejoe@gmail.com
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: stable@vger.kernel.org
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Lukas Wunner <lukas@wunner.de>
Cc: Chen Yu <yu.c.chen@intel.com>
The memory operand fetched for INVVPID is 128 bits. Bits 63:16 are
reserved and must be zero. Otherwise, the instruction fails with
VMfail(Invalid operand to INVEPT/INVVPID). If the INVVPID_TYPE is 0
(individual address invalidation), then bits 127:64 must be in
canonical form, or the instruction fails with VMfail(Invalid operand
to INVEPT/INVVPID).
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
All x86 PCI configuration space accessors have either their own
serialization or can operate completely lockless (ECAM).
Disable the global lock in the generic PCI configuration space accessors.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Bjorn Helgaas <helgaas@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: linux-pci@vger.kernel.org
Link: http://lkml.kernel.org/r/20170316215057.295079391@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
x86 wants to get rid of the global pci_lock protecting the config space
accessors so ECAM mode can operate completely lockless, but the CE4100 PCI
code relies on that to protect the simulation registers.
Restructure the code so it uses the x86 specific pci_config_lock to
serialize the inner workings of the CE4100 PCI magic. That allows to remove
the global locking via pci_lock later.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Bjorn Helgaas <helgaas@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: linux-pci@vger.kernel.org
Link: http://lkml.kernel.org/r/20170316215057.126873574@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If the legacy PCI init fails, then there are no PCI config space accesors
available, but the code continues and tries to scan the busses, which fails
due to the lack of config space accessors.
Return right away, if the last init fallback fails.
Switch the few printks to pr_info while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Bjorn Helgaas <helgaas@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: linux-pci@vger.kernel.org
Link: http://lkml.kernel.org/r/20170316215057.047576516@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
For some historic reason these defines are duplicated and also available in
arch/x86/include/asm/pci_x86.h,
Remove them.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Bjorn Helgaas <helgaas@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: linux-pci@vger.kernel.org
Link: http://lkml.kernel.org/r/20170316215056.967808646@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
And instead wire it up as method for all the dma_map_ops instances.
Note that this also means the arch specific check will be fully instead
of partially applied in the AMD iommu driver.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Now that all callers of the pmem api have been converted to dax helpers that
call back to the pmem driver, we can remove include/linux/pmem.h and
asm/pmem.h.
Cc: <x86@kernel.org>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Oliver O'Halloran <oohall@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Kill this globally defined wrapper and move to libnvdimm so that we can
ultimately remove include/linux/pmem.h and asm/pmem.h.
Cc: <x86@kernel.org>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add ptwrite to the op code map and the perf tools new instructions test.
To run the test:
$ tools/perf/perf test "x86 ins"
39: Test x86 instruction decoder - new instructions : Ok
Or to see the details:
$ tools/perf/perf test -v "x86 ins" 2>&1 | grep ptwrite
For information about ptwrite, refer the Intel SDM.
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: http://lkml.kernel.org/r/1495180230-19367-1-git-send-email-adrian.hunter@intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
enable_nmi_window is supposed to be a no-op if we know that we'll see
a VM exit by the time the NMI window opens. This commit adds two more
cases:
* We intercept stgi so we don't need to singlestep on GIF=0.
* We emulate nested vmexit so we don't need to singlestep when nested
VM exit is required.
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Singlestepping is enabled by setting the TF flag and care must be
taken to not let the guest see (and reuse at an inconvenient time)
the modified rflag value. One such case is event injection, as part
of which flags are pushed on the stack and restored later on iret.
This commit disables singlestepping when we're about to inject an
event and forces an immediate exit for us to re-evaluate the NMI
related state.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These flags are used internally by SVM so it's cleaner to not leak
them to callers of svm_get_rflags. This is similar to how the TF
flag is handled on KVM_GUESTDBG_SINGLESTEP by kvm_get_rflags and
kvm_set_rflags.
Without this change, the flags may propagate from host VMCB to nested
VMCB or vice versa while singlestepping over a nested VM enter/exit,
and then get stuck in inappropriate places.
Example: NMI singlestepping is enabled while running L1 guest. The
instruction to step over is VMRUN and nested vmrun emulation stashes
rflags to hsave->save.rflags. Then if singlestepping is disabled
while still in L2, TF/RF will be cleared from the nested VMCB but the
next nested VM exit will restore them from hsave->save.rflags and
cause an unexpected DB exception.
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Nested hypervisor should not see singlestep VM exits if singlestepping
was enabled internally by KVM. Windows is particularly sensitive to this
and known to bluescreen on unexpected VM exits.
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Just moving the code to a new helper in preparation for following
commits.
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
AMD systems support the Monitor/Mwait instructions and these can be used
for ACPI C1 in the same way as on Intel systems.
Three things are needed:
1) This patch.
2) BIOS that declares a C1 state in _CST to use FFH, with correct values.
3) CPUID_Fn00000005_EDX is non-zero on the system.
The BIOS on AMD systems have historically not defined a C1 state in _CST,
so the acpi_idle driver uses HALT for ACPI C1.
Currently released systems have CPUID_Fn00000005_EDX as reserved/RAZ. If a
BIOS is released for these systems that requests a C1 state with FFH, the
FFH implementation in Linux will fail since CPUID_Fn00000005_EDX is 0. The
acpi_idle driver will then fallback to using HALT for ACPI C1.
Future systems are expected to have non-zero CPUID_Fn00000005_EDX and BIOS
support for using FFH for ACPI C1.
Allow ffh_cstate_init() to succeed on AMD systems.
Tested on Fam15h and Fam17h systems.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The goal of this change is to give users a uniform and meaningful
result when they read /sys/...cpufreq/scaling_cur_freq
on modern x86 hardware, as compared to what they get today.
Modern x86 processors include the hardware needed
to accurately calculate frequency over an interval --
APERF, MPERF, and the TSC.
Here we provide an x86 routine to make this calculation
on supported hardware, and use it in preference to any
driver driver-specific cpufreq_driver.get() routine.
MHz is computed like so:
MHz = base_MHz * delta_APERF / delta_MPERF
MHz is the average frequency of the busy processor
over a measurement interval. The interval is
defined to be the time between successive invocations
of aperfmperf_khz_on_cpu(), which are expected to to
happen on-demand when users read sysfs attribute
cpufreq/scaling_cur_freq.
As with previous methods of calculating MHz,
idle time is excluded.
base_MHz above is from TSC calibration global "cpu_khz".
This x86 native method to calculate MHz returns a meaningful result
no matter if P-states are controlled by hardware or firmware
and/or if the Linux cpufreq sub-system is or is-not installed.
When this routine is invoked more frequently, the measurement
interval becomes shorter. However, the code limits re-computation
to 10ms intervals so that average frequency remains meaningful.
Discerning users are encouraged to take advantage of
the turbostat(8) utility, which can gracefully handle
concurrent measurement intervals of arbitrary length.
Signed-off-by: Len Brown <len.brown@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The MCE severity gives a hint as to how to handle the error. The
notifier blocks can then use the severity to decide on an action.
It's not necessary for machine_check_poll() to filter errors for
the notifier chain, since each block will check its own set of
conditions before handling an error.
Also, there isn't any urgency for machine_check_poll() to make decisions
based on severity like in do_machine_check().
If we can assume that a severity is set then we can use it in more
notifier blocks. For example, the CEC block could check for a "KEEP"
severity rather than checking bits in the status. This isn't possible
now since the severity is not set except for "DEFFRRED/UCNA" errors with
a valid address.
Save the severity since we have it, and let the notifier blocks decide
if they want to do anything.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1498074402-98633-1-git-send-email-Yazen.Ghannam@amd.com
The helper function __load_ucode_amd() and pointer intel_ucode_patch do
not need to be in global scope, so make them static.
Fixes those sparse warnings:
"symbol '__load_ucode_amd' was not declared. Should it be static?"
"symbol 'intel_ucode_patch' was not declared. Should it be static?"
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170622095736.11937-1-colin.king@canonical.com
Since commit:
af2cf278ef ("x86/mm/hotplug: Don't remove PGD entries in remove_pagetable()")
we no longer free PUDs so that we do not have to synchronize
all PGDs on hot-remove/vfree().
But the new 5-level page table patchset reverted that for 4-level
page tables, in the following commit:
f2a6a70501: ("x86: Convert the rest of the code to support p4d_t")
This patch restores the damage and disables free_pud() if we are in the
4-level page table case, thus avoiding BUG_ON() after hot-remove.
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
[ Clarified the changelog and the code comments. ]
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170624180514.3821-1-jglisse@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fix from Thomas Gleixner:
"A single fix to unbreak the vdso32 build for 64bit kernels caused by
excess #includes in the mshyperv header"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mshyperv: Remove excess #includes from mshyperv.h
Pull perf fixes from Thomas Gleixner:
"Three fixlets for perf:
- Return the proper error code if aux buffers for a event are not
supported.
- Calculate the probe offset for inlined functions correctly
- Update the Skylake DTLB load/store miss event so it can count 1G
TLB entries as well"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf probe: Fix probe definition for inlined functions
perf/x86/intel: Add 1G DTLB load/store miss support for SKL
perf/aux: Correct return code of rb_alloc_aux() if !has_aux(ev)
In a HVM guest the kernel allocates the page for mapping the shared
info structure via extend_brk() today. This will lead to a drop of
performance as the underlying EPT entry will have to be split up into
4kB entries as the single shared info page is located in hypervisor
memory.
The issue has been detected by using the libmicro munmap test:
unmapping 8kB of memory was faster by nearly a factor of two when no
pv interfaces were active in the HVM guest.
So instead of taking a page from memory which might be mapped via
large EPT entries use a page which is already mapped via a 4kB EPT
entry: we can take a page from the first 1MB of memory as the video
memory at 640kB disallows using larger EPT entries.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
For gcc stack alignment is configured with -mpreferred-stack-boundary=N,
clang has the option -mstack-alignment=N for that purpose. Use the same
alignment as with gcc.
If the alignment is not specified clang assumes an alignment of
16 bytes, as required by the standard ABI. However as mentioned in
d9b0cde91c ("x86-64, gcc: Use -mpreferred-stack-boundary=3 if
supported") the standard kernel entry on x86-64 leaves the stack
on an 8-byte boundary, as a consequence clang will keep the stack
misaligned.
Signed-off-by: Matthias Kaehlcke <mka@chromium.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
cc-option is used to enable compiler options for the boot code if they
are available. The macro uses KBUILD_CFLAGS and KBUILD_CPPFLAGS for the
check, however these flags aren't used to build the boot code, in
consequence cc-option can yield wrong results. For example
-mpreferred-stack-boundary=2 is never set with a 64-bit compiler,
since the setting is only valid for 16 and 32-bit binaries. This
is also the case for 32-bit kernel builds, because the option -m32 is
added to KBUILD_CFLAGS after the assignment of REALMODE_CFLAGS.
Use __cc-option instead of cc-option for the boot mode options.
The macro receives the compiler options as parameter instead of using
KBUILD_C*FLAGS, for the boot code we pass REALMODE_CFLAGS.
Also use separate statements for the __cc-option checks instead
of performing them in the initial assignment of REALMODE_CFLAGS since
the variable is an input of the macro.
Signed-off-by: Matthias Kaehlcke <mka@chromium.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Documentation/kbuild/makefiles.txt says the change for align options
occurred at GCC 3.0, and Documentation/process/changes.rst says the
minimal supported GCC version is 3.2, so it should be safe to hard-code
-falign* options.
Fix the only user arch/x86/Makefile_32.cpu and remove cc-option-align.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
The Sparse static analyzer emits this warning:
symbol 'strchr' was not declared. Should it be static?
This patch adds the appropriate extern declaration to string.h
to fix the warning.
Signed-off-by: Tommy Nguyen <remyabel@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170623143601.GA20743@NoChina
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A recent commit included linux/slab.h in linux/irq.h. This breaks the build
of vdso32 on a 64-bit kernel.
The reason is that linux/irq.h gets included into the vdso code via
linux/interrupt.h which is included from asm/mshyperv.h. That makes the
32-bit vdso compile fail, because slab.h includes the pgtable headers for
64-bit on a 64-bit build.
Neither linux/clocksource.h nor linux/interrupt.h are needed in the
mshyperv.h header file itself - it has a dependency on <linux/atomic.h>.
Remove the includes and unbreak the build.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: devel@linuxdriverproject.org
Fixes: dee863b571 ("hv: export current Hyper-V clocksource")
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1706231038460.2647@nanos
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since the following commit in 2008:
cc503c1b43 ("x86: PIE executable randomization")
We added a heuristics to treat applications with RLIMIT_STACK configured
to unlimited as legacy. This means:
a) set the mmap_base to 1/3 of address space + randomization and
b) mmap from bottom to top.
This makes some sense as it allows the stack to grow really large. On the
other hand it reduces the address space usable for default mmaps
(without address hint) quite a lot.
We have received a bug report that SAP HANA workload has hit into this
limitation.
We could argue that the user just got what he asked for when setting
up the unlimited stack but to be realistic growing stack up to 1/6
TASK_SIZE (allowed by mmap_base) is pretty much unimited in the real
life. This would give mmap 20TB of additional address space which is
quite nice. Especially when it is much more likely to use that address
space than the reserved stack.
Digging into the history the original implementation of the randomization:
8817210d4d ("[PATCH] x86_64: Flexmap for 32bit and randomized mappings for 64bit")
didn't have this restriction.
So let's try and remove this assumption - hopefully nothing breaks.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Dave Jones <davej@codemonkey.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: hughd@google.com
Cc: linux-mm@kvack.org
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/tip-86b110d2ae6365ce91cabd37588bc8611770421a@git.kernel.org
[ So I've applied this to tip:x86/mm with a wider Cc: list - if anyone objects to this change please holler. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cpufreq_quick_get() allows cpufreq drivers to over-ride cpu_khz
that is otherwise reported in x86 /proc/cpuinfo "cpu MHz".
There are four problems with this scheme,
any of them is sufficient justification to delete it.
1. Depending on which cpufreq driver is loaded, the behavior
of this field is different.
2. Distros complain that they have to explain to users
why and how this field changes. Distros have requested a constant.
3. The two major providers of this information, acpi_cpufreq
and intel_pstate, both "get it wrong" in different ways.
acpi_cpufreq lies to the user by telling them that
they are running at whatever frequency was last
requested by software.
intel_pstate lies to the user by telling them that
they are running at the average frequency computed
over an undefined measurement. But an average computed
over an undefined interval, is itself, undefined...
4. On modern processors, user space utilities, such as
turbostat(1), are more accurate and more precise, while
supporing concurrent measurement over arbitrary intervals.
Users who have been consulting /proc/cpuinfo to
track changing CPU frequency will be dissapointed that
it no longer wiggles -- perhaps being unaware of the
limitations of the information they have been consuming.
Yes, they can change their scripts to look in sysfs
cpufreq/scaling_cur_frequency. Here they will find the same
data of dubious quality here removed from /proc/cpuinfo.
The value in sysfs will be addressed in a subsequent patch
to address issues 1-3, above.
Issue 4 will remain -- users that really care about
accurate frequency information should not be using either
proc or sysfs kernel interfaces.
They should be using using turbostat(8), or a similar
purpose-built analysis tool.
Signed-off-by: Len Brown <len.brown@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The current approach, which is the wholesale efi struct initialization from
a 'efi_xen' local template is not robust. Usually if new member is defined
then it is properly initialized in drivers/firmware/efi/efi.c, but not in
arch/x86/xen/efi.c.
The effect is that the Xen initialization clears any fields the generic code
might have set and the Xen code does not know about yet.
I saw this happen a few times, so let's initialize only the EFI struct members
used by Xen and maintain no local duplicate, to avoid such issues in the future.
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: andrew.cooper3@citrix.com
Cc: jgross@suse.com
Cc: linux-efi@vger.kernel.org
Cc: matt@codeblueprint.co.uk
Cc: stable@vger.kernel.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1498128697-12943-3-git-send-email-daniel.kiper@oracle.com
[ Clarified the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If the interrupt destination mode of the APIC is physical then the
effective affinity is restricted to a single CPU.
Mark the interrupt accordingly in the domain allocation code, so the core
code can avoid pointless affinity setting attempts.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235447.508846202@linutronix.de
Add the effective irq mask update to the apic implementations and enable
effective irq masks for x86.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235446.878370703@linutronix.de
The decision to which CPUs an interrupt is effectively routed happens in
the various apic->cpu_mask_to_apicid() implementations
To support effective affinity masks this information needs to be updated in
irq_data. Add a pointer to irq_data to the callbacks and feed it through
the call chain.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235446.720739075@linutronix.de
All implementations of apic->cpu_mask_to_apicid_and() and the two incoming
cpumasks to search for the target.
Move that operation to the call site and rename it to cpu_mask_to_apicid()
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235446.641575516@linutronix.de
All implementations of apic->cpu_mask_to_apicid_and() mask out the offline
cpus. The callsite already has a mask available, which has the offline CPUs
removed. Use that and remove the extra bits.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235446.560868224@linutronix.de
Same functionality except the extra bits ored on the apicid.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235446.482841015@linutronix.de
No point in having inlines assigned to function pointers at multiple
places. Just bloats the text.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235446.405975721@linutronix.de
The generic migration code supports all the required features
already. Remove the x86 specific implementation and use the generic one.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235445.851311033@linutronix.de
Reorder fixup_irqs() so it matches the flow in the generic migration code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235445.774272454@linutronix.de
In order to move x86 to the generic hotplug migration code, add support for
cleaning up move in progress bits.
On architectures which have this x86 specific (mis)feature not enabled,
this is optimized out by the compiler.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235445.525817311@linutronix.de
If an CPU goes offline, the interrupts are migrated away, but a eventually
pending interrupt move, which has not yet been made effective is kept
pending even if the outgoing CPU is the sole target of the pending affinity
mask. What's worse is, that the pending affinity mask is discarded even if
it would contain a valid subset of the online CPUs.
Use the newly introduced helper to:
- Discard a pending move when the outgoing CPU is the only target in the
pending mask.
- Use the pending mask instead of the affinity mask to find a valid target
for the CPU if the pending mask intersects with the online CPUs.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235444.774068557@linutronix.de
Use the fwnode to create named irq domains so diagnosis works.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235444.299024560@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235444.221049665@linutronix.de
Provide a new interface for creating the iommu remapping domains, so that
the caller can supply a name and a id in order to create named irqdomains.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: iommu@lists.linux-foundation.org
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235443.986661206@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Use the fwnode to create a named domain so diagnosis works.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235443.907511074@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Use the fwnode to create a named domain so diagnosis works.
Mark the init function __init while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235443.829047007@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Use the fwnode to create a named domain so diagnosis works, but only when
the the ioapic is not device tree based.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235443.752782603@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Use the fwnode to create a named domain so diagnosis works.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235443.673635238@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add the missing name, so debugging will work proper.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235443.266561988@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
TF is handled a bit differently for syscall and sysret, compared
to the other instructions: TF is checked after the instruction completes,
so that the OS can disable #DB at a syscall by adding TF to FMASK.
When the sysret is executed the #DB is taken "as if" the syscall insn
just completed.
KVM emulates syscall so that it can trap 32-bit syscall on Intel processors.
Fix the behavior, otherwise you could get #DB on a user stack which is not
nice. This does not affect Linux guests, as they use an IST or task gate
for #DB.
This fixes CVE-2017-7518.
Cc: stable@vger.kernel.org
Reported-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
tsc_clocksource_reliable is initialized in check_system_tsc_reliable(), but
it is checked in unsynchronized_tsc() which is called before the
initialization.
In practice that's not an issue because systems which mark the TSC
reliable have X86_FEATURE_CONSTANT_TSC set as well, which is evaluated
in unsynchronized_tsc() before tsc_clocksource_reliable.
Reorder the calls so initialization happens before usage.
[ tglx: Massaged changelog ]
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/b1532ef7-cd9f-45f7-9f49-48dd2a5c2495@default
It was found that SMI_TRESHOLD of 50000 is not enough for Hyper-V
guests in nested environment and falling back to counting jiffies
is not an option for Gen2 guests as they don't have PIT. As Hyper-V
provides TSC frequency in a synthetic MSR we can just use this information
instead of doing a error prone calibration.
Reported-and-tested-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Jork Loeser <jloeser@microsoft.com>
Cc: devel@linuxdriverproject.org
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Link: http://lkml.kernel.org/r/20170622100730.18112-3-vkuznets@redhat.com
Hyper-V TLFS specifies two bits which should be checked before accessing
frequency MSRs:
- AccessFrequencyMsrs (BIT(11) in EAX) which indicates if we have access to
frequency MSRs.
- FrequencyMsrsAvailable (BIT(8) in EDX) which indicates is these MSRs are
present.
Rename and specify these bits accordingly.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Ladi Prosek <lprosek@redhat.com>
Cc: Jork Loeser <jloeser@microsoft.com>
Cc: devel@linuxdriverproject.org
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Link: http://lkml.kernel.org/r/20170622100730.18112-2-vkuznets@redhat.com
The following change in 2013:
0212f91596 ("x86: Add Crash kernel low reservation")
... introduced reserve_crashkernel_low(). This function is used to
reserve crash kernel memory either if crashkernel=size,low is given
on the command line or if the region reserved by reserve_crashkernel
is entirely above 4G.
reserve_crashkernel_low() tries to find a block of 'low_size' bytes.
But there seems to be no good reason to restrict the lower bound
of the range to 'low_size'.
Make memblock_find_in_range() search from the start of memory.
Signed-off-by: Jiri Bohac <jbohac@suse.cz>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/20170616161602.2r7birrf2y3ylv6v@dwarf.suse.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Current DTLB load/store miss events (0x608/0x649) only counts 4K,2M and
4M page size.
Need to extend the events to support any page size (4K/2M/4M/1G).
The complete DTLB load/store miss events are:
DTLB_LOAD_MISSES.WALK_COMPLETED 0xe08
DTLB_STORE_MISSES.WALK_COMPLETED 0xe49
Signed-off-by: Kan Liang <Kan.liang@intel.com>
Cc: <stable@vger.kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/20170619142609.11058-1-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The only call site also calls idle_task_exit(), and idle_task_exit()
puts us into a clean state by explicitly switching to init_mm.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/3acc7ad02a2ec060d2321a1e0f6de1cb90069517.1498022414.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Originally, Linux reloaded the LDT whenever the prev mm or the next
mm had an LDT. It was changed in 2002 in:
0bbed3beb4f2 ("[PATCH] Thread-Local Storage (TLS) support")
(commit from the historical tree), like this:
- /* load_LDT, if either the previous or next thread
- * has a non-default LDT.
+ /*
+ * load the LDT, if the LDT is different:
*/
- if (next->context.size+prev->context.size)
+ if (unlikely(prev->context.ldt != next->context.ldt))
load_LDT(&next->context);
The current code is unlikely to avoid any LDT reloads, since different
mms won't share an LDT.
When we redo lazy mode to stop flush IPIs without switching to
init_mm, though, the current logic would become incorrect: it will
be possible to have real_prev == next but nonetheless have a stale
LDT descriptor.
Simplify the code to update LDTR if either the previous or the next
mm has an LDT, i.e. effectively restore the historical logic..
While we're at it, clean up the code by moving all the ifdeffery to
a header where it belongs.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/2a859ac01245f9594c58f9d0a8b2ed8a7cd2507e.1498022414.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
These two functions are only called by arch_early_irq_init(), which
is an __init function, so mark them __init as well.
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1498101341-10182-1-git-send-email-douly.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This function is only called by arch_early_irq_init(), which is an
__init function, so mark the child function __init as well.
In addition mark it inline for the !CONFIG_X86_IO_APIC case.
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1498040061-5332-1-git-send-email-douly.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This switches the hibernate_64.S function names into character arrays
to match other areas of the kernel where this is done (e.g., linker
scripts). Specifically this fixes a compile-time error noticed by the
future CONFIG_FORTIFY_SOURCE routines that complained about PAGE_SIZE
being copied out of the "single byte" core_restore_code variable.
Additionally drops the "acpi_save_state_mem" exern which does not
appear to be used anywhere else in the kernel.
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Originally, generated-y and genhdr-y had different meaning, like
follows:
- generated-y: generated headers (other than asm-generic wrappers)
- header-y : headers to be exported
- genhdr-y : generated headers to be exported (generated-y + header-y)
Since commit fcc8487d47 ("uapi: export all headers under uapi
directories"), headers under UAPI directories are all exported.
So, there is no more difference between generated-y and genhdr-y.
We see two users of genhdr-y, arch/{arm,x86}/include/uapi/asm/Kbuild.
They generate some headers in arch/{arm,x86}/include/generated/uapi/asm
directories, which are obviously exported.
Replace them with generated-y, and abolish genhdr-y.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com>
Two entries being added at the same time to the IFLA
policy table, whilst parallel bug fixes to decnet
routing dst handling overlapping with the dst gc removal
in net-next.
Signed-off-by: David S. Miller <davem@davemloft.net>
CRIU restores application mappings on the same place where they
were before Checkpoint. That means, that we need to move vDSO
and sigpage during restore on exactly the same place where
they were before C/R.
Make mremap() code update mm->context.{sigpage,vdso} pointers
during VMA move. Sigpage is used for landing after handling
a signal - if the pointer is not updated during moving, the
application might crash on any signal after mremap().
vDSO pointer on ARM32 is used only for setting auxv at this moment,
update it during mremap() in case of future usage.
Without those updates, current work of CRIU on ARM32 is not reliable.
Historically, we error Checkpointing if we find vDSO page on ARM32
and suggest user to disable CONFIG_VDSO.
But that's not correct - it goes from x86 where signal processing
is ended in vDSO blob. For arm32 it's sigpage, which is not disabled
with `CONFIG_VDSO=n'.
Looks like C/R was working by luck - because userspace on ARM32 at
this moment always sets SA_RESTORER.
Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Cc: linux-arm-kernel@lists.infradead.org
Cc: Will Deacon <will.deacon@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: Christopher Covington <cov@codeaurora.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
When running under Xen as dom0, /dev/mcelog is being provided by Xen
instead of the normal mcelog character device of the MCE core. Convert
an error message being issued by the MCE core in this case to an
informative message that Xen has registered the device.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: xen-devel@lists.xenproject.org
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170614084059.19294-1-jgross@suse.com
Put __startup_64() and fixup_pointer() into .head.text section to make
sure it's always near startup_64() and always callable.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel test robot <fengguang.wu@intel.com>
Cc: wfg@linux.intel.com
Link: http://lkml.kernel.org/r/20170616113024.ajmif63cmcszry5a@black.fi.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Normally, when the initrd is gone, we can't search it for microcode
blobs to apply anymore. For that we need to stash away the patch in our
own storage.
And save_microcode_in_initrd_intel() looks like the proper place to
do that from. So in order for early loading to work, invalidate the
intel_ucode_patch pointer to the patch *before* scanning the initrd one
last time.
If the scanning code finds a microcode patch, it will assign that
pointer again, this time with our own storage's address.
This way, early microcode application during resume-from-RAM works too,
even after the initrd is long gone.
Tested-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170614140626.4462-2-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Early during boot, the BSP finds the ramdisk's position from boot_params
but by the time the APs get to boot, the BSP has continued in the mean
time and has potentially managed to relocate that ramdisk.
And in that case, the APs need to find the ramdisk at its new position,
in *physical* memory as they're running before paging has been enabled.
Thus, get the updated physical location of the ramdisk which is in the
relocated_ramdisk variable.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170614140626.4462-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Conflicts:
kernel/sched/Makefile
Pick up the waitqueue related renames - it didn't get much feedback,
so it appears to be uncontroversial. Famous last words? ;-)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When hpet=force is supplied on the kernel command line and the HPET
supports the Legacy Replacement Interrupt Route option (HPET_ID_LEGSUP),
the legacy interrupts init code uses the boot CPU's mask initially by
calling smp_processor_id() assuming that it is running on the BSP.
It does run on the BSP but the code region is preemptible and the
preemption check fires.
Simply use the BSP's id directly to avoid the warning.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20170620093154.18472-1-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
ARM and x86 had duplicated versions of the dma_ops structure, the
only difference is that x86 hasn't wired up the set_dma_mask,
mmap, and get_sgtable ops yet. On x86 all of them are identical
to the generic version, so they aren't needed but harmless.
All the symbols used only for xen_swiotlb_dma_ops can now be marked
static as well.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Stack guard page is a useful feature to reduce a risk of stack smashing
into a different mapping. We have been using a single page gap which
is sufficient to prevent having stack adjacent to a different mapping.
But this seems to be insufficient in the light of the stack usage in
userspace. E.g. glibc uses as large as 64kB alloca() in many commonly
used functions. Others use constructs liks gid_t buffer[NGROUPS_MAX]
which is 256kB or stack strings with MAX_ARG_STRLEN.
This will become especially dangerous for suid binaries and the default
no limit for the stack size limit because those applications can be
tricked to consume a large portion of the stack and a single glibc call
could jump over the guard page. These attacks are not theoretical,
unfortunatelly.
Make those attacks less probable by increasing the stack guard gap
to 1MB (on systems with 4k pages; but make it depend on the page size
because systems with larger base pages might cap stack allocations in
the PAGE_SIZE units) which should cover larger alloca() and VLA stack
allocations. It is obviously not a full fix because the problem is
somehow inherent, but it should reduce attack space a lot.
One could argue that the gap size should be configurable from userspace,
but that can be done later when somebody finds that the new 1MB is wrong
for some special case applications. For now, add a kernel command line
option (stack_guard_gap) to specify the stack gap size (in page units).
Implementation wise, first delete all the old code for stack guard page:
because although we could get away with accounting one extra page in a
stack vma, accounting a larger gap can break userspace - case in point,
a program run with "ulimit -S -v 20000" failed when the 1MB gap was
counted for RLIMIT_AS; similar problems could come with RLIMIT_MLOCK
and strict non-overcommit mode.
Instead of keeping gap inside the stack vma, maintain the stack guard
gap as a gap between vmas: using vm_start_gap() in place of vm_start
(or vm_end_gap() in place of vm_end if VM_GROWSUP) in just those few
places which need to respect the gap - mainly arch_get_unmapped_area(),
and and the vma tree's subtree_gap support for that.
Original-patch-by: Oleg Nesterov <oleg@redhat.com>
Original-patch-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We checked (nbytes < bsize) inside the loops so it's not possible to hit
the "goto done;" here. This code is cut and paste from other slightly
different loops where we don't have the check inside the loop.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
No need for such convoluted code, when all we need is to call one function
in one specific case.
Tested-by: Narendra K <Narendra.K@dell.com> # DellEMC PowerEdge 1950, R730XD
Signed-off-by: Jean Delvare <jdelvare@suse.de>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
With all handling of the CONFIG_ARCH_HAS_PMEM_API case being moved to
libnvdimm and the pmem driver directly we do not need to provide global
wrappers and fallbacks in the CONFIG_ARCH_HAS_PMEM_API=n case. The pmem
driver will simply not link to arch_wb_cache_pmem() in that case. Same
as before, pmem flushing is only defined for x86_64, via
clean_cache_range(), but it is straightforward to add other archs in the
future.
arch_wb_cache_pmem() is an exported function since the pmem module needs
to find it, but it is privately declared in drivers/nvdimm/pmem.h because
there are no consumers outside of the pmem driver.
Cc: <x86@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Oliver O'Halloran <oohall@gmail.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The clear_pmem() helper simply combines a memset() plus a cache flush.
Now that the flush routine is optionally provided by the dax device
driver we can avoid unnecessary cache management on dax devices fronting
volatile memory.
With clear_pmem() gone we can follow on with a patch to make pmem cache
management completely defined within the pmem driver.
Cc: <x86@kernel.org>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Now that all possible providers of the dax_operations copy_from_iter
method are implemented, switch filesytem-dax to call the driver rather
than copy_to_iter_pmem.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
I made a mistake in commit bfd20f1. We should skip the force on with the
option enabled instead of vice versa. Not sure why this passed our
performance test, sorry.
Fixes: bfd20f1cc8 ('x86, iommu/vt-d: Add an option to disable Intel IOMMU force on')
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
The bootlog option is only disabled by default on AMD Fam10h and older
systems.
Update bootlog description to say this. Change the family value to hex
to avoid confusion.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170613162835.30750-9-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
AMD systems have non-core, shared MCA banks within a die. These banks
are controlled by a master CPU per die. If this CPU is offlined then all
the shared banks are disabled in addition to the CPU's core banks.
Also, Fam17h systems may have SMT enabled. The MCA_CTL register is shared
between SMT thread siblings. If a CPU is offlined then all its sibling's
MCA banks are also disabled.
Extend the existing vendor check to AMD too.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
[ Fix up comment. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170613162835.30750-8-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make the mcelog call a notifier which lands in the injector module and
does the injection. This allows for mce-inject to be a normal kernel
module now.
Tested-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/20170613162835.30750-5-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reuse mce_amd_inj's debugfs interface so that mce-inject can
benefit from it too. The old functionality is still preserved under
CONFIG_X86_MCELOG_LEGACY.
Tested-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/20170613162835.30750-4-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In the amd_threshold_interrupt() handler, we loop through every possible
block in each bank and rediscover the block's address and if it's valid,
e.g. valid, counter present and not locked.
However, we already have the address saved in the threshold blocks list
for each CPU and bank. The list only contains blocks that have passed
all the valid checks.
Besides the redundancy, there's also a smp_call_function* in
get_block_address() which causes a warning when servicing the interrupt:
WARNING: CPU: 0 PID: 0 at kernel/smp.c:281 smp_call_function_single+0xdd/0xf0
...
Call Trace:
<IRQ>
rdmsr_safe_on_cpu()
get_block_address.isra.2()
amd_threshold_interrupt()
smp_threshold_interrupt()
threshold_interrupt()
because we do get called in an interrupt handler *with* interrupts
disabled, which can result in a deadlock.
Drop the redundant valid checks and move the overflow check, logging and
block reset into a separate function.
Check the first block then iterate over the rest. This procedure is
needed since the first block is used as the head of the list.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170613162835.30750-3-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The value of MCA_STATUS is used as the MSR when clearing MCA_STATUS.
This may cause the following warning:
unchecked MSR access error: WRMSR to 0x11b (tried to write 0x0000000000000000)
Call Trace:
<IRQ>
smp_threshold_interrupt()
threshold_interrupt()
Use msr_stat instead which has the MSR address.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Fixes: 37d43acfd7 ("x86/mce/AMD: Redo error logging from APIC LVT interrupt handlers")
Link: http://lkml.kernel.org/r/20170613162835.30750-2-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Remove the space from "PCI :" to make the message consistent with other PCI
messages.
Signed-off-by: Vincent Legoll <vincent.legoll@gmail.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
On PVH, PVHVM, at failure in the VCPUOP_register_vcpu_info hypercall
we limit the number of cpus to to MAX_VIRT_CPUS. However, if this
failure had occurred for a cpu beyond MAX_VIRT_CPUS, we continue
to function with > MAX_VIRT_CPUS.
This leads to problems at the next save/restore cycle when there
are > MAX_VIRT_CPUS threads going into stop_machine() but coming
back up there's valid state for only the first MAX_VIRT_CPUS.
This patch pulls the excess CPUs down via cpu_down().
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
The hypercall VCPUOP_register_vcpu_info can fail. This failure is
handled by making per_cpu(xen_vcpu, cpu) point to its shared_info
slot and those without one (cpu >= MAX_VIRT_CPUS) be NULL.
For PVH/PVHVM, this is not enough, because we also need to pull
these VCPUs out of circulation.
Fix for PVH/PVHVM: on registration failure in the cpuhp prepare
callback (xen_cpu_up_prepare_hvm()), return an error to the cpuhp
state-machine so it can fail the CPU init.
Fix for PV: the registration happens before smp_init(), so, in the
failure case we clamp setup_max_cpus and limit the number of VCPUs
that smp_init() will bring-up to MAX_VIRT_CPUS.
This is functionally correct but it makes the code a bit simpler
if we get rid of this explicit clamping: for VCPUs that don't have
valid xen_vcpu, fail the CPU init in the cpuhp prepare callback
(xen_cpu_up_prepare_pv()).
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
If CONFIG_SMP is disabled, xen_setup_vcpu_info_placement() is called from
xen_setup_shared_info(). This is fine as far as boot goes, but it means
that we also call it in the restore path. This results in an OOPS
because we assign to pv_mmu_ops.read_cr2 which is __ro_after_init.
Also, though less problematically, this means we call xen_vcpu_setup()
twice at restore -- once from the vcpu info placement call and the
second time from xen_vcpu_restore().
Fix by calling xen_setup_vcpu_info_placement() at boot only.
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
When Xen restores a PVHVM or PVH guest, its shared_info only holds
up to 32 CPUs. The hypercall VCPUOP_register_vcpu_info allows
us to setup per-page areas for VCPUs. This means we can boot
PVH* guests with more than 32 VCPUs. During restore the per-cpu
structure is allocated freshly by the hypervisor (vcpu_info_mfn is
set to INVALID_MFN) so that the newly restored guest can make a
VCPUOP_register_vcpu_info hypercall.
However, we end up triggering this condition in Xen:
/* Run this command on yourself or on other offline VCPUS. */
if ( (v != current) && !test_bit(_VPF_down, &v->pause_flags) )
which means we are unable to setup the per-cpu VCPU structures
for running VCPUS. The Linux PV code paths makes this work by
iterating over cpu_possible in xen_vcpu_restore() with:
1) is target CPU up (VCPUOP_is_up hypercall?)
2) if yes, then VCPUOP_down to pause it
3) VCPUOP_register_vcpu_info
4) if it was down, then VCPUOP_up to bring it back up
With Xen commit 192df6f9122d ("xen/x86: allow HVM guests to use
hypercalls to bring up vCPUs") this is available for non-PV guests.
As such first check if VCPUOP_is_up is actually possible before
trying this dance.
As most of this dance code is done already in xen_vcpu_restore()
let's make it callable on PV, PVH and PVHVM.
Based-on-patch-by: Konrad Wilk <konrad.wilk@oracle.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Largely mechanical changes to aid unification of xen_vcpu_restore()
logic for PV, PVH and PVHVM.
xen_vcpu_setup(): the only change in logic is that clamp_max_cpus()
is now handled inside the "if (!xen_have_vcpu_info_placement)" block.
xen_vcpu_restore(): code movement from enlighten_pv.c to enlighten.c.
xen_vcpu_info_reset(): pulls together all the code where xen_vcpu
is set to default.
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
This basically restores slightly modified version of original
sync_global_pgds() which we had before folded p4d was introduced.
The only modification is protection against 'addr' overflow.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170606113133.22974-11-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch adds support for 5-level paging during early boot.
It generalizes boot for 4- and 5-level paging on 64-bit systems with
compile-time switch between them.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170606113133.22974-10-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With CONFIG_X86_5LEVEL=y, level 4 is no longer top level of page tables.
Let's give these variable more generic names: init_top_pgt and
early_top_pgt.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170606113133.22974-9-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The patch write most of startup_64 logic in C.
This is preparation for 5-level paging enabling.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170606113133.22974-8-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We need to cover two basic cases: when bootloader left us in 32-bit mode
and when bootloader enabled long mode.
The patch implements unified codepath to enabled 5-level paging for both
cases. It means case when we start in 32-bit mode, we first enable long
mode with 4-level and then switch over to 5-level paging.
Switching from 4-level to 5-level paging is not trivial. We cannot do it
directly. Setting LA57 in long mode would trigger #GP. So we need to
switch off long mode first and the then re-enable with 5-level paging.
NOTE: The need of switching off long mode means we are in trouble if
bootloader put us above 4G boundary. If bootloader wants to boot 5-level
paging kernel, it has to put kernel below 4G or enable 5-level paging on
it's own, so we could avoid the step.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170606113133.22974-7-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We would need to switch temporarily to compatibility mode during booting
with 5-level paging enabled. It would require 32-bit code segment
descriptor.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170606113133.22974-6-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is preparation for following patches without changing semantics of the
code.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170606113133.22974-4-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch provides all required callbacks required by the generic
get_user_pages_fast() code and switches x86 over - and removes
the platform specific implementation.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170606113133.22974-2-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The kernel has several code paths that read CR3. Most of them assume that
CR3 contains the PGD's physical address, whereas some of them awkwardly
use PHYSICAL_PAGE_MASK to mask off low bits.
Add explicit mask macros for CR3 and convert all of the CR3 readers.
This will keep them from breaking when PCID is enabled.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: xen-devel <xen-devel@lists.xen.org>
Link: http://lkml.kernel.org/r/883f8fb121f4616c1c1427ad87350bb2f5ffeca1.1497288170.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Andy will need the following scheduler fix for the PCID series:
252d2a4117: sched/core: Idle_task_exit() shouldn't use switch_mm_irqs_off()
So do a cross-merge.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This function isn't used outside of time.c, so let's mark it static.
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1497321029-29049-1-git-send-email-douly.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The kmemleak and debug_pagealloc features both disable using huge pages for
direct mappings so they can do cpa() on page level granularity in any context.
However they only do that for 2MB pages, which means 1GB pages can still be
used if the CPU supports it, unless disabled by a boot param, which is
non-obvious. Disable also 1GB pages when disabling 2MB pages.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vegard Nossum <vegardno@ifi.uio.no>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/2be70c78-6130-855d-3dfa-d87bd1dd4fda@suse.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Hans managed to trigger a WARN very early in the boot which killed his
(Virtual) box.
The reason is that the recent rework of WARN() to use UD0 forgot to add the
fixup_bug() call to early_fixup_exception(). As a result the kernel does
not handle the WARN_ON injected UD0 exception and panics.
Add the missing fixup call, so early UD's injected by WARN() get handled.
Fixes: 9a93848fe7 ("x86/debug: Implement __WARN() using UD0")
Reported-and-tested-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Frank Mehnert <frank.mehnert@oracle.com>
Cc: Hans de Goede <hdegoede@redhat.com>
Cc: Michael Thayer <michael.thayer@oracle.com>
Link: http://lkml.kernel.org/r/20170612180108.w4vgu2ckucmllf3a@hirez.programming.kicks-ass.net
Pull key subsystem fixes from James Morris:
"Here are a bunch of fixes for Linux keyrings, including:
- Fix up the refcount handling now that key structs use the
refcount_t type and the refcount_t ops don't allow a 0->1
transition.
- Fix a potential NULL deref after error in x509_cert_parse().
- Don't put data for the crypto algorithms to use on the stack.
- Fix the handling of a null payload being passed to add_key().
- Fix incorrect cleanup an uninitialised key_preparsed_payload in
key_update().
- Explicit sanitisation of potentially secure data before freeing.
- Fixes for the Diffie-Helman code"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (23 commits)
KEYS: fix refcount_inc() on zero
KEYS: Convert KEYCTL_DH_COMPUTE to use the crypto KPP API
crypto : asymmetric_keys : verify_pefile:zero memory content before freeing
KEYS: DH: add __user annotations to keyctl_kdf_params
KEYS: DH: ensure the KDF counter is properly aligned
KEYS: DH: don't feed uninitialized "otherinfo" into KDF
KEYS: DH: forbid using digest_null as the KDF hash
KEYS: sanitize key structs before freeing
KEYS: trusted: sanitize all key material
KEYS: encrypted: sanitize all key material
KEYS: user_defined: sanitize key payloads
KEYS: sanitize add_key() and keyctl() key payloads
KEYS: fix freeing uninitialized memory in key_update()
KEYS: fix dereferencing NULL payload with nonzero length
KEYS: encrypted: use constant-time HMAC comparison
KEYS: encrypted: fix race causing incorrect HMAC calculations
KEYS: encrypted: fix buffer overread in valid_master_desc()
KEYS: encrypted: avoid encrypting/decrypting stack buffers
KEYS: put keyring if install_session_keyring_to_cred() fails
KEYS: Delete an error message for a failed memory allocation in get_derived_key()
...
INFO: task gnome-terminal-:1734 blocked for more than 120 seconds.
Not tainted 4.12.0-rc4+ #8
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
gnome-terminal- D 0 1734 1015 0x00000000
Call Trace:
__schedule+0x3cd/0xb30
schedule+0x40/0x90
kvm_async_pf_task_wait+0x1cc/0x270
? __vfs_read+0x37/0x150
? prepare_to_swait+0x22/0x70
do_async_page_fault+0x77/0xb0
? do_async_page_fault+0x77/0xb0
async_page_fault+0x28/0x30
This is triggered by running both win7 and win2016 on L1 KVM simultaneously,
and then gives stress to memory on L1, I can observed this hang on L1 when
at least ~70% swap area is occupied on L0.
This is due to async pf was injected to L2 which should be injected to L1,
L2 guest starts receiving pagefault w/ bogus %cr2(apf token from the host
actually), and L1 guest starts accumulating tasks stuck in D state in
kvm_async_pf_task_wait() since missing PAGE_READY async_pfs.
This patch fixes the hang by doing async pf when executing L1 guest.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The pmem driver has a need to transfer data with a persistent memory
destination and be able to rely on the fact that the destination writes are not
cached. It is sufficient for the writes to be flushed to a cpu-store-buffer
(non-temporal / "movnt" in x86 terms), as we expect userspace to call fsync()
to ensure data-writes have reached a power-fail-safe zone in the platform. The
fsync() triggers a REQ_FUA or REQ_FLUSH to the pmem driver which will turn
around and fence previous writes with an "sfence".
Implement a __copy_from_user_inatomic_flushcache, memcpy_page_flushcache, and
memcpy_flushcache, that guarantee that the destination buffer is not dirty in
the cpu cache on completion. The new copy_from_iter_flushcache and sub-routines
will be used to replace the "pmem api" (include/linux/pmem.h +
arch/x86/include/asm/pmem.h). The availability of copy_from_iter_flushcache()
and memcpy_flushcache() are gated by the CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
config symbol, and fallback to copy_from_iter_nocache() and plain memcpy()
otherwise.
This is meant to satisfy the concern from Linus that if a driver wants to do
something beyond the normal nocache semantics it should be something private to
that driver [1], and Al's concern that anything uaccess related belongs with
the rest of the uaccess code [2].
The first consumer of this interface is a new 'copy_from_iter' dax operation so
that pmem can inject cache maintenance operations without imposing this
overhead on other dax-capable drivers.
[1]: https://lists.01.org/pipermail/linux-nvdimm/2017-January/008364.html
[2]: https://lists.01.org/pipermail/linux-nvdimm/2017-April/009942.html
Cc: <x86@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CONFIG_KEYS_COMPAT is defined in arch-specific Kconfigs and is missing for
several 64-bit architectures : mips, parisc, tile.
At the moment and for those architectures, calling in 32-bit userspace the
keyctl syscall would return an ENOSYS error.
This patch moves the CONFIG_KEYS_COMPAT option to security/keys/Kconfig, to
make sure the compatibility wrapper is registered by default for any 64-bit
architecture as long as it is configured with CONFIG_COMPAT.
[DH: Modified to remove arm64 compat enablement also as requested by Eric
Biggers]
Signed-off-by: Bilal Amarni <bilal.amarni@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
cc: Eric Biggers <ebiggers3@gmail.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Change the third parameter to be the required struct xen_dm_op_buf *
instead of a generic void * (which blindly accepts any pointer).
Signed-off-by: Sergey Dyasli <sergey.dyasli@citrix.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Stefano Stabellini <sstabellini@kernel.org>
Signed-off-by: Juergen Gross <jgross@suse.com>
If "i" is the last element in the vcpu->arch.cpuid_entries[] array, it
potentially can be exploited the vulnerability. this will out-of-bounds
read and write. Luckily, the effect is small:
/* when no next entry is found, the current entry[i] is reselected */
for (j = i + 1; ; j = (j + 1) % nent) {
struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
if (ej->function == e->function) {
It reads ej->maxphyaddr, which is user controlled. However...
ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
After cpuid_entries there is
int maxphyaddr;
struct x86_emulate_ctxt emulate_ctxt; /* 16-byte aligned */
So we have:
- cpuid_entries at offset 1B50 (6992)
- maxphyaddr at offset 27D0 (6992 + 3200 = 10192)
- padding at 27D4...27DF
- emulate_ctxt at 27E0
And it writes in the padding. Pfew, writing the ops field of emulate_ctxt
would have been much worse.
This patch fixes it by modding the index to avoid the out-of-bounds
access. Worst case, i == j and ej->function == e->function,
the loop can bail out.
Reported-by: Moguofang <moguofang@huawei.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Guofang Mo <moguofang@huawei.com>
Cc: stable@vger.kernel.org
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It is completely unused and implemented only on x86.
Remove it.
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170526172900.91058-1-dvyukov@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
During early boot, load_ucode_intel_ap() uses __load_ucode_intel()
to obtain a pointer to the relevant microcode patch (embedded in the
initrd), and stores this value in 'intel_ucode_patch' to speed up the
microcode patch application for subsequent CPUs.
On resuming from suspend-to-RAM, however, load_ucode_ap() calls
load_ucode_intel_ap() for each non-boot-CPU. By then the initramfs is
long gone so the pointer stored in 'intel_ucode_patch' no longer points to
a valid microcode patch.
Clear that pointer so that we effectively fall back to the CPU hotplug
notifier callbacks to update the microcode.
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
[ Edit and massage commit message. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # 4.10..
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170607095819.9754-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
... because this is exactly what it is: the number of entries in the
LDT. Calling it "size" is simply confusing and it is actually begging
to be called "nr_entries" or somesuch, especially if you see constructs
like:
alloc_size = size * LDT_ENTRY_SIZE;
since LDT_ENTRY_SIZE is the size of a single entry.
There should be no functionality change resulting from this patch, as
the before/after output from tools/testing/selftests/x86/ldt_gdt.c
shows.
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170606173116.13977-1-bp@alien8.de
[ Renamed 'n_entries' to 'nr_entries' ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The guest-linear address field is set for VM exits due to attempts to
execute LMSW with a memory operand and VM exits due to attempts to
execute INS or OUTS for which the relevant segment is usable,
regardless of whether or not EPT is in use.
Fixes: 119a9c01a5 ("KVM: nVMX: pass valid guest linear-address to the L1")
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The XSS-exiting bitmap is a VMCS control field that does not change
while the CPU is in non-root mode. Transferring the unchanged value
from vmcs02 to vmcs12 is unnecessary.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Bits 11:2 must be zero and the linear addess in bits 63:12 must be
canonical. Otherwise, WRMSR(BNDCFGS) should raise #GP.
Fixes: 0dd376e709 ("KVM: x86: add MSR_IA32_BNDCFGS to msrs_to_save")
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The BNDCFGS MSR should only be exposed to the guest if the guest
supports MPX. (cf. the TSC_AUX MSR and RDTSCP.)
Fixes: 0dd376e709 ("KVM: x86: add MSR_IA32_BNDCFGS to msrs_to_save")
Change-Id: I3ad7c01bda616715137ceac878f3fa7e66b6b387
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The MSR permission bitmaps are shared by all VMs. However, some VMs
may not be configured to support MPX, even when the host does. If the
host supports VMX and the guest does not, we should intercept accesses
to the BNDCFGS MSR, so that we can synthesize a #GP
fault. Furthermore, if the host does not support MPX and the
"ignore_msrs" kvm kernel parameter is set, then we should intercept
accesses to the BNDCFGS MSR, so that we can skip over the rdmsr/wrmsr
without raising a #GP fault.
Fixes: da8999d318 ("KVM: x86: Intel MPX vmx and msr handle")
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Add jited_len to struct bpf_prog. It will be
useful for the struct bpf_prog_info which will
be added in the later patch.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
WARNING: CPU: 3 PID: 2840 at arch/x86/kvm/vmx.c:10966 nested_vmx_vmexit+0xdcd/0xde0 [kvm_intel]
CPU: 3 PID: 2840 Comm: qemu-system-x86 Tainted: G OE 4.12.0-rc3+ #23
RIP: 0010:nested_vmx_vmexit+0xdcd/0xde0 [kvm_intel]
Call Trace:
? kvm_check_async_pf_completion+0xef/0x120 [kvm]
? rcu_read_lock_sched_held+0x79/0x80
vmx_queue_exception+0x104/0x160 [kvm_intel]
? vmx_queue_exception+0x104/0x160 [kvm_intel]
kvm_arch_vcpu_ioctl_run+0x1171/0x1ce0 [kvm]
? kvm_arch_vcpu_load+0x47/0x240 [kvm]
? kvm_arch_vcpu_load+0x62/0x240 [kvm]
kvm_vcpu_ioctl+0x384/0x7b0 [kvm]
? kvm_vcpu_ioctl+0x384/0x7b0 [kvm]
? __fget+0xf3/0x210
do_vfs_ioctl+0xa4/0x700
? __fget+0x114/0x210
SyS_ioctl+0x79/0x90
do_syscall_64+0x81/0x220
entry_SYSCALL64_slow_path+0x25/0x25
This is triggered occasionally by running both win7 and win2016 in L2, in
addition, EPT is disabled on both L1 and L2. It can't be reproduced easily.
Commit 0b6ac343fc (KVM: nVMX: Correct handling of exception injection) mentioned
that "KVM wants to inject page-faults which it got to the guest. This function
assumes it is called with the exit reason in vmcs02 being a #PF exception".
Commit e011c663 (KVM: nVMX: Check all exceptions for intercept during delivery to
L2) allows to check all exceptions for intercept during delivery to L2. However,
there is no guarantee the exit reason is exception currently, when there is an
external interrupt occurred on host, maybe a time interrupt for host which should
not be injected to guest, and somewhere queues an exception, then the function
nested_vmx_check_exception() will be called and the vmexit emulation codes will
try to emulate the "Acknowledge interrupt on exit" behavior, the warning is
triggered.
Reusing the exit reason from the L2->L0 vmexit is wrong in this case,
the reason must always be EXCEPTION_NMI when injecting an exception into
L1 as a nested vmexit.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Fixes: e011c663b9 ("KVM: nVMX: Check all exceptions for intercept during delivery to L2")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
native_safe_halt enables interrupts, and you just shouldn't
call rcu_irq_enter() with interrupts enabled. Reorder the
call with the following local_irq_disable() to respect the
invariant.
Reported-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
CONFIG_EFI_PGT_DUMP=y, as the name suggests, dumps EFI page tables to the
kernel log during kernel boot.
This feature is very useful while debugging page faults/null pointer
dereferences to EFI related addresses.
Presently, this feature is limited only to x86_64, so let's extend it to
other EFI configurations like kexec kernel, efi=old_map and to x86_32 as well.
This doesn't effect normal boot path because this config option should
be used only for debug purposes.
Signed-off-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20170602135207.21708-13-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The firmware for Quark X102x prepends a security header to the capsule
which is needed to support the mandatory secure boot on this processor.
The header can be detected by checking for the "_CSH" signature and -
to avoid any GUID conflict - validating its size field to contain the
expected value. Then we need to look for the EFI header right after the
security header and pass the real header to __efi_capsule_setup_info.
To be minimal invasive and maximal safe, the quirk version of
efi_capsule_setup_info() is only effective on Quark processors.
Tested-by: Bryan O'Donoghue <pure.logic@nexus-software.ie>
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20170602135207.21708-11-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When PCID is enabled, CR3's PCID bits can change during context
switches, so KVM won't be able to treat CR3 as a per-mm constant any
more.
I structured this like the existing CR4 handling. Under ordinary
circumstances (PCID disabled or if the current PCID and the value
that's already in the VMCS match), then we won't do an extra VMCS
write, and we'll never do an extra direct CR3 read. The overhead
should be minimal.
I disallowed using the new helper in non-atomic context because
PCID support will cause CR3 to stop being constant in non-atomic
process context.
(Frankly, it also scares me a bit that KVM ever treated CR3 as
constant, but it looks like it was okay before.)
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Nadav pointed out that some code used PAGE_SIZE and other code used
PAGE_SHIFT. Use PAGE_SHIFT instead of multiplying or dividing by
PAGE_SIZE.
Requested-by: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Lazy TLB state is currently managed in a rather baroque manner.
AFAICT, there are three possible states:
- Non-lazy. This means that we're running a user thread or a
kernel thread that has called use_mm(). current->mm ==
current->active_mm == cpu_tlbstate.active_mm and
cpu_tlbstate.state == TLBSTATE_OK.
- Lazy with user mm. We're running a kernel thread without an mm
and we're borrowing an mm_struct. We have current->mm == NULL,
current->active_mm == cpu_tlbstate.active_mm, cpu_tlbstate.state
!= TLBSTATE_OK (i.e. TLBSTATE_LAZY or 0). The current cpu is set
in mm_cpumask(current->active_mm). CR3 points to
current->active_mm->pgd. The TLB is up to date.
- Lazy with init_mm. This happens when we call leave_mm(). We
have current->mm == NULL, current->active_mm ==
cpu_tlbstate.active_mm, but that mm is only relelvant insofar as
the scheduler is tracking it for refcounting. cpu_tlbstate.state
!= TLBSTATE_OK. The current cpu is clear in
mm_cpumask(current->active_mm). CR3 points to swapper_pg_dir,
i.e. init_mm->pgd.
This patch simplifies the situation. Other than perf, x86 stops
caring about current->active_mm at all. We have
cpu_tlbstate.loaded_mm pointing to the mm that CR3 references. The
TLB is always up to date for that mm. leave_mm() just switches us
to init_mm. There are no longer any special cases for mm_cpumask,
and switch_mm() switches mms without worrying about laziness.
After this patch, cpu_tlbstate.state serves only to tell the TLB
flush code whether it may switch to init_mm instead of doing a
normal flush.
This makes fairly extensive changes to xen_exit_mmap(), which used
to look a bit like black magic.
Perf is unchanged. With or without this change, perf may behave a bit
erratically if it tries to read user memory in kernel thread context.
We should build on this patch to teach perf to never look at user
memory when cpu_tlbstate.loaded_mm != current->mm.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The UP asm/tlbflush.h generates somewhat nicer code than the SMP version.
Aside from that, it's fallen quite a bit behind the SMP code:
- flush_tlb_mm_range() didn't flush individual pages if the range
was small.
- The lazy TLB code was much weaker. This usually wouldn't matter,
but, if a kernel thread flushed its lazy "active_mm" more than
once (due to reclaim or similar), it wouldn't be unlazied and
would instead pointlessly flush repeatedly.
- Tracepoints were missing.
Aside from that, simply having the UP code around was a maintanence
burden, since it means that any change to the TLB flush code had to
make sure not to break it.
Simplify everything by deleting the UP code.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now there's only one copy of the local tlb flush logic for
non-kernel pages on SMP kernels.
The only functional change is that arch_tlbbatch_flush() will now
leave_mm() on the local CPU if that CPU is in the batch and is in
TLBSTATE_LAZY mode.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>