Commit Graph

5479 Commits

Author SHA1 Message Date
Chris Mason
0f873eca82 btrfs: fix deadlock in delayed_ref_async_start
"Btrfs: track transid for delayed ref flushing" was deadlocking on
btrfs_attach_transaction because its not safe to call from the async
delayed ref start code.  This commit brings back btrfs_join_transaction
instead and checks for a blocked commit.

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2016-06-22 17:54:18 -07:00
Josef Bacik
31b9655f43 Btrfs: track transid for delayed ref flushing
Using the offwakecputime bpf script I noticed most of our time was spent waiting
on the delayed ref throttling.  This is what is supposed to happen, but
sometimes the transaction can commit and then we're waiting for throttling that
doesn't matter anymore.  So change this stuff to be a little smarter by tracking
the transid we were in when we initiated the throttling.  If the transaction we
get is different then we can just bail out.  This resulted in a 50% speedup in
my fs_mark test, and reduced the amount of time spent throttling by 60 seconds
over the entire run (which is about 30 minutes).  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2016-06-22 17:54:18 -07:00
Chandan Rajendra
dd5c93111d Btrfs: btrfs_check_super_valid: Allow 4096 as stripesize
Older btrfs-progs/mkfs.btrfs sets 4096 as the stripesize. Hence
restricting stripesize to be equal to sectorsize would cause super block
validation to return an error on architectures where PAGE_SIZE is not
equal to 4096.

Hence as a workaround, this commit allows stripesize to be set to 4096
bytes.

Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-17 18:32:49 +02:00
David Sterba
89c5a5441d btrfs: remove build fixup for qgroup_account_snapshot
Introduced in 2c1984f244 ("btrfs: build fixup for
qgroup_account_snapshot") as temporary bisectability build fixup.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-17 18:32:40 +02:00
David Sterba
f7af3934c2 btrfs: use new error message helper in qgroup_account_snapshot
We've renamed btrfs_std_error, this one is left from last merge.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-17 18:32:40 +02:00
Zygo Blaxell
90c711ab38 btrfs: avoid blocking open_ctree from cleaner_kthread
This fixes a problem introduced in commit 2f3165ecf1
"btrfs: don't force mounts to wait for cleaner_kthread to delete one or more subvolumes".

open_ctree eventually calls btrfs_replay_log which in turn calls
btrfs_commit_super which tries to lock the cleaner_mutex, causing a
recursive mutex deadlock during mount.

Instead of playing whack-a-mole trying to keep up with all the
functions that may want to lock cleaner_mutex, put all the cleaner_mutex
lockers back where they were, and attack the problem more directly:
keep cleaner_kthread asleep until the filesystem is mounted.

When filesystems are mounted read-only and later remounted read-write,
open_ctree did not set fs_info->open and neither does anything else.
Set this flag in btrfs_remount so that neither btrfs_delete_unused_bgs
nor cleaner_kthread get confused by the common case of "/" filesystem
read-only mount followed by read-write remount.

Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-17 18:32:40 +02:00
Josef Bacik
3b6571c180 Btrfs: don't BUG_ON() in btrfs_orphan_add
This is just a screwup for developers, so change it to an ASSERT() so developers
notice when things go wrong and deal with the error appropriately if ASSERT()
isn't enabled.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-17 18:32:40 +02:00
Jeff Mahoney
64c12921e1 btrfs: account for non-CoW'd blocks in btrfs_abort_transaction
The test for !trans->blocks_used in btrfs_abort_transaction is
insufficient to determine whether it's safe to drop the transaction
handle on the floor.  btrfs_cow_block, informed by should_cow_block,
can return blocks that have already been CoW'd in the current
transaction.  trans->blocks_used is only incremented for new block
allocations. If an operation overlaps the blocks in the current
transaction entirely and must abort the transaction, we'll happily
let it clean up the trans handle even though it may have modified
the blocks and will commit an incomplete operation.

In the long-term, I'd like to do closer tracking of when the fs
is actually modified so we can still recover as gracefully as possible,
but that approach will need some discussion.  In the short term,
since this is the only code using trans->blocks_used, let's just
switch it to a bool indicating whether any blocks were used and set
it when should_cow_block returns false.

Cc: stable@vger.kernel.org # 3.4+
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-17 18:32:40 +02:00
Liu Bo
c871b0f2fd Btrfs: check if extent buffer is aligned to sectorsize
Thanks to fuzz testing, we can pass an invalid bytenr to extent buffer
via alloc_extent_buffer().  An unaligned eb can have more pages than it
should have, which ends up extent buffer's leak or some corrupted content
in extent buffer.

This adds a warning to let us quickly know what was happening.

Now that alloc_extent_buffer() no more returns NULL, this changes its
caller and callers of its caller to match with the new error
handling.

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-17 18:32:40 +02:00
Heinrich Schuchardt
16ff4b454f btrfs: Use correct format specifier
Component mirror_num of struct btrfsic_block is defined
as unsigned int. Use %u as format specifier.

Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-17 18:32:40 +02:00
Chris Mason
719da39a61 Merge branch 'misc-fixes-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.7 2016-06-08 14:36:12 -07:00
Chris Mason
4c52990080 Merge branch 'for-chris' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.7 2016-06-08 14:35:11 -07:00
Feifei Xu
34b3e6c92a Btrfs: self-tests: Fix extent buffer bitmap test fail on BE system
In __test_eb_bitmaps(), we write random data to a bitmap. Then copy
the bitmap to another bitmap that resides inside an extent buffer.
Later we verify the values of corresponding bits in the bitmap and the
bitmap inside the extent buffer. However, extent_buffer_test_bit()
reads in byte granularity while test_bit() reads in unsigned long
granularity. Hence we end up comparing wrong bits on big-endian
systems such as ppc64. This commit fixes the issue by reading the
bitmap in byte granularity.

Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Feifei Xu <xufeifei@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-06 17:17:12 +02:00
Feifei Xu
36b3dc05b4 Btrfs: self-tests: Fix test_bitmaps fail on 64k sectorsize
With 64K sectorsize, 1G sized block group cannot span across bitmaps.
To execute test_bitmaps() function, this commit allocates
"BITS_PER_BITMAP * sectorsize + PAGE_SIZE" sized block group.

Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Feifei Xu <xufeifei@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-06 17:17:12 +02:00
Feifei Xu
ef9f2db365 Btrfs: self-tests: Use macros instead of constants and add missing newline
This commit replaces numerical constants with appropriate
preprocessor macros.

Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Feifei Xu <xufeifei@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-06 17:17:12 +02:00
Feifei Xu
d94f43b4c6 Btrfs: self-tests: Support testing all possible sectorsizes and nodesizes
To test all possible sectorsizes, this commit adds a sectorsize
array. This commit executes the tests for all possible sectorsizes and
nodesizes.

Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Feifei Xu <xufeifei@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-06 17:17:12 +02:00
Feifei Xu
ed9e4afdb0 Btrfs: self-tests: Execute page straddling test only when nodesize < PAGE_SIZE
On ppc64, PAGE_SIZE is 64k which is same as BTRFS_MAX_METADATA_BLOCKSIZE.
In such a scenario, we will never be able to have an extent buffer
containing more than one page. Hence in such cases this commit does not
execute the page straddling tests.

Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Feifei Xu <xufeifei@linux.vnet.ibm.com>
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-06 17:17:11 +02:00
Jeff Mahoney
5f9e1059d9 btrfs: advertise which crc32c implementation is being used at module load
Since several architectures support hardware-accelerated crc32c
calculation, it would be nice to confirm that btrfs is actually using it.

We can see an elevated use count for the module, but it doesn't actually
show who the users are.  This patch simply prints the name of the driver
after successfully initializing the shash.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
[ added a helper and used in module load-time message ]
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-06 14:08:28 +02:00
Liu Bo
e06cd3dd7c Btrfs: add validadtion checks for chunk loading
To prevent fuzzed filesystem images from panic the whole system,
we need various validation checks to refuse to mount such an image
if btrfs finds any invalid value during loading chunks, including
both sys_array and regular chunks.

Note that these checks may not be sufficient to cover all corner cases,
feel free to add more checks.

Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
Reported-by: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-06 10:57:09 +02:00
Liu Bo
99e3ecfcb9 Btrfs: add more validation checks for superblock
This adds validation checks for super_total_bytes, super_bytes_used and
super_stripesize, super_num_devices.

Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
Reported-by: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-06 10:41:53 +02:00
Liu Bo
d865177a5e Btrfs: clear uptodate flags of pages in sys_array eb
We set uptodate flag to pages in the temporary sys_array eb,
but do not clear the flag after free eb.  As the special
btree inode may still hold a reference on those pages, the
uptodate flag can remain alive in them.

If btrfs_super_chunk_root has been intentionally changed to the
offset of this sys_array eb, reading chunk_root will read content
of sys_array and it will skip our beautiful checks in
btree_readpage_end_io_hook() because of
"pages of eb are uptodate => eb is uptodate"

This adds the 'clear uptodate' part to force it to read from disk.

Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-06 10:14:40 +02:00
Chris Mason
8dff9c8534 Btrfs: deal with duplciates during extent_map insertion in btrfs_get_extent
When dealing with inline extents, btrfs_get_extent will incorrectly try
to insert a duplicate extent_map.  The dup hits -EEXIST from
add_extent_map, but then we try to merge with the existing one and end
up trying to insert a zero length extent_map.

This actually works most of the time, except when there are extent maps
past the end of the inline extent.  rocksdb will trigger this sometimes
because it preallocates an extent and then truncates down.

Josef made a script to trigger with xfs_io:

	#!/bin/bash

	xfs_io -f -c "pwrite 0 1000" inline
	xfs_io -c "falloc -k 4k 1M" inline
	xfs_io -c "pread 0 1000" -c "fadvise -d 0 1000" -c "pread 0 1000" inline
	xfs_io -c "fadvise -d 0 1000" inline
	cat inline

You'll get EIOs trying to read inline after this because add_extent_map
is returning EEXIST

Signed-off-by: Chris Mason <clm@fb.com>
2016-06-03 12:32:34 -07:00
Feifei Xu
b9ef22dedd Btrfs: self-tests: Support non-4k page size
self-tests code assumes 4k as the sectorsize and nodesize. This commit
fix hardcoded 4K. Enables the self-tests code to be executed on non-4k
page sized systems (e.g. ppc64).

Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Feifei Xu <xufeifei@linux.vnet.ibm.com>
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-02 19:23:14 +02:00
Feifei Xu
0ef6447a3d Btrfs: Fix integer overflow when calculating bytes_per_bitmap
On ppc64, bytes_per_bitmap will be (65536*8*65536). Hence append UL to
fix integer overflow.

Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Feifei Xu <xufeifei@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-02 19:22:49 +02:00
Feifei Xu
5473e0c426 Btrfs: test_check_exists: Fix infinite loop when searching for free space entries
On a ppc64 machine using 64K as the block size, assume that the RB
tree at btrfs_free_space_ctl->free_space_offset contains following
two entries:

1. A bitmap entry having an offset value of 0 and having the bits
   corresponding to the address range [128M+512K, 128M+768K] set.
2. An extent entry corresponding to the address range
   [128M-256K, 128M-128K]

In such a scenario, test_check_exists() invoked for checking the
existence of address range [128M+768K, 256M] can lead to an
infinite loop as explained below:

- Checking for the extent entry fails.
- Checking for a bitmap entry results in the free space info in
  range [128M+512K, 128M+768K] beng returned.
- rb_prev(info) returns NULL because the bitmap entry starting from
  offset 0 comes first in the RB tree.
- current_node = bitmap node.
- while (current_node)
	tmp = rb_next(bitmap_node);/*tmp is extent based free space entry*/
	Since extent based free space entry's last address is smaller
	than the address being searched for (i.e. 128M+768K) we
	incorrectly again obtain the extent node as the "next right node"
	of the RB tree and thus end up looping infinitely.

This patch fixes the issue by checking the "tmp" variable which point
to the most recently searched free space node.

Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Feifei Xu <xufeifei@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-02 19:22:34 +02:00
Josef Bacik
65d4f4c151 Btrfs: end transaction if we abort when creating uuid root
We still need to call btrfs_end_transaction if we call btrfs_abort_transaction,
otherwise we hang and make me super grumpy.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-01 00:32:42 +02:00
Filipe Manana
b5de8d0df8 Btrfs: fix race between device replace and read repair
While we are finishing a device replace operation we can have a concurrent
task trying to do a read repair operation, in which case it will call
btrfs_map_block() to get a struct btrfs_bio which can have a stripe that
points to the source device of the device replace operation. This allows
for the read repair task to dereference the stripe's device pointer after
the device replace operation has freed the source device, resulting in
an invalid memory access. This is similar to the problem solved by my
previous patch in the same series and named "Btrfs: fix race between
device replace and discard".

So fix this by surrounding the call to btrfs_map_block() and the code
that uses the returned struct btrfs_bio with calls to
btrfs_bio_counter_inc_blocked() and btrfs_bio_counter_dec(), giving the
proper serialization with the finishing phase of the device replace
operation.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-05-31 01:00:03 +01:00
Filipe Manana
2999241daa Btrfs: fix race between device replace and discard
While we are finishing a device replace operation, we can make a discard
operation (fs mounted with -o discard) do an invalid memory access like
the one reported by the following trace:

[ 3206.384654] general protection fault: 0000 [#1] PREEMPT SMP
[ 3206.387520] Modules linked in: dm_mod btrfs crc32c_generic xor raid6_pq acpi_cpufreq tpm_tis psmouse tpm ppdev sg parport_pc evdev i2c_piix4 parport
processor serio_raw i2c_core pcspkr button loop autofs4 ext4 crc16 jbd2 mbcache sr_mod cdrom ata_generic sd_mod virtio_scsi ata_piix libata virtio_pci
virtio_ring scsi_mod e1000 virtio floppy [last unloaded: btrfs]
[ 3206.388595] CPU: 14 PID: 29194 Comm: fsstress Not tainted 4.6.0-rc7-btrfs-next-29+ #1
[ 3206.388595] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[ 3206.388595] task: ffff88017ace0100 ti: ffff880171b98000 task.ti: ffff880171b98000
[ 3206.388595] RIP: 0010:[<ffffffff8124d233>]  [<ffffffff8124d233>] blkdev_issue_discard+0x5c/0x2a7
[ 3206.388595] RSP: 0018:ffff880171b9bb80  EFLAGS: 00010246
[ 3206.388595] RAX: ffff880171b9bc28 RBX: 000000000090d000 RCX: 0000000000000000
[ 3206.388595] RDX: ffffffff82fa1b48 RSI: ffffffff8179f46c RDI: ffffffff82fa1b48
[ 3206.388595] RBP: ffff880171b9bcc0 R08: 0000000000000000 R09: 0000000000000001
[ 3206.388595] R10: ffff880171b9bce0 R11: 000000000090f000 R12: ffff880171b9bbe8
[ 3206.388595] R13: 0000000000000010 R14: 0000000000004868 R15: 6b6b6b6b6b6b6b6b
[ 3206.388595] FS:  00007f6182e4e700(0000) GS:ffff88023fdc0000(0000) knlGS:0000000000000000
[ 3206.388595] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 3206.388595] CR2: 00007f617c2bbb18 CR3: 000000017ad9c000 CR4: 00000000000006e0
[ 3206.388595] Stack:
[ 3206.388595]  0000000000004878 0000000000000000 0000000002400040 0000000000000000
[ 3206.388595]  0000000000000000 ffff880171b9bbe8 ffff880171b9bbb0 ffff880171b9bbb0
[ 3206.388595]  ffff880171b9bbc0 ffff880171b9bbc0 ffff880171b9bbd0 ffff880171b9bbd0
[ 3206.388595] Call Trace:
[ 3206.388595]  [<ffffffffa042899e>] btrfs_issue_discard+0x12f/0x143 [btrfs]
[ 3206.388595]  [<ffffffffa042899e>] ? btrfs_issue_discard+0x12f/0x143 [btrfs]
[ 3206.388595]  [<ffffffffa042e862>] btrfs_discard_extent+0x87/0xde [btrfs]
[ 3206.388595]  [<ffffffffa04303b5>] btrfs_finish_extent_commit+0xb2/0x1df [btrfs]
[ 3206.388595]  [<ffffffff8149c246>] ? __mutex_unlock_slowpath+0x150/0x15b
[ 3206.388595]  [<ffffffffa04464c4>] btrfs_commit_transaction+0x7fc/0x980 [btrfs]
[ 3206.388595]  [<ffffffff8149c246>] ? __mutex_unlock_slowpath+0x150/0x15b
[ 3206.388595]  [<ffffffffa0459af6>] btrfs_sync_file+0x38f/0x428 [btrfs]
[ 3206.388595]  [<ffffffff811a8292>] vfs_fsync_range+0x8c/0x9e
[ 3206.388595]  [<ffffffff811a82c0>] vfs_fsync+0x1c/0x1e
[ 3206.388595]  [<ffffffff811a8417>] do_fsync+0x31/0x4a
[ 3206.388595]  [<ffffffff811a8637>] SyS_fsync+0x10/0x14
[ 3206.388595]  [<ffffffff8149e025>] entry_SYSCALL_64_fastpath+0x18/0xa8
[ 3206.388595]  [<ffffffff81100c6b>] ? time_hardirqs_off+0x9/0x14
[ 3206.388595]  [<ffffffff8108e87d>] ? trace_hardirqs_off_caller+0x1f/0xaa

This happens because when we call btrfs_map_block() from
btrfs_discard_extent() to get a btrfs_bio structure, the device replace
operation has not finished yet, but before we use the device of one of the
stripes from the returned btrfs_bio structure, the device object is freed.

This is illustrated by the following diagram.

            CPU 1                                                  CPU 2

 btrfs_dev_replace_start()

 (...)

 btrfs_dev_replace_finishing()

   btrfs_start_transaction()
   btrfs_commit_transaction()

   (...)

                                                            btrfs_sync_file()
                                                              btrfs_start_transaction()

                                                              (...)

                                                              btrfs_commit_transaction()
                                                                btrfs_finish_extent_commit()
                                                                  btrfs_discard_extent()
                                                                    btrfs_map_block()
                                                                      --> returns a struct btrfs_bio
                                                                          with a stripe that has a
                                                                          device field pointing to
                                                                          source device of the replace
                                                                          operation (the device that
                                                                          is being replaced)

   mutex_lock(&uuid_mutex)
   mutex_lock(&fs_info->fs_devices->device_list_mutex)
   mutex_lock(&fs_info->chunk_mutex)

   btrfs_dev_replace_update_device_in_mapping_tree()
     --> iterates the mapping tree and for each
         extent map that has a stripe pointing to
         the source device, it updates the stripe
         to point to the target device instead

   btrfs_rm_dev_replace_blocked()
     --> waits for fs_info->bio_counter to go down to 0

   btrfs_rm_dev_replace_remove_srcdev()
     --> removes source device from the list of devices

   mutex_unlock(&fs_info->chunk_mutex)
   mutex_unlock(&fs_info->fs_devices->device_list_mutex)
   mutex_unlock(&uuid_mutex)

   btrfs_rm_dev_replace_free_srcdev()
     --> frees the source device

                                                                    --> iterates over all stripes
                                                                        of the returned struct
                                                                        btrfs_bio
                                                                    --> for each stripe it
                                                                        dereferences its device
                                                                        pointer
                                                                        --> it ends up finding a
                                                                            pointer to the device
                                                                            used as the source
                                                                            device for the replace
                                                                            operation and that was
                                                                            already freed

So fix this by surrounding the call to btrfs_map_block(), and the code
that uses the returned struct btrfs_bio, with calls to
btrfs_bio_counter_inc_blocked() and btrfs_bio_counter_dec(), so that
the finishing phase of the device replace operation blocks until the
the bio counter decreases to zero before it frees the source device.
This is the same approach we do at btrfs_map_bio() for example.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-05-31 00:59:44 +01:00
Filipe Manana
22ab04e814 Btrfs: fix race between device replace and chunk allocation
While iterating and copying extents from the source device, the device
replace code keeps adjusting a left cursor that is used to make sure that
once we finish processing a device extent, any future writes to extents
from the corresponding block group will get into both the source and
target devices. This left cursor is also used for resuming the device
replace operation at mount time.

However using this left cursor to decide whether writes go into both
devices or only the source device is not enough to guarantee we don't
miss copying extents into the target device. There are two cases where
the current approach fails. The first one is related to when there are
holes in the device and they get allocated for new block groups while
the device replace operation is iterating the device extents (more on
this explained below). The second one is that when that loop over the
device extents finishes, we start dellaloc, wait for all ordered extents
and then commit the current transaction, we might have got new block
groups allocated that are now using a device extent that has an offset
greater then or equals to the value of the left cursor, in which case
writes to extents belonging to these new block groups will get issued
only to the source device.

For the first case where the current approach of using a left cursor
fails, consider the source device currently has the following layout:

  [ extent bg A ] [ hole, unallocated space ] [extent bg B ]
  3Gb             4Gb                         5Gb

While we are iterating the device extents from the source device using
the commit root of the device tree, the following happens:

        CPU 1                                            CPU 2

                      <we are at transaction N>

  scrub_enumerate_chunks()
    --> searches the device tree for
        extents belonging to the source
        device using the device tree's
        commit root
    --> 1st iteration finds extent belonging to
        block group A

        --> sets block group A to RO mode
            (btrfs_inc_block_group_ro)

        --> sets cursor left to found_key.offset
            which is 3Gb

        --> scrub_chunk() starts
            copies all allocated extents from
            block group's A stripe at source
            device into target device

                                                           btrfs_alloc_chunk()
                                                             --> allocates device extent
                                                                 in the range [4Gb, 5Gb[
                                                                 from the source device for
                                                                 a new block group C

                                                           extent allocated from block
                                                           group C for a direct IO,
                                                           buffered write or btree node/leaf

                                                           extent is written to, perhaps
                                                           in response to a writepages()
                                                           call from the VM or directly
                                                           through direct IO

                                                           the write is made only against
                                                           the source device and not against
                                                           the target device because the
                                                           extent's offset is in the interval
                                                           [4Gb, 5Gb[ which is larger then
                                                           the value of cursor_left (3Gb)

        --> scrub_chunks() finishes

        --> updates left cursor from 3Gb to
            4Gb

        --> btrfs_dec_block_group_ro() sets
            block group A back to RW mode

                             <we are still at transaction N>

    --> 2nd iteration finds extent belonging to
        block group B - it did not find the new
        extent in the range [4Gb, 5Gb[ for block
        group C because we are using the device
        tree's commit root or even because the
        block group's items are not all yet
        inserted in the respective btrees, that is,
        the block group is still attached to some
        transaction handle's new_bgs list and
        btrfs_create_pending_block_groups() was
        not called yet against that transaction
        handle, so the device extent items were
        not yet inserted into the devices tree

                             <we are still at transaction N>

        --> so we end not copying anything from the newly
            allocated device extent from the source device
            to the target device

So fix this by making __btrfs_map_block() always redirect writes to the
target device as well, independently of the left cursor's value. With
this change the left cursor is now used only for the purpose of tracking
progress and allow a mount operation to resume a device replace.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-05-30 12:58:26 +01:00
Filipe Manana
1a1a8b732c Btrfs: fix race setting block group back to RW mode during device replace
After it finishes processing a device extent, the device replace code sets
back the block group to RW mode and then after that it sets the left cursor
to match the logical end address of the block group, so that future writes
into extents belonging to the block group go both the source (old) and
target (new) devices. However from the moment we turn the block group
back to RW mode we have a short time window, that lasts until we update
the left cursor's value, where extents can be allocated from the block
group and written to, in which case they will not be copied/written to
the target (new) device. Fix this by updating the left cursor's value
before turning the block group back to RW mode.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-05-30 12:58:24 +01:00
Filipe Manana
81e87a736c Btrfs: fix unprotected assignment of the left cursor for device replace
We were assigning new values to fields of the device replace object
without holding the respective lock after processing each device extent.
This is important for the left cursor field which can be accessed by a
concurrent task running __btrfs_map_block (which, correctly, takes the
device replace lock).
So change these fields while holding the device replace lock.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-05-30 12:58:23 +01:00
Filipe Manana
f0e9b7d640 Btrfs: fix race setting block group readonly during device replace
When we do a device replace, for each device extent we find from the
source device, we set the corresponding block group to readonly mode to
prevent writes into it from happening while we are copying the device
extent from the source to the target device. However just before we set
the block group to readonly mode some concurrent task might have already
allocated an extent from it or decided it could perform a nocow write
into one of its extents, which can make the device replace process to
miss copying an extent since it uses the extent tree's commit root to
search for extents and only once it finishes searching for all extents
belonging to the block group it does set the left cursor to the logical
end address of the block group - this is a problem if the respective
ordered extents finish while we are searching for extents using the
extent tree's commit root and no transaction commit happens while we
are iterating the tree, since it's the delayed references created by the
ordered extents (when they complete) that insert the extent items into
the extent tree (using the non-commit root of course).
Example:

          CPU 1                                            CPU 2

 btrfs_dev_replace_start()
   btrfs_scrub_dev()
     scrub_enumerate_chunks()
       --> finds device extent belonging
           to block group X

                               <transaction N starts>

                                                      starts buffered write
                                                      against some inode

                                                      writepages is run against
                                                      that inode forcing dellaloc
                                                      to run

                                                      btrfs_writepages()
                                                        extent_writepages()
                                                          extent_write_cache_pages()
                                                            __extent_writepage()
                                                              writepage_delalloc()
                                                                run_delalloc_range()
                                                                  cow_file_range()
                                                                    btrfs_reserve_extent()
                                                                      --> allocates an extent
                                                                          from block group X
                                                                          (which is not yet
                                                                           in RO mode)
                                                                    btrfs_add_ordered_extent()
                                                                      --> creates ordered extent Y
                                                        flush_epd_write_bio()
                                                          --> bio against the extent from
                                                              block group X is submitted

       btrfs_inc_block_group_ro(bg X)
         --> sets block group X to readonly

       scrub_chunk(bg X)
         scrub_stripe(device extent from srcdev)
           --> keeps searching for extent items
               belonging to the block group using
               the extent tree's commit root
           --> it never blocks due to
               fs_info->scrub_pause_req as no
               one tries to commit transaction N
           --> copies all extents found from the
               source device into the target device
           --> finishes search loop

                                                        bio completes

                                                        ordered extent Y completes
                                                        and creates delayed data
                                                        reference which will add an
                                                        extent item to the extent
                                                        tree when run (typically
                                                        at transaction commit time)

                                                          --> so the task doing the
                                                              scrub/device replace
                                                              at CPU 1 misses this
                                                              and does not copy this
                                                              extent into the new/target
                                                              device

       btrfs_dec_block_group_ro(bg X)
         --> turns block group X back to RW mode

       dev_replace->cursor_left is set to the
       logical end offset of block group X

So fix this by waiting for all cow and nocow writes after setting a block
group to readonly mode.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-05-30 12:58:21 +01:00
Filipe Manana
57ba4cb85b Btrfs: fix race between device replace and block group removal
When it's finishing, the device replace code iterates all extent maps
representing block group and for each one that has a stripe that refers
to the source device, it replaces its device with the target device.
However when it replaces the source device with the target device it,
the target device still has an ID of 0ULL (BTRFS_DEV_REPLACE_DEVID),
only after its ID is changed to match the one from the source device.
This leads to races with the chunk removal code that can temporarly see
a device with an ID of 0ULL and then attempt to use that ID to remove
items from the device tree and fail, causing a transaction abort:

[ 9238.594364] BTRFS info (device sdf): dev_replace from /dev/sdf (devid 3) to /dev/sde finished
[ 9238.594377] ------------[ cut here ]------------
[ 9238.594402] WARNING: CPU: 14 PID: 21566 at fs/btrfs/volumes.c:2771 btrfs_remove_chunk+0x2e5/0x793 [btrfs]
[ 9238.594403] BTRFS: Transaction aborted (error 1)
[ 9238.594416] Modules linked in: btrfs crc32c_generic acpi_cpufreq xor tpm_tis tpm raid6_pq ppdev parport_pc processor psmouse parport i2c_piix4 evdev sg i2c_core se
rio_raw pcspkr button loop autofs4 ext4 crc16 jbd2 mbcache sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix virtio_pci libata virtio_ring virtio e1000 scsi_mod fl
oppy [last unloaded: btrfs]
[ 9238.594418] CPU: 14 PID: 21566 Comm: btrfs-cleaner Not tainted 4.6.0-rc7-btrfs-next-29+ #1
[ 9238.594419] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[ 9238.594421]  0000000000000000 ffff88017f1dbc60 ffffffff8126b42c ffff88017f1dbcb0
[ 9238.594422]  0000000000000000 ffff88017f1dbca0 ffffffff81052b14 00000ad37f1dbd18
[ 9238.594423]  0000000000000001 ffff88018068a558 ffff88005c4b9c00 ffff880233f60db0
[ 9238.594424] Call Trace:
[ 9238.594428]  [<ffffffff8126b42c>] dump_stack+0x67/0x90
[ 9238.594430]  [<ffffffff81052b14>] __warn+0xc2/0xdd
[ 9238.594432]  [<ffffffff81052b7a>] warn_slowpath_fmt+0x4b/0x53
[ 9238.594434]  [<ffffffff8116c311>] ? kmem_cache_free+0x128/0x188
[ 9238.594450]  [<ffffffffa04d43f5>] btrfs_remove_chunk+0x2e5/0x793 [btrfs]
[ 9238.594452]  [<ffffffff8108e456>] ? arch_local_irq_save+0x9/0xc
[ 9238.594464]  [<ffffffffa04a26fa>] btrfs_delete_unused_bgs+0x317/0x382 [btrfs]
[ 9238.594476]  [<ffffffffa04a961d>] cleaner_kthread+0x1ad/0x1c7 [btrfs]
[ 9238.594489]  [<ffffffffa04a9470>] ? btree_invalidatepage+0x8e/0x8e [btrfs]
[ 9238.594490]  [<ffffffff8106f403>] kthread+0xd4/0xdc
[ 9238.594494]  [<ffffffff8149e242>] ret_from_fork+0x22/0x40
[ 9238.594495]  [<ffffffff8106f32f>] ? kthread_stop+0x286/0x286
[ 9238.594496] ---[ end trace 183efbe50275f059 ]---

The sequence of steps leading to this is like the following:

              CPU 1                                           CPU 2

 btrfs_dev_replace_finishing()

   at this point
   dev_replace->tgtdev->devid ==
   BTRFS_DEV_REPLACE_DEVID (0ULL)

   ...

   btrfs_start_transaction()
   btrfs_commit_transaction()

                                                     btrfs_delete_unused_bgs()
                                                       btrfs_remove_chunk()

                                                         looks up for the extent map
                                                         corresponding to the chunk

                                                         lock_chunks() (chunk_mutex)
                                                         check_system_chunk()
                                                         unlock_chunks() (chunk_mutex)

   locks fs_info->chunk_mutex

   btrfs_dev_replace_update_device_in_mapping_tree()
     --> iterates fs_info->mapping_tree and
         replaces the device in every extent
         map's map->stripes[] with
         dev_replace->tgtdev, which still has
         an id of 0ULL (BTRFS_DEV_REPLACE_DEVID)

                                                         iterates over all stripes from
                                                         the extent map

                                                           --> calls btrfs_free_dev_extent()
                                                               passing it the target device
                                                               that still has an ID of 0ULL

                                                           --> btrfs_free_dev_extent() fails
                                                             --> aborts current transaction

   finishes setting up the target device,
   namely it sets tgtdev->devid to the value
   of srcdev->devid (which is necessarily > 0)

   frees the srcdev

   unlocks fs_info->chunk_mutex

So fix this by taking the device list mutex while processing the stripes
for the chunk's extent map. This is similar to the race between device
replace and block group creation that was fixed by commit 50460e3718
("Btrfs: fix race when finishing dev replace leading to transaction abort").

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-05-30 12:58:19 +01:00
Filipe Manana
ce7791ffee Btrfs: fix race between readahead and device replace/removal
The list of devices is protected by the device_list_mutex and the device
replace code, in its finishing phase correctly takes that mutex before
removing the source device from that list. However the readahead code was
iterating that list without acquiring the respective mutex leading to
crashes later on due to invalid memory accesses:

[125671.831036] general protection fault: 0000 [#1] PREEMPT SMP
[125671.832129] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq acpi_cpufreq tpm_tis tpm ppdev evdev parport_pc psmouse sg parport
processor ser
[125671.834973] CPU: 10 PID: 19603 Comm: kworker/u32:19 Tainted: G        W       4.6.0-rc7-btrfs-next-29+ #1
[125671.834973] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[125671.834973] Workqueue: btrfs-readahead btrfs_readahead_helper [btrfs]
[125671.834973] task: ffff8801ac520540 ti: ffff8801ac918000 task.ti: ffff8801ac918000
[125671.834973] RIP: 0010:[<ffffffff81270479>]  [<ffffffff81270479>] __radix_tree_lookup+0x6a/0x105
[125671.834973] RSP: 0018:ffff8801ac91bc28  EFLAGS: 00010206
[125671.834973] RAX: 0000000000000000 RBX: 6b6b6b6b6b6b6b6a RCX: 0000000000000000
[125671.834973] RDX: 0000000000000000 RSI: 00000000000c1bff RDI: ffff88002ebd62a8
[125671.834973] RBP: ffff8801ac91bc70 R08: 0000000000000001 R09: 0000000000000000
[125671.834973] R10: ffff8801ac91bc70 R11: 0000000000000000 R12: ffff88002ebd62a8
[125671.834973] R13: 0000000000000000 R14: 0000000000000000 R15: 00000000000c1bff
[125671.834973] FS:  0000000000000000(0000) GS:ffff88023fd40000(0000) knlGS:0000000000000000
[125671.834973] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[125671.834973] CR2: 000000000073cae4 CR3: 00000000b7723000 CR4: 00000000000006e0
[125671.834973] Stack:
[125671.834973]  0000000000000000 ffff8801422d5600 ffff8802286bbc00 0000000000000000
[125671.834973]  0000000000000001 ffff8802286bbc00 00000000000c1bff 0000000000000000
[125671.834973]  ffff88002e639eb8 ffff8801ac91bc80 ffffffff81270541 ffff8801ac91bcb0
[125671.834973] Call Trace:
[125671.834973]  [<ffffffff81270541>] radix_tree_lookup+0xd/0xf
[125671.834973]  [<ffffffffa04ae6a6>] reada_peer_zones_set_lock+0x3e/0x60 [btrfs]
[125671.834973]  [<ffffffffa04ae8b9>] reada_pick_zone+0x29/0x103 [btrfs]
[125671.834973]  [<ffffffffa04af42f>] reada_start_machine_worker+0x129/0x2d3 [btrfs]
[125671.834973]  [<ffffffffa04880be>] btrfs_scrubparity_helper+0x185/0x3aa [btrfs]
[125671.834973]  [<ffffffffa0488341>] btrfs_readahead_helper+0xe/0x10 [btrfs]
[125671.834973]  [<ffffffff81069691>] process_one_work+0x271/0x4e9
[125671.834973]  [<ffffffff81069dda>] worker_thread+0x1eb/0x2c9
[125671.834973]  [<ffffffff81069bef>] ? rescuer_thread+0x2b3/0x2b3
[125671.834973]  [<ffffffff8106f403>] kthread+0xd4/0xdc
[125671.834973]  [<ffffffff8149e242>] ret_from_fork+0x22/0x40
[125671.834973]  [<ffffffff8106f32f>] ? kthread_stop+0x286/0x286

So fix this by taking the device_list_mutex in the readahead code. We
can't use here the lighter approach of using a rcu_read_lock() and
rcu_read_unlock() pair together with a list_for_each_entry_rcu() call
because we end up doing calls to sleeping functions (kzalloc()) in the
respective code path.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-05-30 12:58:18 +01:00
Chris Mason
56244ef151 Btrfs: fix handling of faults from btrfs_copy_from_user
When btrfs_copy_from_user isn't able to copy all of the pages, we need
to adjust our accounting to reflect the work that was actually done.

Commit 2e78c927d7 changed around the decisions a little and we ended up
skipping the accounting adjustments some of the time.  This commit makes
sure that when we don't copy anything at all, we still hop into
the adjustments, and switches to release_bytes instead of write_bytes,
since write_bytes isn't aligned.

The accounting errors led to warnings during btrfs_destroy_inode:

[   70.847532] WARNING: CPU: 10 PID: 514 at fs/btrfs/inode.c:9350 btrfs_destroy_inode+0x2b3/0x2c0
[   70.847536] Modules linked in: i2c_piix4 virtio_net i2c_core input_leds button led_class serio_raw acpi_cpufreq sch_fq_codel autofs4 virtio_blk
[   70.847538] CPU: 10 PID: 514 Comm: umount Tainted: G        W 4.6.0-rc6_00062_g2997da1-dirty #23
[   70.847539] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.9.0-1.fc24 04/01/2014
[   70.847542]  0000000000000000 ffff880ff5cafab8 ffffffff8149d5e9 0000000000000202
[   70.847543]  0000000000000000 0000000000000000 0000000000000000 ffff880ff5cafb08
[   70.847547]  ffffffff8107bdfd ffff880ff5cafaf8 000024868120013d ffff880ff5cafb28
[   70.847547] Call Trace:
[   70.847550]  [<ffffffff8149d5e9>] dump_stack+0x51/0x78
[   70.847551]  [<ffffffff8107bdfd>] __warn+0xfd/0x120
[   70.847553]  [<ffffffff8107be3d>] warn_slowpath_null+0x1d/0x20
[   70.847555]  [<ffffffff8139c9e3>] btrfs_destroy_inode+0x2b3/0x2c0
[   70.847556]  [<ffffffff812003a1>] ? __destroy_inode+0x71/0x140
[   70.847558]  [<ffffffff812004b3>] destroy_inode+0x43/0x70
[   70.847559]  [<ffffffff810b7b5f>] ? wake_up_bit+0x2f/0x40
[   70.847560]  [<ffffffff81200c68>] evict+0x148/0x1d0
[   70.847562]  [<ffffffff81398ade>] ? start_transaction+0x3de/0x460
[   70.847564]  [<ffffffff81200d49>] dispose_list+0x59/0x80
[   70.847565]  [<ffffffff81201ba0>] evict_inodes+0x180/0x190
[   70.847566]  [<ffffffff812191ff>] ? __sync_filesystem+0x3f/0x50
[   70.847568]  [<ffffffff811e95f8>] generic_shutdown_super+0x48/0x100
[   70.847569]  [<ffffffff810b75c0>] ? woken_wake_function+0x20/0x20
[   70.847571]  [<ffffffff811e9796>] kill_anon_super+0x16/0x30
[   70.847573]  [<ffffffff81365cde>] btrfs_kill_super+0x1e/0x130
[   70.847574]  [<ffffffff811e99be>] deactivate_locked_super+0x4e/0x90
[   70.847576]  [<ffffffff811e9e61>] deactivate_super+0x51/0x70
[   70.847577]  [<ffffffff8120536f>] cleanup_mnt+0x3f/0x80
[   70.847579]  [<ffffffff81205402>] __cleanup_mnt+0x12/0x20
[   70.847581]  [<ffffffff81098358>] task_work_run+0x68/0xa0
[   70.847582]  [<ffffffff810022b6>] exit_to_usermode_loop+0xd6/0xe0
[   70.847583]  [<ffffffff81002e1d>] do_syscall_64+0xbd/0x170
[   70.847586]  [<ffffffff817d4dbc>] entry_SYSCALL64_slow_path+0x25/0x25

This is the test program I used to force short returns from
btrfs_copy_from_user

void *dontneed(void *arg)
{
	char *p = arg;
	int ret;

	while(1) {
		ret = madvise(p, BUFSIZE/4, MADV_DONTNEED);
		if (ret) {
			perror("madvise");
			exit(1);
		}
	}
}

int main(int ac, char **av) {
	int ret;
	int fd;
	char *filename;
	unsigned long offset;
	char *buf;
	int i;
	pthread_t tid;

	if (ac != 2) {
		fprintf(stderr, "usage: dammitdave filename\n");
		exit(1);
	}

	buf = mmap(NULL, BUFSIZE, PROT_READ|PROT_WRITE,
		   MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
	if (buf == MAP_FAILED) {
		perror("mmap");
		exit(1);
	}
	memset(buf, 'a', BUFSIZE);
	filename = av[1];

	ret = pthread_create(&tid, NULL, dontneed, buf);
	if (ret) {
		fprintf(stderr, "error %d from pthread_create\n", ret);
		exit(1);
	}

	ret = pthread_detach(tid);
	if (ret) {
		fprintf(stderr, "pthread detach failed %d\n", ret);
		exit(1);
	}

	while (1) {
		fd = open(filename, O_RDWR | O_CREAT, 0600);
		if (fd < 0) {
			perror("open");
			exit(1);
		}

		for (i = 0; i < ROUNDS; i++) {
			int this_write = BUFSIZE;

			offset = rand() % MAXSIZE;
			ret = pwrite(fd, buf, this_write, offset);
			if (ret < 0) {
				perror("pwrite");
				exit(1);
			} else if (ret != this_write) {
				fprintf(stderr, "short write to %s offset %lu ret %d\n",
					filename, offset, ret);
				exit(1);
			}
			if (i == ROUNDS - 1) {
				ret = sync_file_range(fd, offset, 4096,
				    SYNC_FILE_RANGE_WRITE);
				if (ret < 0) {
					perror("sync_file_range");
					exit(1);
				}
			}
		}
		ret = ftruncate(fd, 0);
		if (ret < 0) {
			perror("ftruncate");
			exit(1);
		}
		ret = close(fd);
		if (ret) {
			perror("close");
			exit(1);
		}
		ret = unlink(filename);
		if (ret) {
			perror("unlink");
			exit(1);
		}

	}
	return 0;
}

Signed-off-by: Chris Mason <clm@fb.com>
Reported-by: Dave Jones <dsj@fb.com>
Fixes: 2e78c927d7
cc: stable@vger.kernel.org # v4.6
Signed-off-by: Chris Mason <clm@fb.com>
2016-05-26 13:23:59 -07:00
David Sterba
42f31734eb Merge branch 'cleanups-4.7' into for-chris-4.7-20160525 2016-05-25 22:51:03 +02:00
Nicholas D Steeves
0132761017 btrfs: fix string and comment grammatical issues and typos
Signed-off-by: Nicholas D Steeves <nsteeves@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-05-25 22:35:14 +02:00
Zhao Lei
f1fee6534d btrfs: scrub: Set bbio to NULL before calling btrfs_map_block
We usually call btrfs_put_bbio() when btrfs_map_block() failed,
btrfs_put_bbio() works right whether bbio is a valid value, or NULL.

But there is a exception, in some case, btrfs_map_block() will return
fail without touching *bbio(keeping its original value), and if bbio
was not initialized yet, invalid memory accessing will happened.

Above case is in scrub_missing_raid56_pages(), and similar case in
scrub_raid56_parity().

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-05-25 22:15:21 +02:00
Liu Bo
2d324f59f3 Btrfs: fix unexpected return value of fiemap
btrfs's fiemap is supposed to return 0 on success and return < 0 on
error. however, ret becomes 1 after looking up the last file extent:

  btrfs_lookup_file_extent ->
    btrfs_search_slot(..., ins_len=0, cow=0)

and if the offset is beyond EOF, we'll get 'path' pointed to the place
of potentail insertion, and ret == 1.

This may confuse applications using ioctl(FIEL_IOC_FIEMAP).

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-05-25 19:53:54 +02:00
Liu Bo
1c8b5b6e8b Btrfs: free sys_array eb as soon as possible
While reading sys_chunk_array in superblock, btrfs creates a temporary
extent buffer.  Since we don't use it after finishing reading
 sys_chunk_array, we don't need to keep it in memory.

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-05-25 19:53:51 +02:00
Chris Mason
c315ef8d9d Merge branch 'for-chris-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/fdmanana/linux into for-linus-4.7
Signed-off-by: Chris Mason <clm@fb.com>
2016-05-17 14:43:19 -07:00
David Sterba
680834ca0a Merge branch 'foreign/jeffm/uapi' into for-chris-4.7-20160516
# Conflicts:
#	include/uapi/linux/btrfs.h
2016-05-16 15:46:29 +02:00
David Sterba
36fac9e9ff Merge branch 'foreign/anand/dev-del-by-id-ext' into for-chris-4.7-20160516 2016-05-16 15:46:26 +02:00
David Sterba
5ef64a3e75 Merge branch 'cleanups-4.7' into for-chris-4.7-20160516 2016-05-16 15:46:24 +02:00
Scott Talbert
4673272f43 btrfs: fix memory leak during RAID 5/6 device replacement
A 'struct bio' is allocated in scrub_missing_raid56_pages(), but it was never
freed anywhere.

Signed-off-by: Scott Talbert <scott.talbert@hgst.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-05-16 10:17:58 +02:00
Filipe Manana
5f9a8a51d8 Btrfs: add semaphore to synchronize direct IO writes with fsync
Due to the optimization of lockless direct IO writes (the inode's i_mutex
is not held) introduced in commit 38851cc19a ("Btrfs: implement unlocked
dio write"), we started having races between such writes with concurrent
fsync operations that use the fast fsync path. These races were addressed
in the patches titled "Btrfs: fix race between fsync and lockless direct
IO writes" and "Btrfs: fix race between fsync and direct IO writes for
prealloc extents". The races happened because the direct IO path, like
every other write path, does create extent maps followed by the
corresponding ordered extents while the fast fsync path collected first
ordered extents and then it collected extent maps. This made it possible
to log file extent items (based on the collected extent maps) without
waiting for the corresponding ordered extents to complete (get their IO
done). The two fixes mentioned before added a solution that consists of
making the direct IO path create first the ordered extents and then the
extent maps, while the fsync path attempts to collect any new ordered
extents once it collects the extent maps. This was simple and did not
require adding any synchonization primitive to any data structure (struct
btrfs_inode for example) but it makes things more fragile for future
development endeavours and adds an exceptional approach compared to the
other write paths.

This change adds a read-write semaphore to the btrfs inode structure and
makes the direct IO path create the extent maps and the ordered extents
while holding read access on that semaphore, while the fast fsync path
collects extent maps and ordered extents while holding write access on
that semaphore. The logic for direct IO write path is encapsulated in a
new helper function that is used both for cow and nocow direct IO writes.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-05-13 01:59:36 +01:00
Filipe Manana
f78c436c39 Btrfs: fix race between block group relocation and nocow writes
Relocation of a block group waits for all existing tasks flushing
dellaloc, starting direct IO writes and any ordered extents before
starting the relocation process. However for direct IO writes that end
up doing nocow (inode either has the flag nodatacow set or the write is
against a prealloc extent) we have a short time window that allows for a
race that makes relocation proceed without waiting for the direct IO
write to complete first, resulting in data loss after the relocation
finishes. This is illustrated by the following diagram:

           CPU 1                                     CPU 2

 btrfs_relocate_block_group(bg X)

                                               direct IO write starts against
                                               an extent in block group X
                                               using nocow mode (inode has the
                                               nodatacow flag or the write is
                                               for a prealloc extent)

                                               btrfs_direct_IO()
                                                 btrfs_get_blocks_direct()
                                                   --> can_nocow_extent() returns 1

   btrfs_inc_block_group_ro(bg X)
     --> turns block group into RO mode

   btrfs_wait_ordered_roots()
     --> returns and does not know about
         the DIO write happening at CPU 2
         (the task there has not created
          yet an ordered extent)

   relocate_block_group(bg X)
     --> rc->stage == MOVE_DATA_EXTENTS

     find_next_extent()
       --> returns extent that the DIO
           write is going to write to

     relocate_data_extent()

       relocate_file_extent_cluster()

         --> reads the extent from disk into
             pages belonging to the relocation
             inode and dirties them

                                                   --> creates DIO ordered extent

                                                 btrfs_submit_direct()
                                                   --> submits bio against a location
                                                       on disk obtained from an extent
                                                       map before the relocation started

   btrfs_wait_ordered_range()
     --> writes all the pages read before
         to disk (belonging to the
         relocation inode)

   relocation finishes

                                                 bio completes and wrote new data
                                                 to the old location of the block
                                                 group

So fix this by tracking the number of nocow writers for a block group and
make sure relocation waits for that number to go down to 0 before starting
to move the extents.

The same race can also happen with buffered writes in nocow mode since the
patch I recently made titled "Btrfs: don't do unnecessary delalloc flushes
when relocating", because we are no longer flushing all delalloc which
served as a synchonization mechanism (due to page locking) and ensured
the ordered extents for nocow buffered writes were created before we
called btrfs_wait_ordered_roots(). The race with direct IO writes in nocow
mode existed before that patch (no pages are locked or used during direct
IO) and that fixed only races with direct IO writes that do cow.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-05-13 01:59:34 +01:00
Filipe Manana
0b901916a0 Btrfs: fix race between fsync and direct IO writes for prealloc extents
When we do a direct IO write against a preallocated extent (fallocate)
that does not go beyond the i_size of the inode, we do the write operation
without holding the inode's i_mutex (an optimization that landed in
commit 38851cc19a ("Btrfs: implement unlocked dio write")). This allows
for a very tiny time window where a race can happen with a concurrent
fsync using the fast code path, as the direct IO write path creates first
a new extent map (no longer flagged as a prealloc extent) and then it
creates the ordered extent, while the fast fsync path first collects
ordered extents and then it collects extent maps. This allows for the
possibility of the fast fsync path to collect the new extent map without
collecting the new ordered extent, and therefore logging an extent item
based on the extent map without waiting for the ordered extent to be
created and complete. This can result in a situation where after a log
replay we end up with an extent not marked anymore as prealloc but it was
only partially written (or not written at all), exposing random, stale or
garbage data corresponding to the unwritten pages and without any
checksums in the csum tree covering the extent's range.

This is an extension of what was done in commit de0ee0edb2 ("Btrfs: fix
race between fsync and lockless direct IO writes").

So fix this by creating first the ordered extent and then the extent
map, so that this way if the fast fsync patch collects the new extent
map it also collects the corresponding ordered extent.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-05-13 01:59:32 +01:00
Filipe Manana
5062af35c3 Btrfs: fix number of transaction units for renames with whiteout
When we do a rename with the whiteout flag, we need to create the whiteout
inode, which in the worst case requires 5 transaction units (1 inode item,
1 inode ref, 2 dir items and 1 xattr if selinux is enabled). So bump the
number of transaction units from 11 to 16 if the whiteout flag is set.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2016-05-13 01:59:30 +01:00
Filipe Manana
376e5a57bf Btrfs: pin logs earlier when doing a rename exchange operation
The btrfs_rename_exchange() started as a copy-paste from btrfs_rename(),
which had a race fixed by my previous patch titled "Btrfs: pin log earlier
when renaming", and so it suffers from the same problem.

We pin the logs of the affected roots after we insert the new inode
references, leaving a time window where concurrent tasks logging the
inodes can end up logging both the new and old references, resulting
in log trees that when replayed can turn the metadata into inconsistent
states. This behaviour was added to btrfs_rename() in 2009 without any
explanation about why not pinning the logs earlier, just leaving a
comment about the posibility for the race. As of today it's perfectly
safe and sane to pin the logs before we start doing any of the steps
involved in the rename operation.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2016-05-13 01:59:28 +01:00