Add the admin guide for Processor MMIO stale data vulnerabilities.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Applications can currently escape their cgroup memory containment when
zswap is enabled. This patch adds per-cgroup tracking and limiting of
zswap backend memory to rectify this.
The existing cgroup2 memory.stat file is extended to show zswap statistics
analogous to what's in meminfo and vmstat. Furthermore, two new control
files, memory.zswap.current and memory.zswap.max, are added to allow
tuning zswap usage on a per-workload basis. This is important since not
all workloads benefit from zswap equally; some even suffer compared to
disk swap when memory contents don't compress well. The optimal size of
the zswap pool, and the threshold for writeback, also depends on the size
of the workload's warm set.
The implementation doesn't use a traditional page_counter transaction.
zswap is unconventional as a memory consumer in that we only know the
amount of memory to charge once expensive compression has occurred. If
zwap is disabled or the limit is already exceeded we obviously don't want
to compress page upon page only to reject them all. Instead, the limit is
checked against current usage, then we compress and charge. This allows
some limit overrun, but not enough to matter in practice.
[hannes@cmpxchg.org: fix for CONFIG_SLOB builds]
Link: https://lkml.kernel.org/r/YnwD14zxYjUJPc2w@cmpxchg.org
[hannes@cmpxchg.org: opt out of cgroups v1]
Link: https://lkml.kernel.org/r/Yn6it9mBYFA+/lTb@cmpxchg.org
Link: https://lkml.kernel.org/r/20220510152847.230957-7-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Some firmware supplies PCI host bridge _CRS that includes address space
unusable by PCI devices, e.g., space occupied by host bridge registers or
used by hidden PCI devices.
To avoid this unusable space, Linux currently excludes E820 reserved
regions from _CRS windows; see 4dc2287c18 ("x86: avoid E820 regions when
allocating address space").
However, this use of E820 reserved regions to clip things out of _CRS is
not supported by ACPI, UEFI, or PCI Firmware specs, and some systems have
E820 reserved regions that cover the entire memory window from _CRS.
4dc2287c18 clips the entire window, leaving no space for hot-added or
uninitialized PCI devices.
For example, from a Lenovo IdeaPad 3 15IIL 81WE:
BIOS-e820: [mem 0x4bc50000-0xcfffffff] reserved
pci_bus 0000:00: root bus resource [mem 0x65400000-0xbfffffff window]
pci 0000:00:15.0: BAR 0: [mem 0x00000000-0x00000fff 64bit]
pci 0000:00:15.0: BAR 0: no space for [mem size 0x00001000 64bit]
Future patches will add quirks to enable/disable E820 clipping
automatically.
Add a "pci=no_e820" kernel command line option to disable clipping with
E820 reserved regions. Also add a matching "pci=use_e820" option to enable
clipping with E820 reserved regions if that has been disabled by default by
further patches in this patch-set.
Both options taint the kernel because they are intended for debugging and
workaround purposes until a quirk can set them automatically.
[bhelgaas: commit log, add printk]
Link: https://bugzilla.redhat.com/show_bug.cgi?id=1868899 Lenovo IdeaPad 3
Link: https://lore.kernel.org/r/20220519152150.6135-2-hdegoede@redhat.com
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Benoit Grégoire <benoitg@coeus.ca>
Cc: Hui Wang <hui.wang@canonical.com>
The deferred probe timer that's used for this currently starts at
late_initcall and runs for driver_deferred_probe_timeout seconds. The
assumption being that all available drivers would be loaded and
registered before the timer expires. This means, the
driver_deferred_probe_timeout has to be pretty large for it to cover the
worst case. But if we set the default value for it to cover the worst
case, it would significantly slow down the average case. For this
reason, the default value is set to 0.
Also, with CONFIG_MODULES=y and the current default values of
driver_deferred_probe_timeout=0 and fw_devlink=on, devices with missing
drivers will cause their consumer devices to always defer their probes.
This is because device links created by fw_devlink defer the probe even
before the consumer driver's probe() is called.
Instead of a fixed timeout, if we extend an unexpired deferred probe
timer on every successful driver registration, with the expectation more
modules would be loaded in the near future, then the default value of
driver_deferred_probe_timeout only needs to be as long as the worst case
time difference between two consecutive module loads.
So let's implement that and set the default value to 10 seconds when
CONFIG_MODULES=y.
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Rob Herring <robh@kernel.org>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: Will Deacon <will@kernel.org>
Cc: Ulf Hansson <ulf.hansson@linaro.org>
Cc: Kevin Hilman <khilman@kernel.org>
Cc: Thierry Reding <treding@nvidia.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Yoshihiro Shimoda <yoshihiro.shimoda.uh@renesas.com>
Cc: Paul Kocialkowski <paul.kocialkowski@bootlin.com>
Cc: linux-gpio@vger.kernel.org
Cc: linux-pm@vger.kernel.org
Cc: iommu@lists.linux-foundation.org
Reviewed-by: Mark Brown <broonie@kernel.org>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20220429220933.1350374-1-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There's currently no way to use driver_async_probe kernel cmdline param
to enable default async probe for all drivers. So, add support for "*"
to match with all driver names. When "*" is used, all other drivers
listed in driver_async_probe are drivers that will NOT match the "*".
For example:
* driver_async_probe=drvA,drvB,drvC
drvA, drvB and drvC do asynchronous probing.
* driver_async_probe=*
All drivers do asynchronous probing except those that have set
PROBE_FORCE_SYNCHRONOUS flag.
* driver_async_probe=*,drvA,drvB,drvC
All drivers do asynchronous probing except drvA, drvB, drvC and those
that have set PROBE_FORCE_SYNCHRONOUS flag.
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Feng Tang <feng.tang@intel.com>
Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20220504005344.117803-1-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The documentation for nfs4_unique_id is out-of-date. In particular it
claim that when nfs4_unique_id is set, the host name is not used. since
Commit 55b592933b ("NFSv4: Fix nfs4_init_uniform_client_string for net
namespaces") both the unique_id AND the host name are used.
Update the documentation to match the code.
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
When "crashkernel=X,high" is specified, the specified "crashkernel=Y,low"
memory is not required in the following corner cases:
1. If both CONFIG_ZONE_DMA and CONFIG_ZONE_DMA32 are disabled, it means
that the devices can access any memory.
2. If the system memory is small, the crash high memory may be allocated
from the DMA zones. If that happens, there's no need to allocate
another crash low memory because there's already one.
Add condition '(crash_base >= CRASH_ADDR_LOW_MAX)' to determine whether
the 'high' memory is allocated above DMA zones. Note: when both
CONFIG_ZONE_DMA and CONFIG_ZONE_DMA32 are disabled, the entire physical
memory is DMA accessible, CRASH_ADDR_LOW_MAX equals 'PHYS_MASK + 1'.
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Acked-by: Baoquan He <bhe@redhat.com>
Link: https://lore.kernel.org/r/20220511032033.426-1-thunder.leizhen@huawei.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
commit 68822bdf76 ("net: generalize skb freeing
deferral to per-cpu lists") added another per-cpu
cache of skbs. It was expected to be small,
and an IPI was forced whenever the list reached 128
skbs.
We might need to be able to control more precisely
queue capacity and added latency.
An IPI is generated whenever queue reaches half capacity.
Default value of the new limit is 64.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We run a lot of automated tests when building our software and run into
OOM scenarios when the tests run unbounded. v1 memcg exports
memcg->watermark as "memory.max_usage_in_bytes" in sysfs. We use this
metric to heuristically limit the number of tests that can run in parallel
based on per test historical data.
This metric is currently not exported for v2 memcg and there is no other
easy way of getting this information. getrusage() syscall returns
"ru_maxrss" which can be used as an approximation but that's the max RSS
of a single child process across all children instead of the aggregated
max for all child processes. The only work around is to periodically poll
"memory.current" but that's not practical for short-lived one-off cgroups.
Hence, expose memcg->watermark as "memory.peak" for v2 memcg.
Link: https://lkml.kernel.org/r/20220507050916.GA13577@us192.sjc.aristanetworks.com
Signed-off-by: Ganesan Rajagopal <rganesan@arista.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We must add hugetlb_free_vmemmap=on (or "off") to the boot cmdline and
reboot the server to enable or disable the feature of optimizing vmemmap
pages associated with HugeTLB pages. However, rebooting usually takes a
long time. So add a sysctl to enable or disable the feature at runtime
without rebooting. Why we need this? There are 3 use cases.
1) The feature of minimizing overhead of struct page associated with
each HugeTLB is disabled by default without passing
"hugetlb_free_vmemmap=on" to the boot cmdline. When we (ByteDance)
deliver the servers to the users who want to enable this feature, they
have to configure the grub (change boot cmdline) and reboot the
servers, whereas rebooting usually takes a long time (we have thousands
of servers). It's a very bad experience for the users. So we need a
approach to enable this feature after rebooting. This is a use case in
our practical environment.
2) Some use cases are that HugeTLB pages are allocated 'on the fly'
instead of being pulled from the HugeTLB pool, those workloads would be
affected with this feature enabled. Those workloads could be
identified by the characteristics of they never explicitly allocating
huge pages with 'nr_hugepages' but only set 'nr_overcommit_hugepages'
and then let the pages be allocated from the buddy allocator at fault
time. We can confirm it is a real use case from the commit
099730d674. For those workloads, the page fault time could be ~2x
slower than before. We suspect those users want to disable this
feature if the system has enabled this before and they don't think the
memory savings benefit is enough to make up for the performance drop.
3) If the workload which wants vmemmap pages to be optimized and the
workload which wants to set 'nr_overcommit_hugepages' and does not want
the extera overhead at fault time when the overcommitted pages be
allocated from the buddy allocator are deployed in the same server.
The user could enable this feature and set 'nr_hugepages' and
'nr_overcommit_hugepages', then disable the feature. In this case, the
overcommited HugeTLB pages will not encounter the extra overhead at
fault time.
Link: https://lkml.kernel.org/r/20220512041142.39501-5-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
A semicolon was missing, and the almost-alphabetical-but-not ordering
was confusing, so regroup these by category instead.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Currently both expedited and regular grace period stall warnings use
a single timeout value that with units of seconds. However, recent
Android use cases problem require a sub-100-millisecond expedited RCU CPU
stall warning. Given that expedited RCU grace periods normally complete
in far less than a single millisecond, especially for small systems,
this is not unreasonable.
Therefore introduce the CONFIG_RCU_EXP_CPU_STALL_TIMEOUT kernel
configuration that defaults to 20 msec on Android and remains the same
as that of the non-expedited stall warnings otherwise. It also can be
changed in run-time via: /sys/.../parameters/rcu_exp_cpu_stall_timeout.
[ paulmck: Default of zero to use CONFIG_RCU_STALL_TIMEOUT. ]
Signed-off-by: Uladzislau Rezki <uladzislau.rezki@sony.com>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cleanup the text text describing the libata.force boot parameter and
update the list of the values to include all supported horkage and link
flag that can be forced.
Signed-off-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Reviewed-by: Hannes Reinecke <hare@suse.de>
In preparation to differentiate between unsigned regular IMA file
hashes and fs-verity's file digests in the IMA measurement list,
define a new template field named 'd-ngv2'.
Also define two new templates named 'ima-ngv2' and 'ima-sigv2', which
include the new 'd-ngv2' field.
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
This commit adds a srcutree.convert_to_big option of zero that causes
SRCU to decide at boot whether to wait for contention (small systems) or
immediately expand to large (large systems). A new srcutree.big_cpu_lim
(defaulting to 128) defines how many CPUs constitute a large system.
Co-developed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
commit dfe564045c ("rcu: Panic after fixed number of stalls")
introduced a new systctl but no accompanying documentation.
Add a simple entry to the documentation.
Signed-off-by: Joel Savitz <jsavitz@redhat.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This patch series adds a memory.reclaim proactive reclaim interface.
The rationale behind the interface and how it works are in the first
patch.
This patch (of 4):
Introduce a memcg interface to trigger memory reclaim on a memory cgroup.
Use case: Proactive Reclaim
---------------------------
A userspace proactive reclaimer can continuously probe the memcg to
reclaim a small amount of memory. This gives more accurate and up-to-date
workingset estimation as the LRUs are continuously sorted and can
potentially provide more deterministic memory overcommit behavior. The
memory overcommit controller can provide more proactive response to the
changing behavior of the running applications instead of being reactive.
A userspace reclaimer's purpose in this case is not a complete replacement
for kswapd or direct reclaim, it is to proactively identify memory savings
opportunities and reclaim some amount of cold pages set by the policy to
free up the memory for more demanding jobs or scheduling new jobs.
A user space proactive reclaimer is used in Google data centers.
Additionally, Meta's TMO paper recently referenced a very similar
interface used for user space proactive reclaim:
https://dl.acm.org/doi/pdf/10.1145/3503222.3507731
Benefits of a user space reclaimer:
-----------------------------------
1) More flexible on who should be charged for the cpu of the memory
reclaim. For proactive reclaim, it makes more sense to be centralized.
2) More flexible on dedicating the resources (like cpu). The memory
overcommit controller can balance the cost between the cpu usage and
the memory reclaimed.
3) Provides a way to the applications to keep their LRUs sorted, so,
under memory pressure better reclaim candidates are selected. This
also gives more accurate and uptodate notion of working set for an
application.
Why memory.high is not enough?
------------------------------
- memory.high can be used to trigger reclaim in a memcg and can
potentially be used for proactive reclaim. However there is a big
downside in using memory.high. It can potentially introduce high
reclaim stalls in the target application as the allocations from the
processes or the threads of the application can hit the temporary
memory.high limit.
- Userspace proactive reclaimers usually use feedback loops to decide
how much memory to proactively reclaim from a workload. The metrics
used for this are usually either refaults or PSI, and these metrics will
become messy if the application gets throttled by hitting the high
limit.
- memory.high is a stateful interface, if the userspace proactive
reclaimer crashes for any reason while triggering reclaim it can leave
the application in a bad state.
- If a workload is rapidly expanding, setting memory.high to proactively
reclaim memory can result in actually reclaiming more memory than
intended.
The benefits of such interface and shortcomings of existing interface were
further discussed in this RFC thread:
https://lore.kernel.org/linux-mm/5df21376-7dd1-bf81-8414-32a73cea45dd@google.com/
Interface:
----------
Introducing a very simple memcg interface 'echo 10M > memory.reclaim' to
trigger reclaim in the target memory cgroup.
The interface is introduced as a nested-keyed file to allow for future
optional arguments to be easily added to configure the behavior of
reclaim.
Possible Extensions:
--------------------
- This interface can be extended with an additional parameter or flags
to allow specifying one or more types of memory to reclaim from (e.g.
file, anon, ..).
- The interface can also be extended with a node mask to reclaim from
specific nodes. This has use cases for reclaim-based demotion in memory
tiering systens.
- A similar per-node interface can also be added to support proactive
reclaim and reclaim-based demotion in systems without memcg.
- Add a timeout parameter to make it easier for user space to call the
interface without worrying about being blocked for an undefined amount
of time.
For now, let's keep things simple by adding the basic functionality.
[yosryahmed@google.com: worked on versions v2 onwards, refreshed to
current master, updated commit message based on recent
discussions and use cases]
Link: https://lkml.kernel.org/r/20220425190040.2475377-1-yosryahmed@google.com
Link: https://lkml.kernel.org/r/20220425190040.2475377-2-yosryahmed@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Co-developed-by: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Wei Xu <weixugc@google.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zefan Li <lizefan.x@bytedance.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Chen Wandun <chenwandun@huawei.com>
Cc: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: "Michal Koutn" <mkoutny@suse.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Today it's only possible to write back as a page, idle, or huge. A user
might want to writeback pages which are huge and idle first as these idle
pages do not require decompression and make a good first pass for
writeback.
Idle writeback specifically has the advantage that a refault is unlikely
given that the page has been swapped for some amount of time without being
refaulted.
Huge writeback has the advantage that you're guaranteed to get the maximum
benefit from a single page writeback, that is, you're reclaiming one full
page of memory. Pages which are compressed in zram being written back
result in some benefit which is always less than a page size because of
the fact that it was compressed.
The primary use of this is for minimizing refaults in situations where the
device has to be sensitive to storage endurance. On ChromeOS we have
devices with slow eMMC and repeated writes and refaults can negatively
affect performance and endurance.
Link: https://lkml.kernel.org/r/20220322215821.1196994-1-bgeffon@google.com
Signed-off-by: Brian Geffon <bgeffon@google.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Looks like all the changes to this driver had been automated
churn since git era begun. The driver is using virt_to_bus()
so it should be updated to a proper DMA API or removed. Given
the latest "news" entry on the website is from 1999 I'm opting
for the latter.
I'm marking the allocated char device major number as [REMOVED],
I reckon we can't reuse it in case some SW out there assumes its
COSA?
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
RGB/YUV Input is sensor type and it should be sub-dev node.
To generate this dot graph
sudo modprobe vimc
media-ctl --print-dot
Signed-off-by: Kwang Son <dev.kwang.son@gmail.com>
Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl>
Signed-off-by: Mauro Carvalho Chehab <mchehab@kernel.org>
Debugging of problems involving insanely long-running SMI handlers
proceeds better if the CSD-lock timeout can be adjusted. This commit
therefore provides a new smp.csd_lock_timeout kernel boot parameter
that specifies the timeout in milliseconds. The default remains at the
previously hard-coded value of five seconds.
[ paulmck: Apply feedback from Juergen Gross. ]
Cc: Rik van Riel <riel@surriel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Move some out-of-place kernel parameters into their correct
locations.
Move one out-of-order keyword/legend in kernel-parameters.rst.
Add some missing keyword legends in kernel-parameters.rst:
HIBERNATION HYPER_V
and drop some obsolete/removed keyword legends:
EIDE IOSCHED OSS TS XT
Correct the location of the setup.h file.
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-doc@vger.kernel.org
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
x86 EFI earlyprink was removed with commit 69c1f396f2 ("efi/x86:
Convert x86 EFI earlyprintk into generic earlycon implementation").
Signed-off-by: Akihiko Odaki <akihiko.odaki@gmail.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
RCU-tasks stall-warning messages are printed after the grace period is ten
minutes old. Unfortunately, most of us will have rebooted the system in
response to an apparently-hung command long before the ten minutes is up,
and will thus see what looks to be a silent hang.
This commit therefore adds pr_info() messages that are printed earlier.
These should avoid being classified as errors, but should give impatient
users a hint. These are controlled by new rcupdate.rcu_task_stall_info
and rcupdate.rcu_task_stall_info_mult kernel-boot parameters. The former
defines the initial delay in jiffies (defaulting to 10 seconds) and the
latter defines the multiplier (defaulting to 3). Thus, by default, the
first message will appear 10 seconds into the RCU-tasks grace period,
the second 40 seconds in, and the third 160 seconds in. There would be
a fourth at 640 seconds in, but the stall warning message appears 600
seconds in, and once a stall warning is printed for a given grace period,
no further informational messages are printed.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit instruments the acquisitions of the srcu_struct structure's
->lock, enabling the initiation of a transition from SRCU_SIZE_SMALL
to SRCU_SIZE_BIG when sufficient contention is experienced. The
instrumentation counts the number of trylock failures within the confines
of a single jiffy. If that number exceeds the value specified by the
srcutree.small_contention_lim kernel boot parameter (which defaults to
100), and if the value specified by the srcutree.convert_to_big kernel
boot parameter has the 0x10 bit set (defaults to 0), then a transition
will be automatically initiated.
By default, there will never be any transitions, so that none of the
srcu_struct structures ever gains an srcu_node array.
The useful values for srcutree.convert_to_big are:
0x00: Never convert.
0x01: Always convert at init_srcu_struct() time.
0x02: Convert when rcutorture prints its first round of statistics.
0x03: Decide conversion approach at boot given system size.
0x10: Convert if contention is encountered.
0x12: Convert if contention is encountered or when rcutorture prints
its first round of statistics, whichever comes first.
The value 0x11 acts the same as 0x01 because the conversion happens
before there is any chance of contention.
[ paulmck: Apply "static" feedback from kernel test robot. ]
Co-developed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds an srcu_tree.convert_to_big kernel parameter that either
refuses to convert at all (0), converts immediately at init_srcu_struct()
time (1), or lets rcutorture convert it (2). An addition contention-based
dynamic conversion choice will be added, along with documentation.
[ paulmck: Apply callback-scanning feedback from Neeraj Upadhyay. ]
Co-developed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
For debugging purposes it is very useful to have a way to see the full
contents of the SNP CPUID table provided to a guest. Add an sev=debug
kernel command-line option to do so.
Also introduce some infrastructure so that additional options can be
specified via sev=option1[,option2] over time in a consistent manner.
[ bp: Massage, simplify string parsing. ]
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220307213356.2797205-41-brijesh.singh@amd.com
Those were added as part of the SMAP enablement but SMAP is currently
an integral part of kernel proper and there's no need to disable it
anymore.
Rip out that functionality. Leave --uaccess default on for objtool as
this is what objtool should do by default anyway.
If still needed - clearcpuid=smap.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220127115626.14179-4-bp@alien8.de
That chicken bit was added by
4f88651125 ("[PATCH] i386: allow disabling X86_FEATURE_SEP at boot")
but measuring int80 vsyscall performance on 32-bit doesn't matter
anymore.
If still needed, one can boot with
clearcpuid=sep
to disable that feature for testing.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220127115626.14179-3-bp@alien8.de