forked from Minki/linux
0760fa3d8f
16095 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Roman Gushchin
|
0760fa3d8f |
percpu: make pcpu_nr_empty_pop_pages per chunk type
nr_empty_pop_pages is used to guarantee that there are some free
populated pages to satisfy atomic allocations. Accounted and
non-accounted allocations are using separate sets of chunks,
so both need to have a surplus of empty pages.
This commit makes pcpu_nr_empty_pop_pages and the corresponding logic
per chunk type.
[Dennis]
This issue came up as I was reviewing [1] and realized I missed this.
Simultaneously, it was reported btrfs was seeing failed atomic
allocations in fsstress tests [2] and [3].
[1] https://lore.kernel.org/linux-mm/20210324190626.564297-1-guro@fb.com/
[2] https://lore.kernel.org/linux-mm/20210401185158.3275.409509F4@e16-tech.com/
[3] https://lore.kernel.org/linux-mm/CAL3q7H5RNBjCi708GH7jnczAOe0BLnacT9C+OBgA-Dx9jhB6SQ@mail.gmail.com/
Fixes:
|
||
Ilya Lipnitskiy
|
e720e7d0e9 |
mm: fix race by making init_zero_pfn() early_initcall
There are code paths that rely on zero_pfn to be fully initialized before core_initcall. For example, wq_sysfs_init() is a core_initcall function that eventually results in a call to kernel_execve, which causes a page fault with a subsequent mmput. If zero_pfn is not initialized by then it may not get cleaned up properly and result in an error: BUG: Bad rss-counter state mm:(ptrval) type:MM_ANONPAGES val:1 Here is an analysis of the race as seen on a MIPS device. On this particular MT7621 device (Ubiquiti ER-X), zero_pfn is PFN 0 until initialized, at which point it becomes PFN 5120: 1. wq_sysfs_init calls into kobject_uevent_env at core_initcall: kobject_uevent_env+0x7e4/0x7ec kset_register+0x68/0x88 bus_register+0xdc/0x34c subsys_virtual_register+0x34/0x78 wq_sysfs_init+0x1c/0x4c do_one_initcall+0x50/0x1a8 kernel_init_freeable+0x230/0x2c8 kernel_init+0x10/0x100 ret_from_kernel_thread+0x14/0x1c 2. kobject_uevent_env() calls call_usermodehelper_exec() which executes kernel_execve asynchronously. 3. Memory allocations in kernel_execve cause a page fault, bumping the MM reference counter: add_mm_counter_fast+0xb4/0xc0 handle_mm_fault+0x6e4/0xea0 __get_user_pages.part.78+0x190/0x37c __get_user_pages_remote+0x128/0x360 get_arg_page+0x34/0xa0 copy_string_kernel+0x194/0x2a4 kernel_execve+0x11c/0x298 call_usermodehelper_exec_async+0x114/0x194 4. In case zero_pfn has not been initialized yet, zap_pte_range does not decrement the MM_ANONPAGES RSS counter and the BUG message is triggered shortly afterwards when __mmdrop checks the ref counters: __mmdrop+0x98/0x1d0 free_bprm+0x44/0x118 kernel_execve+0x160/0x1d8 call_usermodehelper_exec_async+0x114/0x194 ret_from_kernel_thread+0x14/0x1c To avoid races such as described above, initialize init_zero_pfn at early_initcall level. Depending on the architecture, ZERO_PAGE is either constant or gets initialized even earlier, at paging_init, so there is no issue with initializing zero_pfn earlier. Link: https://lkml.kernel.org/r/CALCv0x2YqOXEAy2Q=hafjhHCtTHVodChv1qpM=niAXOpqEbt7w@mail.gmail.com Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: stable@vger.kernel.org Tested-by: 周琰杰 (Zhou Yanjie) <zhouyanjie@wanyeetech.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
002322402d |
Merge branch 'akpm' (patches from Andrew)
Merge misc fixes from Andrew Morton: "14 patches. Subsystems affected by this patch series: mm (hugetlb, kasan, gup, selftests, z3fold, kfence, memblock, and highmem), squashfs, ia64, gcov, and mailmap" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: mailmap: update Andrey Konovalov's email address mm/highmem: fix CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP mm: memblock: fix section mismatch warning again kfence: make compatible with kmemleak gcov: fix clang-11+ support ia64: fix format strings for err_inject ia64: mca: allocate early mca with GFP_ATOMIC squashfs: fix xattr id and id lookup sanity checks squashfs: fix inode lookup sanity checks z3fold: prevent reclaim/free race for headless pages selftests/vm: fix out-of-tree build mm/mmu_notifiers: ensure range_end() is paired with range_start() kasan: fix per-page tags for non-page_alloc pages hugetlb_cgroup: fix imbalanced css_get and css_put pair for shared mappings |
||
Ira Weiny
|
487cfade12 |
mm/highmem: fix CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP
The kernel test robot found that __kmap_local_sched_out() was not
correctly skipping the guard pages when DEBUG_KMAP_LOCAL_FORCE_MAP was
set.[1] This was due to DEBUG_HIGHMEM check being used.
Change the configuration check to be correct.
[1] https://lore.kernel.org/lkml/20210304083825.GB17830@xsang-OptiPlex-9020/
Link: https://lkml.kernel.org/r/20210318230657.1497881-1-ira.weiny@intel.com
Fixes:
|
||
Marco Elver
|
9551158069 |
kfence: make compatible with kmemleak
Because memblock allocations are registered with kmemleak, the KFENCE pool was seen by kmemleak as one large object. Later allocations through kfence_alloc() that were registered with kmemleak via slab_post_alloc_hook() would then overlap and trigger a warning. Therefore, once the pool is initialized, we can remove (free) it from kmemleak again, since it should be treated as allocator-internal and be seen as "free memory". The second problem is that kmemleak is passed the rounded size, and not the originally requested size, which is also the size of KFENCE objects. To avoid kmemleak scanning past the end of an object and trigger a KFENCE out-of-bounds error, fix the size if it is a KFENCE object. For simplicity, to avoid a call to kfence_ksize() in slab_post_alloc_hook() (and avoid new IS_ENABLED(CONFIG_DEBUG_KMEMLEAK) guard), just call kfence_ksize() in mm/kmemleak.c:create_object(). Link: https://lkml.kernel.org/r/20210317084740.3099921-1-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Reported-by: Luis Henriques <lhenriques@suse.de> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Luis Henriques <lhenriques@suse.de> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Jann Horn <jannh@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Thomas Hebb
|
6d679578fe |
z3fold: prevent reclaim/free race for headless pages
Commit |
||
Sean Christopherson
|
c2655835fd |
mm/mmu_notifiers: ensure range_end() is paired with range_start()
If one or more notifiers fails .invalidate_range_start(), invoke
.invalidate_range_end() for "all" notifiers. If there are multiple
notifiers, those that did not fail are expecting _start() and _end() to
be paired, e.g. KVM's mmu_notifier_count would become imbalanced.
Disallow notifiers that can fail _start() from implementing _end() so
that it's unnecessary to either track which notifiers rejected _start(),
or had already succeeded prior to a failed _start().
Note, the existing behavior of calling _start() on all notifiers even
after a previous notifier failed _start() was an unintented "feature".
Make it canon now that the behavior is depended on for correctness.
As of today, the bug is likely benign:
1. The only caller of the non-blocking notifier is OOM kill.
2. The only notifiers that can fail _start() are the i915 and Nouveau
drivers.
3. The only notifiers that utilize _end() are the SGI UV GRU driver
and KVM.
4. The GRU driver will never coincide with the i195/Nouveau drivers.
5. An imbalanced kvm->mmu_notifier_count only causes soft lockup in the
_guest_, and the guest is already doomed due to being an OOM victim.
Fix the bug now to play nice with future usage, e.g. KVM has a
potential use case for blocking memslot updates in KVM while an
invalidation is in-progress, and failure to unblock would result in said
updates being blocked indefinitely and hanging.
Found by inspection. Verified by adding a second notifier in KVM that
periodically returns -EAGAIN on non-blockable ranges, triggering OOM,
and observing that KVM exits with an elevated notifier count.
Link: https://lkml.kernel.org/r/20210311180057.1582638-1-seanjc@google.com
Fixes:
|
||
Miaohe Lin
|
d85aecf284 |
hugetlb_cgroup: fix imbalanced css_get and css_put pair for shared mappings
The current implementation of hugetlb_cgroup for shared mappings could
have different behavior. Consider the following two scenarios:
1.Assume initial css reference count of hugetlb_cgroup is 1:
1.1 Call hugetlb_reserve_pages with from = 1, to = 2. So css reference
count is 2 associated with 1 file_region.
1.2 Call hugetlb_reserve_pages with from = 2, to = 3. So css reference
count is 3 associated with 2 file_region.
1.3 coalesce_file_region will coalesce these two file_regions into
one. So css reference count is 3 associated with 1 file_region
now.
2.Assume initial css reference count of hugetlb_cgroup is 1 again:
2.1 Call hugetlb_reserve_pages with from = 1, to = 3. So css reference
count is 2 associated with 1 file_region.
Therefore, we might have one file_region while holding one or more css
reference counts. This inconsistency could lead to imbalanced css_get()
and css_put() pair. If we do css_put one by one (i.g. hole punch case),
scenario 2 would put one more css reference. If we do css_put all
together (i.g. truncate case), scenario 1 will leak one css reference.
The imbalanced css_get() and css_put() pair would result in a non-zero
reference when we try to destroy the hugetlb cgroup. The hugetlb cgroup
directory is removed __but__ associated resource is not freed. This
might result in OOM or can not create a new hugetlb cgroup in a busy
workload ultimately.
In order to fix this, we have to make sure that one file_region must
hold exactly one css reference. So in coalesce_file_region case, we
should release one css reference before coalescence. Also only put css
reference when the entire file_region is removed.
The last thing to note is that the caller of region_add() will only hold
one reference to h_cg->css for the whole contiguous reservation region.
But this area might be scattered when there are already some
file_regions reside in it. As a result, many file_regions may share only
one h_cg->css reference. In order to ensure that one file_region must
hold exactly one css reference, we should do css_get() for each
file_region and release the reference held by caller when they are done.
[linmiaohe@huawei.com: fix imbalanced css_get and css_put pair for shared mappings]
Link: https://lkml.kernel.org/r/20210316023002.53921-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20210301120540.37076-1-linmiaohe@huawei.com
Fixes:
|
||
Matthew Wilcox (Oracle)
|
e5dbd33218 |
mm/writeback: Add wait_on_page_writeback_killable
This is the killable version of wait_on_page_writeback. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: kafs-testing@auristor.com cc: linux-afs@lists.infradead.org cc: linux-mm@kvack.org Link: https://lore.kernel.org/r/20210320054104.1300774-3-willy@infradead.org |
||
Linus Torvalds
|
50eb842fe5 |
Merge branch 'akpm' (patches from Andrew)
Merge misc fixes from Andrew Morton: "28 patches. Subsystems affected by this series: mm (memblock, pagealloc, hugetlb, highmem, kfence, oom-kill, madvise, kasan, userfaultfd, memcg, and zram), core-kernel, kconfig, fork, binfmt, MAINTAINERS, kbuild, and ia64" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (28 commits) zram: fix broken page writeback zram: fix return value on writeback_store mm/memcg: set memcg when splitting page mm/memcg: rename mem_cgroup_split_huge_fixup to split_page_memcg and add nr_pages argument ia64: fix ptrace(PTRACE_SYSCALL_INFO_EXIT) sign ia64: fix ia64_syscall_get_set_arguments() for break-based syscalls mm/userfaultfd: fix memory corruption due to writeprotect kasan: fix KASAN_STACK dependency for HW_TAGS kasan, mm: fix crash with HW_TAGS and DEBUG_PAGEALLOC mm/madvise: replace ptrace attach requirement for process_madvise include/linux/sched/mm.h: use rcu_dereference in in_vfork() kfence: fix reports if constant function prefixes exist kfence, slab: fix cache_alloc_debugcheck_after() for bulk allocations kfence: fix printk format for ptrdiff_t linux/compiler-clang.h: define HAVE_BUILTIN_BSWAP* MAINTAINERS: exclude uapi directories in API/ABI section binfmt_misc: fix possible deadlock in bm_register_write mm/highmem.c: fix zero_user_segments() with start > end hugetlb: do early cow when page pinned on src mm mm: use is_cow_mapping() across tree where proper ... |
||
Zhou Guanghui
|
e1baddf847 |
mm/memcg: set memcg when splitting page
As described in the split_page() comment, for the non-compound high order page, the sub-pages must be freed individually. If the memcg of the first page is valid, the tail pages cannot be uncharged when be freed. For example, when alloc_pages_exact is used to allocate 1MB continuous physical memory, 2MB is charged(kmemcg is enabled and __GFP_ACCOUNT is set). When make_alloc_exact free the unused 1MB and free_pages_exact free the applied 1MB, actually, only 4KB(one page) is uncharged. Therefore, the memcg of the tail page needs to be set when splitting a page. Michel: There are at least two explicit users of __GFP_ACCOUNT with alloc_exact_pages added recently. See |
||
Zhou Guanghui
|
be6c8982e4 |
mm/memcg: rename mem_cgroup_split_huge_fixup to split_page_memcg and add nr_pages argument
Rename mem_cgroup_split_huge_fixup to split_page_memcg and explicitly pass in page number argument. In this way, the interface name is more common and can be used by potential users. In addition, the complete info(memcg and flag) of the memcg needs to be set to the tail pages. Link: https://lkml.kernel.org/r/20210304074053.65527-2-zhouguanghui1@huawei.com Signed-off-by: Zhou Guanghui <zhouguanghui1@huawei.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Tianhong Ding <dingtianhong@huawei.com> Cc: Weilong Chen <chenweilong@huawei.com> Cc: Rui Xiang <rui.xiang@huawei.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Nadav Amit
|
6ce64428d6 |
mm/userfaultfd: fix memory corruption due to writeprotect
Userfaultfd self-test fails occasionally, indicating a memory corruption. Analyzing this problem indicates that there is a real bug since mmap_lock is only taken for read in mwriteprotect_range() and defers flushes, and since there is insufficient consideration of concurrent deferred TLB flushes in wp_page_copy(). Although the PTE is flushed from the TLBs in wp_page_copy(), this flush takes place after the copy has already been performed, and therefore changes of the page are possible between the time of the copy and the time in which the PTE is flushed. To make matters worse, memory-unprotection using userfaultfd also poses a problem. Although memory unprotection is logically a promotion of PTE permissions, and therefore should not require a TLB flush, the current userrfaultfd code might actually cause a demotion of the architectural PTE permission: when userfaultfd_writeprotect() unprotects memory region, it unintentionally *clears* the RW-bit if it was already set. Note that this unprotecting a PTE that is not write-protected is a valid use-case: the userfaultfd monitor might ask to unprotect a region that holds both write-protected and write-unprotected PTEs. The scenario that happens in selftests/vm/userfaultfd is as follows: cpu0 cpu1 cpu2 ---- ---- ---- [ Writable PTE cached in TLB ] userfaultfd_writeprotect() [ write-*unprotect* ] mwriteprotect_range() mmap_read_lock() change_protection() change_protection_range() ... change_pte_range() [ *clear* “write”-bit ] [ defer TLB flushes ] [ page-fault ] ... wp_page_copy() cow_user_page() [ copy page ] [ write to old page ] ... set_pte_at_notify() A similar scenario can happen: cpu0 cpu1 cpu2 cpu3 ---- ---- ---- ---- [ Writable PTE cached in TLB ] userfaultfd_writeprotect() [ write-protect ] [ deferred TLB flush ] userfaultfd_writeprotect() [ write-unprotect ] [ deferred TLB flush] [ page-fault ] wp_page_copy() cow_user_page() [ copy page ] ... [ write to page ] set_pte_at_notify() This race exists since commit |
||
Andrey Konovalov
|
f9d79e8dce |
kasan, mm: fix crash with HW_TAGS and DEBUG_PAGEALLOC
Currently, kasan_free_nondeferred_pages()->kasan_free_pages() is called
after debug_pagealloc_unmap_pages(). This causes a crash when
debug_pagealloc is enabled, as HW_TAGS KASAN can't set tags on an
unmapped page.
This patch puts kasan_free_nondeferred_pages() before
debug_pagealloc_unmap_pages() and arch_free_page(), which can also make
the page unavailable.
Link: https://lkml.kernel.org/r/24cd7db274090f0e5bc3adcdc7399243668e3171.1614987311.git.andreyknvl@google.com
Fixes:
|
||
Suren Baghdasaryan
|
96cfe2c0fd |
mm/madvise: replace ptrace attach requirement for process_madvise
process_madvise currently requires ptrace attach capability. PTRACE_MODE_ATTACH gives one process complete control over another process. It effectively removes the security boundary between the two processes (in one direction). Granting ptrace attach capability even to a system process is considered dangerous since it creates an attack surface. This severely limits the usage of this API. The operations process_madvise can perform do not affect the correctness of the operation of the target process; they only affect where the data is physically located (and therefore, how fast it can be accessed). What we want is the ability for one process to influence another process in order to optimize performance across the entire system while leaving the security boundary intact. Replace PTRACE_MODE_ATTACH with a combination of PTRACE_MODE_READ and CAP_SYS_NICE. PTRACE_MODE_READ to prevent leaking ASLR metadata and CAP_SYS_NICE for influencing process performance. Link: https://lkml.kernel.org/r/20210303185807.2160264-1-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Jann Horn <jannh@google.com> Cc: Jeff Vander Stoep <jeffv@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tim Murray <timmurray@google.com> Cc: Florian Weimer <fweimer@redhat.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: <stable@vger.kernel.org> [5.10+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Marco Elver
|
0aa41cae92 |
kfence: fix reports if constant function prefixes exist
Some architectures prefix all functions with a constant string ('.' on ppc64). Add ARCH_FUNC_PREFIX, which may optionally be defined in <asm/kfence.h>, so that get_stack_skipnr() can work properly. Link: https://lkml.kernel.org/r/f036c53d-7e81-763c-47f4-6024c6c5f058@csgroup.eu Link: https://lkml.kernel.org/r/20210304144000.1148590-1-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Reported-by: Christophe Leroy <christophe.leroy@csgroup.eu> Tested-by: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Jann Horn <jannh@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Marco Elver
|
df3ae2c994 |
kfence, slab: fix cache_alloc_debugcheck_after() for bulk allocations
cache_alloc_debugcheck_after() performs checks on an object, including adjusting the returned pointer. None of this should apply to KFENCE objects. While for non-bulk allocations, the checks are skipped when we allocate via KFENCE, for bulk allocations cache_alloc_debugcheck_after() is called via cache_alloc_debugcheck_after_bulk(). Fix it by skipping cache_alloc_debugcheck_after() for KFENCE objects. Link: https://lkml.kernel.org/r/20210304205256.2162309-1-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Jann Horn <jannh@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Marco Elver
|
702b16d724 |
kfence: fix printk format for ptrdiff_t
Use %td for ptrdiff_t. Link: https://lkml.kernel.org/r/3abbe4c9-16ad-c168-a90f-087978ccd8f7@csgroup.eu Link: https://lkml.kernel.org/r/20210303121157.3430807-1-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Reported-by: Christophe Leroy <christophe.leroy@csgroup.eu> Reviewed-by: Alexander Potapenko <glider@google.com> Cc: Dmitriy Vyukov <dvyukov@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Jann Horn <jannh@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
OGAWA Hirofumi
|
184cee516f |
mm/highmem.c: fix zero_user_segments() with start > end
zero_user_segments() is used from __block_write_begin_int(), for example
like the following
zero_user_segments(page, 4096, 1024, 512, 918)
But new the zero_user_segments() implementation for for HIGHMEM +
TRANSPARENT_HUGEPAGE doesn't handle "start > end" case correctly, and hits
BUG_ON(). (we can fix __block_write_begin_int() instead though, it is the
old and multiple usage)
Also it calls kmap_atomic() unnecessarily while start == end == 0.
Link: https://lkml.kernel.org/r/87v9ab60r4.fsf@mail.parknet.co.jp
Fixes:
|
||
Peter Xu
|
4eae4efa2c |
hugetlb: do early cow when page pinned on src mm
This is the last missing piece of the COW-during-fork effort when there're pinned pages found. One can reference |
||
Peter Xu
|
ca6eb14d64 |
mm: use is_cow_mapping() across tree where proper
After is_cow_mapping() is exported in mm.h, replace some manual checks elsewhere throughout the tree but start to use the new helper. Link: https://lkml.kernel.org/r/20210217233547.93892-5-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Jason Gunthorpe <jgg@ziepe.ca> Cc: VMware Graphics <linux-graphics-maintainer@vmware.com> Cc: Roland Scheidegger <sroland@vmware.com> Cc: David Airlie <airlied@linux.ie> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Gal Pressman <galpress@amazon.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Kirill Shutemov <kirill@shutemov.name> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Wei Zhang <wzam@amazon.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Peter Xu
|
97a7e4733b |
mm: introduce page_needs_cow_for_dma() for deciding whether cow
We've got quite a few places (pte, pmd, pud) that explicitly checked against whether we should break the cow right now during fork(). It's easier to provide a helper, especially before we work the same thing on hugetlbfs. Since we'll reference is_cow_mapping() in mm.h, move it there too. Actually it suites mm.h more since internal.h is mm/ only, but mm.h is exported to the whole kernel. With that we should expect another patch to use is_cow_mapping() whenever we can across the kernel since we do use it quite a lot but it's always done with raw code against VM_* flags. Link: https://lkml.kernel.org/r/20210217233547.93892-4-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Jason Gunthorpe <jgg@ziepe.ca> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: David Airlie <airlied@linux.ie> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Gal Pressman <galpress@amazon.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Kirill Shutemov <kirill@shutemov.name> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Roland Scheidegger <sroland@vmware.com> Cc: VMware Graphics <linux-graphics-maintainer@vmware.com> Cc: Wei Zhang <wzam@amazon.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Peter Xu
|
ca7e0457ef |
hugetlb: break earlier in add_reservation_in_range() when we can
All the regions maintained in hugetlb reserved map is inclusive on "from" but exclusive on "to". We can break earlier even if rg->from==t because it already means no possible intersection. This does not need a Fixes in all cases because when it happens (rg->from==t) we'll not break out of the loop while we should, however the next thing we'd do is still add the last file_region we'd need and quit the loop in the next round. So this change is not a bugfix (since the old code should still run okay iiuc), but we'd better still touch it up to make it logically sane. Link: https://lkml.kernel.org/r/20210217233547.93892-3-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: David Airlie <airlied@linux.ie> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Gal Pressman <galpress@amazon.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill Shutemov <kirill@shutemov.name> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Roland Scheidegger <sroland@vmware.com> Cc: VMware Graphics <linux-graphics-maintainer@vmware.com> Cc: Wei Zhang <wzam@amazon.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Peter Xu
|
2103cf9c3f |
hugetlb: dedup the code to add a new file_region
Patch series "mm/hugetlb: Early cow on fork, and a few cleanups", v5. As reported by Gal [1], we still miss the code clip to handle early cow for hugetlb case, which is true. Again, it still feels odd to fork() after using a few huge pages, especially if they're privately mapped to me.. However I do agree with Gal and Jason in that we should still have that since that'll complete the early cow on fork effort at least, and it'll still fix issues where buffers are not well under control and not easy to apply MADV_DONTFORK. The first two patches (1-2) are some cleanups I noticed when reading into the hugetlb reserve map code. I think it's good to have but they're not necessary for fixing the fork issue. The last two patches (3-4) are the real fix. I tested this with a fork() after some vfio-pci assignment, so I'm pretty sure the page copy path could trigger well (page will be accounted right after the fork()), but I didn't do data check since the card I assigned is some random nic. https://github.com/xzpeter/linux/tree/fork-cow-pin-huge [1] https://lore.kernel.org/lkml/27564187-4a08-f187-5a84-3df50009f6ca@amazon.com/ Introduce hugetlb_resv_map_add() helper to add a new file_region rather than duplication the similar code twice in add_reservation_in_range(). Link: https://lkml.kernel.org/r/20210217233547.93892-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20210217233547.93892-2-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Gal Pressman <galpress@amazon.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Wei Zhang <wzam@amazon.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jann Horn <jannh@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Kirill Shutemov <kirill@shutemov.name> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: David Airlie <airlied@linux.ie> Cc: Roland Scheidegger <sroland@vmware.com> Cc: VMware Graphics <linux-graphics-maintainer@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Rapoport
|
0740a50b9b |
mm/page_alloc.c: refactor initialization of struct page for holes in memory layout
There could be struct pages that are not backed by actual physical memory. This can happen when the actual memory bank is not a multiple of SECTION_SIZE or when an architecture does not register memory holes reserved by the firmware as memblock.memory. Such pages are currently initialized using init_unavailable_mem() function that iterates through PFNs in holes in memblock.memory and if there is a struct page corresponding to a PFN, the fields of this page are set to default values and it is marked as Reserved. init_unavailable_mem() does not take into account zone and node the page belongs to and sets both zone and node links in struct page to zero. Before commit |
||
Linus Torvalds
|
17f8fc198a |
arm64 fixes for -rc3
- Fix booting a 52-bit-VA-aware kernel on Qualcomm Amberwing - Fix pfn_valid() not to reject all ZONE_DEVICE memory - Fix memory tagging setup for hotplugged memory regions - Fix KASAN tagging in page_alloc() when DEBUG_VIRTUAL is enabled - Fix accidental truncation of CPU PMU event counters - Fix error code initialisation when failing probe of DMC620 PMU - Fix return value initialisation for sve-ptrace selftest - Drop broken support for CMDLINE_EXTEND -----BEGIN PGP SIGNATURE----- iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmBLU98QHHdpbGxAa2Vy bmVsLm9yZwAKCRC3rHDchMFjNEhpB/wMahRmJQvjJtt/PqKU9m46tRbHRT5PC2WQ 256DoYtexSrGa6DrBoSteUsaPuRo3YcfDnXf1wbTYikoXoKxbLvm/9IQivfyrd3S M4DjeaemhcZdg6YKrs/0s2UOzPV8O3kKWfs58gJ2oP/xHA7uqcZJxlIDd7H4/bX+ M0wQvBnJEEb9mg3Hxo2WZLRUKK3nPtZ5hGz9RADOHkyCt+jPr3UtAe69iZcQ4Udd X2z3Dc1CZf3VF9Ujkylllqxo2eaLKXGie7r77o1AgXwPEedZD+Q9vn/viVuluRcc slZQyW/kRRGCZ92RT2DwLZsixsBKJtZxj+AEoJSBIrsCUUXXP4xv =e3YJ -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Will Deacon: "We've got a smattering of changes all over the place which we've acrued since -rc1. To my knowledge, there aren't any pending issues at the moment, but there's still plenty of time for something else to crop up... Summary: - Fix booting a 52-bit-VA-aware kernel on Qualcomm Amberwing - Fix pfn_valid() not to reject all ZONE_DEVICE memory - Fix memory tagging setup for hotplugged memory regions - Fix KASAN tagging in page_alloc() when DEBUG_VIRTUAL is enabled - Fix accidental truncation of CPU PMU event counters - Fix error code initialisation when failing probe of DMC620 PMU - Fix return value initialisation for sve-ptrace selftest - Drop broken support for CMDLINE_EXTEND" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: perf/arm_dmc620_pmu: Fix error return code in dmc620_pmu_device_probe() arm64: mm: remove unused __cpu_uses_extended_idmap[_level()] arm64: mm: use a 48-bit ID map when possible on 52-bit VA builds arm64: perf: Fix 64-bit event counter read truncation arm64/mm: Fix __enable_mmu() for new TGRAN range values kselftest: arm64: Fix exit code of sve-ptrace arm64: mte: Map hotplugged memory as Normal Tagged arm64: kasan: fix page_alloc tagging with DEBUG_VIRTUAL arm64/mm: Reorganize pfn_valid() arm64/mm: Fix pfn_valid() for ZONE_DEVICE based memory arm64/mm: Drop THP conditionality from FORCE_MAX_ZONEORDER arm64/mm: Drop redundant ARCH_WANT_HUGE_PMD_SHARE arm64: Drop support for CMDLINE_EXTEND arm64: cpufeatures: Fix handling of CONFIG_CMDLINE for idreg overrides |
||
Linus Torvalds
|
9b1ea29bc0 |
Revert "mm, slub: consider rest of partial list if acquire_slab() fails"
This reverts commit |
||
Catalin Marinas
|
d15dfd3138 |
arm64: mte: Map hotplugged memory as Normal Tagged
In a system supporting MTE, the linear map must allow reading/writing
allocation tags by setting the memory type as Normal Tagged. Currently,
this is only handled for memory present at boot. Hotplugged memory uses
Normal non-Tagged memory.
Introduce pgprot_mhp() for hotplugged memory and use it in
add_memory_resource(). The arm64 code maps pgprot_mhp() to
pgprot_tagged().
Note that ZONE_DEVICE memory should not be mapped as Tagged and
therefore setting the memory type in arch_add_memory() is not feasible.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Fixes:
|
||
Jens Axboe
|
caf6912f3f |
swap: fix swapfile read/write offset
We're not factoring in the start of the file for where to write and
read the swapfile, which leads to very unfortunate side effects of
writing where we should not be...
Fixes:
|
||
Huang Pei
|
f685a533a7 |
MIPS: make userspace mapping young by default
MIPS page fault path(except huge page) takes 3 exceptions (1 TLB Miss + 2 TLB Invalid), butthe second TLB Invalid exception is just triggered by __update_tlb from do_page_fault writing tlb without _PAGE_VALID set. With this patch, user space mapping prot is made young by default (with both _PAGE_VALID and _PAGE_YOUNG set), and it only take 1 TLB Miss + 1 TLB Invalid exception Remove pte_sw_mkyoung without polluting MM code and make page fault delay of MIPS on par with other architecture Link: https://lkml.kernel.org/r/20210204013942.8398-1-huangpei@loongson.cn Signed-off-by: Huang Pei <huangpei@loongson.cn> Reviewed-by: Nicholas Piggin <npiggin@gmail.com> Acked-by: <huangpei@loongson.cn> Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: <ambrosehua@gmail.com> Cc: Bibo Mao <maobibo@loongson.cn> Cc: Jiaxun Yang <jiaxun.yang@flygoat.com> Cc: Paul Burton <paulburton@kernel.org> Cc: Li Xuefeng <lixuefeng@loongson.cn> Cc: Yang Tiezhu <yangtiezhu@loongson.cn> Cc: Gao Juxin <gaojuxin@loongson.cn> Cc: Fuxin Zhang <zhangfx@lemote.com> Cc: Huacai Chen <chenhc@lemote.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
7169487bc2 |
kasan: clarify that only first bug is reported in HW_TAGS
Hwardware tag-based KASAN only reports the first found bug. After that MTE tag checking gets disabled. Clarify this in comments and documentation. Link: https://lkml.kernel.org/r/00383ba88a47c3f8342d12263c24bdf95527b07d.1612546384.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
c80a03664e |
kasan: inline HW_TAGS helper functions
Mark all static functions in common.c and kasan.h that are used for hardware tag-based KASAN as inline to avoid unnecessary function calls. Link: https://lkml.kernel.org/r/2c94a2af0657f2b95b9337232339ff5ffa643ab5.1612546384.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
cde8a7eb77 |
kasan: ensure poisoning size alignment
A previous changes
|
||
Andrey Konovalov
|
d12d9ad816 |
kasan, mm: optimize krealloc poisoning
Currently, krealloc() always calls ksize(), which unpoisons the whole object including the redzone. This is inefficient, as kasan_krealloc() repoisons the redzone for objects that fit into the same buffer. This patch changes krealloc() instrumentation to use uninstrumented __ksize() that doesn't unpoison the memory. Instead, kasan_kreallos() is changed to unpoison the memory excluding the redzone. For objects that don't fit into the old allocation, this patch disables KASAN accessibility checks when copying memory into a new object instead of unpoisoning it. Link: https://lkml.kernel.org/r/9bef90327c9cb109d736c40115684fd32f49e6b0.1612546384.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
26a5ca7a73 |
kasan, mm: fail krealloc on freed objects
Currently, if krealloc() is called on a freed object with KASAN enabled, it allocates and returns a new object, but doesn't copy any memory from the old one as ksize() returns 0. This makes the caller believe that krealloc() succeeded (KASAN report is printed though). This patch adds an accessibility check into __do_krealloc(). If the check fails, krealloc() returns NULL. This check duplicates the one in ksize(); this is fixed in the following patch. This patch also adds a KASAN-KUnit test to check krealloc() behaviour when it's called on a freed object. Link: https://lkml.kernel.org/r/cbcf7b02be0a1ca11de4f833f2ff0b3f2c9b00c8.1612546384.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
200072ce33 |
kasan: unify large kfree checks
Unify checks in kasan_kfree_large() and in kasan_slab_free_mempool() for large allocations as it's done for small kfree() allocations. With this change, kasan_slab_free_mempool() starts checking that the first byte of the memory that's being freed is accessible. Link: https://lkml.kernel.org/r/14ffc4cd867e0b1ed58f7527e3b748a1b4ad08aa.1612546384.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
df54b38312 |
kasan: clean up setting free info in kasan_slab_free
Put kasan_stack_collection_enabled() check and kasan_set_free_info() calls next to each other. The way this was previously implemented was a minor optimization that relied of the the fact that kasan_stack_collection_enabled() is always true for generic KASAN. The confusion that this brings outweights saving a few instructions. Link: https://lkml.kernel.org/r/f838e249be5ab5810bf54a36ef5072cfd80e2da7.1612546384.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
43a219cbe5 |
kasan: optimize large kmalloc poisoning
Similarly to kasan_kmalloc(), kasan_kmalloc_large() doesn't need to unpoison the object as it as already unpoisoned by alloc_pages() (or by ksize() for krealloc()). This patch changes kasan_kmalloc_large() to only poison the redzone. Link: https://lkml.kernel.org/r/33dee5aac0e550ad7f8e26f590c9b02c6129b4a3.1612546384.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
e2db1a9aa3 |
kasan, mm: optimize kmalloc poisoning
For allocations from kmalloc caches, kasan_kmalloc() always follows kasan_slab_alloc(). Currenly, both of them unpoison the whole object, which is unnecessary. This patch provides separate implementations for both annotations: kasan_slab_alloc() unpoisons the whole object, and kasan_kmalloc() only poisons the redzone. For generic KASAN, the redzone start might not be aligned to KASAN_GRANULE_SIZE. Therefore, the poisoning is split in two parts: kasan_poison_last_granule() poisons the unaligned part, and then kasan_poison() poisons the rest. This patch also clarifies alignment guarantees of each of the poisoning functions and drops the unnecessary round_up() call for redzone_end. With this change, the early SLUB cache annotation needs to be changed to kasan_slab_alloc(), as kasan_kmalloc() doesn't unpoison objects now. The number of poisoned bytes for objects in this cache stays the same, as kmem_cache_node->object_size is equal to sizeof(struct kmem_cache_node). Link: https://lkml.kernel.org/r/7e3961cb52be380bc412860332063f5f7ce10d13.1612546384.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
928501344f |
kasan, mm: don't save alloc stacks twice
Patch series "kasan: optimizations and fixes for HW_TAGS", v4. This patchset makes the HW_TAGS mode more efficient, mostly by reworking poisoning approaches and simplifying/inlining some internal helpers. With this change, the overhead of HW_TAGS annotations excluding setting and checking memory tags is ~3%. The performance impact caused by tags will be unknown until we have hardware that supports MTE. As a side-effect, this patchset speeds up generic KASAN by ~15%. This patch (of 13): Currently KASAN saves allocation stacks in both kasan_slab_alloc() and kasan_kmalloc() annotations. This patch changes KASAN to save allocation stacks for slab objects from kmalloc caches in kasan_kmalloc() only, and stacks for other slab objects in kasan_slab_alloc() only. This change requires ____kasan_kmalloc() knowing whether the object belongs to a kmalloc cache. This is implemented by adding a flag field to the kasan_info structure. That flag is only set for kmalloc caches via a new kasan_cache_create_kmalloc() annotation. Link: https://lkml.kernel.org/r/cover.1612546384.git.andreyknvl@google.com Link: https://lkml.kernel.org/r/7c673ebca8d00f40a7ad6f04ab9a2bddeeae2097.1612546384.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexander Potapenko
|
d3a61f745e |
kasan: use error_report_end tracepoint
Make it possible to trace KASAN error reporting. A good usecase is watching for trace events from the userspace to detect and process memory corruption reports from the kernel. Link: https://lkml.kernel.org/r/20210121131915.1331302-4-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Suggested-by: Marco Elver <elver@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexander Potapenko
|
f2b84d2e40 |
kfence: use error_report_end tracepoint
Make it possible to trace KFENCE error reporting. A good usecase is watching for trace events from the userspace to detect and process memory corruption reports from the kernel. Link: https://lkml.kernel.org/r/20210121131915.1331302-3-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Suggested-by: Marco Elver <elver@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Marco Elver
|
35beccf092 |
kfence: report sensitive information based on no_hash_pointers
We cannot rely on CONFIG_DEBUG_KERNEL to decide if we're running a "debug kernel" where we can safely show potentially sensitive information in the kernel log. Instead, simply rely on the newly introduced "no_hash_pointers" to print unhashed kernel pointers, as well as decide if our reports can include other potentially sensitive information such as registers and corrupted bytes. Link: https://lkml.kernel.org/r/20210223082043.1972742-1-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Cc: Timur Tabi <timur@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Jann Horn <jannh@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Marco Elver
|
bc8fbc5f30 |
kfence: add test suite
Add KFENCE test suite, testing various error detection scenarios. Makes use of KUnit for test organization. Since KFENCE's interface to obtain error reports is via the console, the test verifies that KFENCE outputs expected reports to the console. [elver@google.com: fix typo in test] Link: https://lkml.kernel.org/r/X9lHQExmHGvETxY4@elver.google.com [elver@google.com: show access type in report] Link: https://lkml.kernel.org/r/20210111091544.3287013-2-elver@google.com Link: https://lkml.kernel.org/r/20201103175841.3495947-9-elver@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Signed-off-by: Marco Elver <elver@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Co-developed-by: Alexander Potapenko <glider@google.com> Reviewed-by: Jann Horn <jannh@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hillf Danton <hdanton@sina.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joern Engel <joern@purestorage.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: SeongJae Park <sjpark@amazon.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexander Potapenko
|
2b8305260f |
kfence, kasan: make KFENCE compatible with KASAN
Make KFENCE compatible with KASAN. Currently this helps test KFENCE itself, where KASAN can catch potential corruptions to KFENCE state, or other corruptions that may be a result of freepointer corruptions in the main allocators. [akpm@linux-foundation.org: merge fixup] [andreyknvl@google.com: untag addresses for KFENCE] Link: https://lkml.kernel.org/r/9dc196006921b191d25d10f6e611316db7da2efc.1611946152.git.andreyknvl@google.com Link: https://lkml.kernel.org/r/20201103175841.3495947-7-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Alexander Potapenko <glider@google.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Jann Horn <jannh@google.com> Co-developed-by: Marco Elver <elver@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hillf Danton <hdanton@sina.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joern Engel <joern@purestorage.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: SeongJae Park <sjpark@amazon.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexander Potapenko
|
b89fb5ef0c |
mm, kfence: insert KFENCE hooks for SLUB
Inserts KFENCE hooks into the SLUB allocator. To pass the originally requested size to KFENCE, add an argument 'orig_size' to slab_alloc*(). The additional argument is required to preserve the requested original size for kmalloc() allocations, which uses size classes (e.g. an allocation of 272 bytes will return an object of size 512). Therefore, kmem_cache::size does not represent the kmalloc-caller's requested size, and we must introduce the argument 'orig_size' to propagate the originally requested size to KFENCE. Without the originally requested size, we would not be able to detect out-of-bounds accesses for objects placed at the end of a KFENCE object page if that object is not equal to the kmalloc-size class it was bucketed into. When KFENCE is disabled, there is no additional overhead, since slab_alloc*() functions are __always_inline. Link: https://lkml.kernel.org/r/20201103175841.3495947-6-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Alexander Potapenko <glider@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Jann Horn <jannh@google.com> Co-developed-by: Marco Elver <elver@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hillf Danton <hdanton@sina.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joern Engel <joern@purestorage.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: SeongJae Park <sjpark@amazon.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexander Potapenko
|
d3fb45f370 |
mm, kfence: insert KFENCE hooks for SLAB
Inserts KFENCE hooks into the SLAB allocator. To pass the originally requested size to KFENCE, add an argument 'orig_size' to slab_alloc*(). The additional argument is required to preserve the requested original size for kmalloc() allocations, which uses size classes (e.g. an allocation of 272 bytes will return an object of size 512). Therefore, kmem_cache::size does not represent the kmalloc-caller's requested size, and we must introduce the argument 'orig_size' to propagate the originally requested size to KFENCE. Without the originally requested size, we would not be able to detect out-of-bounds accesses for objects placed at the end of a KFENCE object page if that object is not equal to the kmalloc-size class it was bucketed into. When KFENCE is disabled, there is no additional overhead, since slab_alloc*() functions are __always_inline. Link: https://lkml.kernel.org/r/20201103175841.3495947-5-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Alexander Potapenko <glider@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Co-developed-by: Marco Elver <elver@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hillf Danton <hdanton@sina.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Joern Engel <joern@purestorage.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: SeongJae Park <sjpark@amazon.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Marco Elver
|
d438fabce7 |
kfence: use pt_regs to generate stack trace on faults
Instead of removing the fault handling portion of the stack trace based on the fault handler's name, just use struct pt_regs directly. Change kfence_handle_page_fault() to take a struct pt_regs, and plumb it through to kfence_report_error() for out-of-bounds, use-after-free, or invalid access errors, where pt_regs is used to generate the stack trace. If the kernel is a DEBUG_KERNEL, also show registers for more information. Link: https://lkml.kernel.org/r/20201105092133.2075331-1-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Suggested-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jann Horn <jannh@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexander Potapenko
|
0ce20dd840 |
mm: add Kernel Electric-Fence infrastructure
Patch series "KFENCE: A low-overhead sampling-based memory safety error detector", v7. This adds the Kernel Electric-Fence (KFENCE) infrastructure. KFENCE is a low-overhead sampling-based memory safety error detector of heap use-after-free, invalid-free, and out-of-bounds access errors. This series enables KFENCE for the x86 and arm64 architectures, and adds KFENCE hooks to the SLAB and SLUB allocators. KFENCE is designed to be enabled in production kernels, and has near zero performance overhead. Compared to KASAN, KFENCE trades performance for precision. The main motivation behind KFENCE's design, is that with enough total uptime KFENCE will detect bugs in code paths not typically exercised by non-production test workloads. One way to quickly achieve a large enough total uptime is when the tool is deployed across a large fleet of machines. KFENCE objects each reside on a dedicated page, at either the left or right page boundaries. The pages to the left and right of the object page are "guard pages", whose attributes are changed to a protected state, and cause page faults on any attempted access to them. Such page faults are then intercepted by KFENCE, which handles the fault gracefully by reporting a memory access error. Guarded allocations are set up based on a sample interval (can be set via kfence.sample_interval). After expiration of the sample interval, the next allocation through the main allocator (SLAB or SLUB) returns a guarded allocation from the KFENCE object pool. At this point, the timer is reset, and the next allocation is set up after the expiration of the interval. To enable/disable a KFENCE allocation through the main allocator's fast-path without overhead, KFENCE relies on static branches via the static keys infrastructure. The static branch is toggled to redirect the allocation to KFENCE. The KFENCE memory pool is of fixed size, and if the pool is exhausted no further KFENCE allocations occur. The default config is conservative with only 255 objects, resulting in a pool size of 2 MiB (with 4 KiB pages). We have verified by running synthetic benchmarks (sysbench I/O, hackbench) and production server-workload benchmarks that a kernel with KFENCE (using sample intervals 100-500ms) is performance-neutral compared to a non-KFENCE baseline kernel. KFENCE is inspired by GWP-ASan [1], a userspace tool with similar properties. The name "KFENCE" is a homage to the Electric Fence Malloc Debugger [2]. For more details, see Documentation/dev-tools/kfence.rst added in the series -- also viewable here: https://raw.githubusercontent.com/google/kasan/kfence/Documentation/dev-tools/kfence.rst [1] http://llvm.org/docs/GwpAsan.html [2] https://linux.die.net/man/3/efence This patch (of 9): This adds the Kernel Electric-Fence (KFENCE) infrastructure. KFENCE is a low-overhead sampling-based memory safety error detector of heap use-after-free, invalid-free, and out-of-bounds access errors. KFENCE is designed to be enabled in production kernels, and has near zero performance overhead. Compared to KASAN, KFENCE trades performance for precision. The main motivation behind KFENCE's design, is that with enough total uptime KFENCE will detect bugs in code paths not typically exercised by non-production test workloads. One way to quickly achieve a large enough total uptime is when the tool is deployed across a large fleet of machines. KFENCE objects each reside on a dedicated page, at either the left or right page boundaries. The pages to the left and right of the object page are "guard pages", whose attributes are changed to a protected state, and cause page faults on any attempted access to them. Such page faults are then intercepted by KFENCE, which handles the fault gracefully by reporting a memory access error. To detect out-of-bounds writes to memory within the object's page itself, KFENCE also uses pattern-based redzones. The following figure illustrates the page layout: ---+-----------+-----------+-----------+-----------+-----------+--- | xxxxxxxxx | O : | xxxxxxxxx | : O | xxxxxxxxx | | xxxxxxxxx | B : | xxxxxxxxx | : B | xxxxxxxxx | | x GUARD x | J : RED- | x GUARD x | RED- : J | x GUARD x | | xxxxxxxxx | E : ZONE | xxxxxxxxx | ZONE : E | xxxxxxxxx | | xxxxxxxxx | C : | xxxxxxxxx | : C | xxxxxxxxx | | xxxxxxxxx | T : | xxxxxxxxx | : T | xxxxxxxxx | ---+-----------+-----------+-----------+-----------+-----------+--- Guarded allocations are set up based on a sample interval (can be set via kfence.sample_interval). After expiration of the sample interval, a guarded allocation from the KFENCE object pool is returned to the main allocator (SLAB or SLUB). At this point, the timer is reset, and the next allocation is set up after the expiration of the interval. To enable/disable a KFENCE allocation through the main allocator's fast-path without overhead, KFENCE relies on static branches via the static keys infrastructure. The static branch is toggled to redirect the allocation to KFENCE. To date, we have verified by running synthetic benchmarks (sysbench I/O, hackbench) that a kernel compiled with KFENCE is performance-neutral compared to the non-KFENCE baseline. For more details, see Documentation/dev-tools/kfence.rst (added later in the series). [elver@google.com: fix parameter description for kfence_object_start()] Link: https://lkml.kernel.org/r/20201106092149.GA2851373@elver.google.com [elver@google.com: avoid stalling work queue task without allocations] Link: https://lkml.kernel.org/r/CADYN=9J0DQhizAGB0-jz4HOBBh+05kMBXb4c0cXMS7Qi5NAJiw@mail.gmail.com Link: https://lkml.kernel.org/r/20201110135320.3309507-1-elver@google.com [elver@google.com: fix potential deadlock due to wake_up()] Link: https://lkml.kernel.org/r/000000000000c0645805b7f982e4@google.com Link: https://lkml.kernel.org/r/20210104130749.1768991-1-elver@google.com [elver@google.com: add option to use KFENCE without static keys] Link: https://lkml.kernel.org/r/20210111091544.3287013-1-elver@google.com [elver@google.com: add missing copyright and description headers] Link: https://lkml.kernel.org/r/20210118092159.145934-1-elver@google.com Link: https://lkml.kernel.org/r/20201103175841.3495947-2-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Alexander Potapenko <glider@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: SeongJae Park <sjpark@amazon.de> Co-developed-by: Marco Elver <elver@google.com> Reviewed-by: Jann Horn <jannh@google.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hillf Danton <hdanton@sina.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Joern Engel <joern@purestorage.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Stephen Zhang
|
87005394e1 |
mm/early_ioremap.c: use __func__ instead of function name
It is better to use __func__ instead of function name. Link: https://lkml.kernel.org/r/1611385587-4209-1-git-send-email-stephenzhangzsd@gmail.com Signed-off-by: Stephen Zhang <stephenzhangzsd@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |