06b9cce426
197 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
|
06b9cce426 |
net: dsa: pass extack to .port_bridge_join driver methods
As FDB isolation cannot be enforced between VLAN-aware bridges in lack of hardware assistance like extra FID bits, it seems plausible that many DSA switches cannot do it. Therefore, they need to reject configurations with multiple VLAN-aware bridges from the two code paths that can transition towards that state: - joining a VLAN-aware bridge - toggling VLAN awareness on an existing bridge The .port_vlan_filtering method already propagates the netlink extack to the driver, let's propagate it from .port_bridge_join too, to make sure that the driver can use the same function for both. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
c26933639b |
net: dsa: request drivers to perform FDB isolation
For DSA, to encourage drivers to perform FDB isolation simply means to track which bridge does each FDB and MDB entry belong to. It then becomes the driver responsibility to use something that makes the FDB entry from one bridge not match the FDB lookup of ports from other bridges. The top-level functions where the bridge is determined are: - dsa_port_fdb_{add,del} - dsa_port_host_fdb_{add,del} - dsa_port_mdb_{add,del} - dsa_port_host_mdb_{add,del} aka the pre-crosschip-notifier functions. Changing the API to pass a reference to a bridge is not superfluous, and looking at the passed bridge argument is not the same as having the driver look at dsa_to_port(ds, port)->bridge from the ->port_fdb_add() method. DSA installs FDB and MDB entries on shared (CPU and DSA) ports as well, and those do not have any dp->bridge information to retrieve, because they are not in any bridge - they are merely the pipes that serve the user ports that are in one or multiple bridges. The struct dsa_bridge associated with each FDB/MDB entry is encapsulated in a larger "struct dsa_db" database. Although only databases associated to bridges are notified for now, this API will be the starting point for implementing IFF_UNICAST_FLT in DSA. There, the idea is to install FDB entries on the CPU port which belong to the corresponding user port's port database. These are supposed to match only when the port is standalone. It is better to introduce the API in its expected final form than to introduce it for bridges first, then to have to change drivers which may have made one or more assumptions. Drivers can use the provided bridge.num, but they can also use a different numbering scheme that is more convenient. DSA must perform refcounting on the CPU and DSA ports by also taking into account the bridge number. So if two bridges request the same local address, DSA must notify the driver twice, once for each bridge. In fact, if the driver supports FDB isolation, DSA must perform refcounting per bridge, but if the driver doesn't, DSA must refcount host addresses across all bridges, otherwise it would be telling the driver to delete an FDB entry for a bridge and the driver would delete it for all bridges. So introduce a bool fdb_isolation in drivers which would make all bridge databases passed to the cross-chip notifier have the same number (0). This makes dsa_mac_addr_find() -> dsa_db_equal() say that all bridge databases are the same database - which is essentially the legacy behavior. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
91495f21fc |
net: dsa: tag_8021q: replace the SVL bridging with VLAN-unaware IVL bridging
For VLAN-unaware bridging, tag_8021q uses something perhaps a bit too tied with the sja1105 switch: each port uses the same pvid which is also used for standalone operation (a unique one from which the source port and device ID can be retrieved when packets from that port are forwarded to the CPU). Since each port has a unique pvid when performing autonomous forwarding, the switch must be configured for Shared VLAN Learning (SVL) such that the VLAN ID itself is ignored when performing FDB lookups. Without SVL, packets would always be flooded, since FDB lookup in the source port's VLAN would never find any entry. First of all, to make tag_8021q more palatable to switches which might not support Shared VLAN Learning, let's just use a common VLAN for all ports that are under the same bridge. Secondly, using Shared VLAN Learning means that FDB isolation can never be enforced. But if all ports under the same VLAN-unaware bridge share the same VLAN ID, it can. The disadvantage is that the CPU port can no longer perform precise source port identification for these packets. But at least we have a mechanism which has proven to be adequate for that situation: imprecise RX (dsa_find_designated_bridge_port_by_vid), which is what we use for termination on VLAN-aware bridges. The VLAN ID that VLAN-unaware bridges will use with tag_8021q is the same one as we were previously using for imprecise TX (bridge TX forwarding offload). It is already allocated, it is just a matter of using it. Note that because now all ports under the same bridge share the same VLAN, the complexity of performing a tag_8021q bridge join decreases dramatically. We no longer have to install the RX VLAN of a newly joining port into the port membership of the existing bridge ports. The newly joining port just becomes a member of the VLAN corresponding to that bridge, and the other ports are already members of it from when they joined the bridge themselves. So forwarding works properly. This means that we can unhook dsa_tag_8021q_bridge_{join,leave} from the cross-chip notifier level dsa_switch_bridge_{join,leave}. We can put these calls directly into the sja1105 driver. With this new mode of operation, a port controlled by tag_8021q can have two pvids whereas before it could only have one. The pvid for standalone operation is different from the pvid used for VLAN-unaware bridging. This is done, again, so that FDB isolation can be enforced. Let tag_8021q manage this by deleting the standalone pvid when a port joins a bridge, and restoring it when it leaves it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
e212fa7c54 |
net: dsa: support FDB events on offloaded LAG interfaces
This change introduces support for installing static FDB entries towards a bridge port that is a LAG of multiple DSA switch ports, as well as support for filtering towards the CPU local FDB entries emitted for LAG interfaces that are bridge ports. Conceptually, host addresses on LAG ports are identical to what we do for plain bridge ports. Whereas FDB entries _towards_ a LAG can't simply be replicated towards all member ports like we do for multicast, or VLAN. Instead we need new driver API. Hardware usually considers a LAG to be a "logical port", and sets the entire LAG as the forwarding destination. The physical egress port selection within the LAG is made by hashing policy, as usual. To represent the logical port corresponding to the LAG, we pass by value a copy of the dsa_lag structure to all switches in the tree that have at least one port in that LAG. To illustrate why a refcounted list of FDB entries is needed in struct dsa_lag, it is enough to say that: - a LAG may be a bridge port and may therefore receive FDB events even while it isn't yet offloaded by any DSA interface - DSA interfaces may be removed from a LAG while that is a bridge port; we don't want FDB entries lingering around, but we don't want to remove entries that are still in use, either For all the cases below to work, the idea is to always keep an FDB entry on a LAG with a reference count equal to the DSA member ports. So: - if a port joins a LAG, it requests the bridge to replay the FDB, and the FDB entries get created, or their refcount gets bumped by one - if a port leaves a LAG, the FDB replay deletes or decrements refcount by one - if an FDB is installed towards a LAG with ports already present, that entry is created (if it doesn't exist) and its refcount is bumped by the amount of ports already present in the LAG echo "Adding FDB entry to bond with existing ports" ip link del bond0 ip link add bond0 type bond mode 802.3ad ip link set swp1 down && ip link set swp1 master bond0 && ip link set swp1 up ip link set swp2 down && ip link set swp2 master bond0 && ip link set swp2 up ip link del br0 ip link add br0 type bridge ip link set bond0 master br0 bridge fdb add dev bond0 00:01:02:03:04:05 master static ip link del br0 ip link del bond0 echo "Adding FDB entry to empty bond" ip link del bond0 ip link add bond0 type bond mode 802.3ad ip link del br0 ip link add br0 type bridge ip link set bond0 master br0 bridge fdb add dev bond0 00:01:02:03:04:05 master static ip link set swp1 down && ip link set swp1 master bond0 && ip link set swp1 up ip link set swp2 down && ip link set swp2 master bond0 && ip link set swp2 up ip link del br0 ip link del bond0 echo "Adding FDB entry to empty bond, then removing ports one by one" ip link del bond0 ip link add bond0 type bond mode 802.3ad ip link del br0 ip link add br0 type bridge ip link set bond0 master br0 bridge fdb add dev bond0 00:01:02:03:04:05 master static ip link set swp1 down && ip link set swp1 master bond0 && ip link set swp1 up ip link set swp2 down && ip link set swp2 master bond0 && ip link set swp2 up ip link set swp1 nomaster ip link set swp2 nomaster ip link del br0 ip link del bond0 Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
|
93c798230a |
net: dsa: call SWITCHDEV_FDB_OFFLOADED for the orig_dev
When switchdev_handle_fdb_event_to_device() replicates a FDB event emitted for the bridge or for a LAG port and DSA offloads that, we should notify back to switchdev that the FDB entry on the original device is what was offloaded, not on the DSA slave devices that the event is replicated on. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
|
e35f12e993 |
net: dsa: remove "ds" and "port" from struct dsa_switchdev_event_work
By construction, the struct net_device *dev passed to dsa_slave_switchdev_event_work() via struct dsa_switchdev_event_work is always a DSA slave device. Therefore, it is redundant to pass struct dsa_switch and int port information in the deferred work structure. This can be retrieved at all times from the provided struct net_device via dsa_slave_to_port(). For the same reason, we can drop the dsa_is_user_port() check in dsa_fdb_offload_notify(). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
|
dedd6a009f |
net: dsa: create a dsa_lag structure
The main purpose of this change is to create a data structure for a LAG as seen by DSA. This is similar to what we have for bridging - we pass a copy of this structure by value to ->port_lag_join and ->port_lag_leave. For now we keep the lag_dev, id and a reference count in it. Future patches will add a list of FDB entries for the LAG (these also need to be refcounted to work properly). The LAG structure is created using dsa_port_lag_create() and destroyed using dsa_port_lag_destroy(), just like we have for bridging. Because now, the dsa_lag itself is refcounted, we can simplify dsa_lag_map() and dsa_lag_unmap(). These functions need to keep a LAG in the dst->lags array only as long as at least one port uses it. The refcounting logic inside those functions can be removed now - they are called only when we should perform the operation. dsa_lag_dev() is renamed to dsa_lag_by_id() and now returns the dsa_lag structure instead of the lag_dev net_device. dsa_lag_foreach_port() now takes the dsa_lag structure as argument. dst->lags holds an array of dsa_lag structures. dsa_lag_map() now also saves the dsa_lag->id value, so that linear walking of dst->lags in drivers using dsa_lag_id() is no longer necessary. They can just look at lag.id. dsa_port_lag_id_get() is a helper, similar to dsa_port_bridge_num_get(), which can be used by drivers to get the LAG ID assigned by DSA to a given port. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
|
46a76724e4 |
net: dsa: rename references to "lag" as "lag_dev"
In preparation of converting struct net_device *dp->lag_dev into a struct dsa_lag *dp->lag, we need to rename, for consistency purposes, all occurrences of the "lag" variable in the DSA core to "lag_dev". Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
|
6b5567b1b2 |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
No conflicts. Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
|
134ef2388e |
net: dsa: add explicit support for host bridge VLANs
Currently, DSA programs VLANs on shared (DSA and CPU) ports each time it does so on user ports. This is good for basic functionality but has several limitations: - the VLAN group which must reach the CPU may be radically different from the VLAN group that must be autonomously forwarded by the switch. In other words, the admin may want to isolate noisy stations and avoid traffic from them going to the control processor of the switch, where it would just waste useless cycles. The bridge already supports independent control of VLAN groups on bridge ports and on the bridge itself, and when VLAN-aware, it will drop packets in software anyway if their VID isn't added as a 'self' entry towards the bridge device. - Replaying host FDB entries may depend, for some drivers like mv88e6xxx, on replaying the host VLANs as well. The 2 VLAN groups are approximately the same in most regular cases, but there are corner cases when timing matters, and DSA's approximation of replicating VLANs on shared ports simply does not work. - If a user makes the bridge (implicitly the CPU port) join a VLAN by accident, there is no way for the CPU port to isolate itself from that noisy VLAN except by rebooting the system. This is because for each VLAN added on a user port, DSA will add it on shared ports too, but for each VLAN deletion on a user port, it will remain installed on shared ports, since DSA has no good indication of whether the VLAN is still in use or not. Now that the bridge driver emits well-balanced SWITCHDEV_OBJ_ID_PORT_VLAN addition and removal events, DSA has a simple and straightforward task of separating the bridge port VLANs (these have an orig_dev which is a DSA slave interface, or a LAG interface) from the host VLANs (these have an orig_dev which is a bridge interface), and to keep a simple reference count of each VID on each shared port. Forwarding VLANs must be installed on the bridge ports and on all DSA ports interconnecting them. We don't have a good view of the exact topology, so we simply install forwarding VLANs on all DSA ports, which is what has been done until now. Host VLANs must be installed primarily on the dedicated CPU port of each bridge port. More subtly, they must also be installed on upstream-facing and downstream-facing DSA ports that are connecting the bridge ports and the CPU. This ensures that the mv88e6xxx's problem (VID of host FDB entry may be absent from VTU) is still addressed even if that switch is in a cross-chip setup, and it has no local CPU port. Therefore: - user ports contain only bridge port (forwarding) VLANs, and no refcounting is necessary - DSA ports contain both forwarding and host VLANs. Refcounting is necessary among these 2 types. - CPU ports contain only host VLANs. Refcounting is also necessary. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
a2614140dc |
net: dsa: mv88e6xxx: flush switchdev FDB workqueue before removing VLAN
mv88e6xxx is special among DSA drivers in that it requires the VTU to contain the VID of the FDB entry it modifies in mv88e6xxx_port_db_load_purge(), otherwise it will return -EOPNOTSUPP. Sometimes due to races this is not always satisfied even if external code does everything right (first deletes the FDB entries, then the VLAN), because DSA commits to hardware FDB entries asynchronously since commit |
||
|
295ab96f47 |
net: dsa: provide switch operations for tracking the master state
Certain drivers may need to send management traffic to the switch for things like register access, FDB dump, etc, to accelerate what their slow bus (SPI, I2C, MDIO) can already do. Ethernet is faster (especially in bulk transactions) but is also more unreliable, since the user may decide to bring the DSA master down (or not bring it up), therefore severing the link between the host and the attached switch. Drivers needing Ethernet-based register access already should have fallback logic to the slow bus if the Ethernet method fails, but that fallback may be based on a timeout, and the I/O to the switch may slow down to a halt if the master is down, because every Ethernet packet will have to time out. The driver also doesn't have the option to turn off Ethernet-based I/O momentarily, because it wouldn't know when to turn it back on. Which is where this change comes in. By tracking NETDEV_CHANGE, NETDEV_UP and NETDEV_GOING_DOWN events on the DSA master, we should know the exact interval of time during which this interface is reliably available for traffic. Provide this information to switches so they can use it as they wish. An helper is added dsa_port_master_is_operational() to check if a master port is operational. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
a68dc7b938 |
net: dsa: remove cross-chip support for HSR
The cross-chip notifiers for HSR are bypass operations, meaning that even though all switches in a tree are notified, only the switch specified in the info structure is targeted. We can eliminate the unnecessary complexity by deleting the cross-chip notifier logic and calling the ds->ops straight from port.c. Cc: George McCollister <george.mccollister@gmail.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: George McCollister <george.mccollister@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
cad69019f2 |
net: dsa: remove cross-chip support for MRP
The cross-chip notifiers for MRP are bypass operations, meaning that even though all switches in a tree are notified, only the switch specified in the info structure is targeted. We can eliminate the unnecessary complexity by deleting the cross-chip notifier logic and calling the ds->ops straight from port.c. Cc: Horatiu Vultur <horatiu.vultur@microchip.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
e63a023489 |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Alexei Starovoitov says: ==================== pull-request: bpf-next 2021-12-30 The following pull-request contains BPF updates for your *net-next* tree. We've added 72 non-merge commits during the last 20 day(s) which contain a total of 223 files changed, 3510 insertions(+), 1591 deletions(-). The main changes are: 1) Automatic setrlimit in libbpf when bpf is memcg's in the kernel, from Andrii. 2) Beautify and de-verbose verifier logs, from Christy. 3) Composable verifier types, from Hao. 4) bpf_strncmp helper, from Hou. 5) bpf.h header dependency cleanup, from Jakub. 6) get_func_[arg|ret|arg_cnt] helpers, from Jiri. 7) Sleepable local storage, from KP. 8) Extend kfunc with PTR_TO_CTX, PTR_TO_MEM argument support, from Kumar. ==================== Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
b6459415b3 |
net: Don't include filter.h from net/sock.h
sock.h is pretty heavily used (5k objects rebuilt on x86 after it's touched). We can drop the include of filter.h from it and add a forward declaration of struct sk_filter instead. This decreases the number of rebuilt objects when bpf.h is touched from ~5k to ~1k. There's a lot of missing includes this was masking. Primarily in networking tho, this time. Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Marc Kleine-Budde <mkl@pengutronix.de> Acked-by: Florian Fainelli <f.fainelli@gmail.com> Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com> Acked-by: Stefano Garzarella <sgarzare@redhat.com> Link: https://lore.kernel.org/bpf/20211229004913.513372-1-kuba@kernel.org |
||
|
7f2973149c |
net: dsa: make tagging protocols connect to individual switches from a tree
On the NXP Bluebox 3 board which uses a multi-switch setup with sja1105, the mechanism through which the tagger connects to the switch tree is broken, due to improper DSA code design. At the time when tag_ops->connect() is called in dsa_port_parse_cpu(), DSA hasn't finished "touching" all the ports, so it doesn't know how large the tree is and how many ports it has. It has just seen the first CPU port by this time. As a result, this function will call the tagger's ->connect method too early, and the tagger will connect only to the first switch from the tree. This could be perhaps addressed a bit more simply by just moving the tag_ops->connect(dst) call a bit later (for example in dsa_tree_setup), but there is already a design inconsistency at present: on the switch side, the notification is on a per-switch basis, but on the tagger side, it is on a per-tree basis. Furthermore, the persistent storage itself is per switch (ds->tagger_data). And the tagger connect and disconnect procedures (at least the ones that exist currently) could see a fair bit of simplification if they didn't have to iterate through the switches of a tree. To fix the issue, this change transforms tag_ops->connect(dst) into tag_ops->connect(ds) and moves it somewhere where we already iterate over all switches of a tree. That is in dsa_switch_setup_tag_protocol(), which is a good placement because we already have there the connection call to the switch side of things. As for the dsa_tree_bind_tag_proto() method (called from the code path that changes the tag protocol), things are a bit more complicated because we receive the tree as argument, yet when we unwind on errors, it would be nice to not call tag_ops->disconnect(ds) where we didn't previously call tag_ops->connect(ds). We didn't have this problem before because the tag_ops connection operations passed the entire dst before, and this is more fine grained now. To solve the error rewind case using the new API, we have to create yet one more cross-chip notifier for disconnection, and stay connected with the old tag protocol to all the switches in the tree until we've succeeded to connect with the new one as well. So if something fails half way, the whole tree is still connected to the old tagger. But there may still be leaks if the tagger fails to connect to the 2nd out of 3 switches in a tree: somebody needs to tell the tagger to disconnect from the first switch. Nothing comes for free, and this was previously handled privately by the tagging protocol driver before, but now we need to emit a disconnect cross-chip notifier for that, because DSA has to take care of the unwind path. We assume that the tagging protocol has connected to a switch if it has set ds->tagger_data to something, otherwise we avoid calling its disconnection method in the error rewind path. The rest of the changes are in the tagging protocol drivers, and have to do with the replacement of dst with ds. The iteration is removed and the error unwind path is simplified, as mentioned above. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
dc452a471d |
net: dsa: introduce tagger-owned storage for private and shared data
Ansuel is working on register access over Ethernet for the qca8k switch family. This requires the qca8k tagging protocol driver to receive frames which aren't intended for the network stack, but instead for the qca8k switch driver itself. The dp->priv is currently the prevailing method for passing data back and forth between the tagging protocol driver and the switch driver. However, this method is riddled with caveats. The DSA design allows in principle for any switch driver to return any protocol it desires in ->get_tag_protocol(). The dsa_loop driver can be modified to do just that. But in the current design, the memory behind dp->priv has to be allocated by the switch driver, so if the tagging protocol is paired to an unexpected switch driver, we may end up in NULL pointer dereferences inside the kernel, or worse (a switch driver may allocate dp->priv according to the expectations of a different tagger). The latter possibility is even more plausible considering that DSA switches can dynamically change tagging protocols in certain cases (dsa <-> edsa, ocelot <-> ocelot-8021q), and the current design lends itself to mistakes that are all too easy to make. This patch proposes that the tagging protocol driver should manage its own memory, instead of relying on the switch driver to do so. After analyzing the different in-tree needs, it can be observed that the required tagger storage is per switch, therefore a ds->tagger_data pointer is introduced. In principle, per-port storage could also be introduced, although there is no need for it at the moment. Future changes will replace the current usage of dp->priv with ds->tagger_data. We define a "binding" event between the DSA switch tree and the tagging protocol. During this binding event, the tagging protocol's ->connect() method is called first, and this may allocate some memory for each switch of the tree. Then a cross-chip notifier is emitted for the switches within that tree, and they are given the opportunity to fix up the tagger's memory (for example, they might set up some function pointers that represent virtual methods for consuming packets). Because the memory is owned by the tagger, there exists a ->disconnect() method for the tagger (which is the place to free the resources), but there doesn't exist a ->disconnect() method for the switch driver. This is part of the design. The switch driver should make minimal use of the public part of the tagger data, and only after type-checking it using the supplied "proto" argument. In the code there are in fact two binding events, one is the initial event in dsa_switch_setup_tag_protocol(). At this stage, the cross chip notifier chains aren't initialized, so we call each switch's connect() method by hand. Then there is dsa_tree_bind_tag_proto() during dsa_tree_change_tag_proto(), and here we have an old protocol and a new one. We first connect to the new one before disconnecting from the old one, to simplify error handling a bit and to ensure we remain in a valid state at all times. Co-developed-by: Ansuel Smith <ansuelsmth@gmail.com> Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
b079922ba2 |
net: dsa: add a "tx_fwd_offload" argument to ->port_bridge_join
This is a preparation patch for the removal of the DSA switch methods ->port_bridge_tx_fwd_offload() and ->port_bridge_tx_fwd_unoffload(). The plan is for the switch to report whether it offloads TX forwarding directly as a response to the ->port_bridge_join() method. This change deals with the noisy portion of converting all existing function prototypes to take this new boolean pointer argument. The bool is placed in the cross-chip notifier structure for bridge join, and a reference to it is provided to drivers. In the next change, DSA will then actually look at this value instead of calling ->port_bridge_tx_fwd_offload(). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Alvin Šipraga <alsi@bang-olufsen.dk> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
|
d3eed0e57d |
net: dsa: keep the bridge_dev and bridge_num as part of the same structure
The main desire behind this is to provide coherent bridge information to the fast path without locking. For example, right now we set dp->bridge_dev and dp->bridge_num from separate code paths, it is theoretically possible for a packet transmission to read these two port properties consecutively and find a bridge number which does not correspond with the bridge device. Another desire is to start passing more complex bridge information to dsa_switch_ops functions. For example, with FDB isolation, it is expected that drivers will need to be passed the bridge which requested an FDB/MDB entry to be offloaded, and along with that bridge_dev, the associated bridge_num should be passed too, in case the driver might want to implement an isolation scheme based on that number. We already pass the {bridge_dev, bridge_num} pair to the TX forwarding offload switch API, however we'd like to remove that and squash it into the basic bridge join/leave API. So that means we need to pass this pair to the bridge join/leave API. During dsa_port_bridge_leave, first we unset dp->bridge_dev, then we call the driver's .port_bridge_leave with what used to be our dp->bridge_dev, but provided as an argument. When bridge_dev and bridge_num get folded into a single structure, we need to preserve this behavior in dsa_port_bridge_leave: we need a copy of what used to be in dp->bridge. Switch drivers check bridge membership by comparing dp->bridge_dev with the provided bridge_dev, but now, if we provide the struct dsa_bridge as a pointer, they cannot keep comparing dp->bridge to the provided pointer, since this only points to an on-stack copy. To make this obvious and prevent driver writers from forgetting and doing stupid things, in this new API, the struct dsa_bridge is provided as a full structure (not very large, contains an int and a pointer) instead of a pointer. An explicit comparison function needs to be used to determine bridge membership: dsa_port_offloads_bridge(). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Alvin Šipraga <alsi@bang-olufsen.dk> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
|
6a43cba303 |
net: dsa: export bridging offload helpers to drivers
Move the static inline helpers from net/dsa/dsa_priv.h to include/net/dsa.h, so that drivers can call functions such as dsa_port_offloads_bridge_dev(), which will be necessary after the transition to a more complex bridge structure. More functions than are needed right now are being moved, but this is done for uniformity. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Alvin Šipraga <alsi@bang-olufsen.dk> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
|
936db8a2db |
net: dsa: rename dsa_port_offloads_bridge to dsa_port_offloads_bridge_dev
Currently the majority of dsa_port_bridge_dev_get() calls in drivers is just to check whether a port is under the bridge device provided as argument by the DSA API. We'd like to change that DSA API so that a more complex structure is provided as argument. To keep things more generic, and considering that the new complex structure will be provided by value and not by reference, direct comparisons between dp->bridge and the provided bridge will be broken. The generic way to do the checking would simply be to do something like dsa_port_offloads_bridge(dp, &bridge). But there's a problem, we already have a function named that way, which actually takes a bridge_dev net_device as argument. Rename it so that we can use dsa_port_offloads_bridge for something else. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Alvin Šipraga <alsi@bang-olufsen.dk> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
|
36cbf39b56 |
net: dsa: hide dp->bridge_dev and dp->bridge_num in the core behind helpers
The location of the bridge device pointer and number is going to change. It is not going to be kept individually per port, but in a common structure allocated dynamically and which will have lockdep validation. Create helpers to access these elements so that we have a migration path to the new organization. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
|
3f9bb0301d |
net: dsa: make dp->bridge_num one-based
I have seen too many bugs already due to the fact that we must encode an
invalid dp->bridge_num as a negative value, because the natural tendency
is to check that invalid value using (!dp->bridge_num). Latest example
can be seen in commit
|
||
|
21bd64bd71 |
net: dsa: consolidate phylink creation
The code in port.c and slave.c creating the phylink instance is very similar - let's consolidate this into a single function. Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> Reviewed-by: Marek Behún <kabel@kernel.org> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
|
a57d8c217a |
net: dsa: flush switchdev workqueue before tearing down CPU/DSA ports
Sometimes when unbinding the mv88e6xxx driver on Turris MOX, these error
messages appear:
mv88e6085 d0032004.mdio-mii:12: port 1 failed to delete be:79:b4:9e:9e:96 vid 1 from fdb: -2
mv88e6085 d0032004.mdio-mii:12: port 1 failed to delete be:79:b4:9e:9e:96 vid 0 from fdb: -2
mv88e6085 d0032004.mdio-mii:12: port 1 failed to delete d8:58:d7:00:ca:6d vid 100 from fdb: -2
mv88e6085 d0032004.mdio-mii:12: port 1 failed to delete d8:58:d7:00:ca:6d vid 1 from fdb: -2
mv88e6085 d0032004.mdio-mii:12: port 1 failed to delete d8:58:d7:00:ca:6d vid 0 from fdb: -2
(and similarly for other ports)
What happens is that DSA has a policy "even if there are bugs, let's at
least not leak memory" and dsa_port_teardown() clears the dp->fdbs and
dp->mdbs lists, which are supposed to be empty.
But deleting that cleanup code, the warnings go away.
=> the FDB and MDB lists (used for refcounting on shared ports, aka CPU
and DSA ports) will eventually be empty, but are not empty by the time
we tear down those ports. Aka we are deleting them too soon.
The addresses that DSA complains about are host-trapped addresses: the
local addresses of the ports, and the MAC address of the bridge device.
The problem is that offloading those entries happens from a deferred
work item scheduled by the SWITCHDEV_FDB_DEL_TO_DEVICE handler, and this
races with the teardown of the CPU and DSA ports where the refcounting
is kept.
In fact, not only it races, but fundamentally speaking, if we iterate
through the port list linearly, we might end up tearing down the shared
ports even before we delete a DSA user port which has a bridge upper.
So as it turns out, we need to first tear down the user ports (and the
unused ones, for no better place of doing that), then the shared ports
(the CPU and DSA ports). In between, we need to ensure that all work
items scheduled by our switchdev handlers (which only run for user
ports, hence the reason why we tear them down first) have finished.
Fixes:
|
||
|
06cfb2df7e |
net: dsa: don't advertise 'rx-vlan-filter' when not needed
There have been multiple independent reports about dsa_slave_vlan_rx_add_vid being called (and consequently calling the drivers' .port_vlan_add) when it isn't needed, and sometimes (not always) causing problems in the process. Case 1: mv88e6xxx_port_vlan_prepare is stubborn and only accepts VLANs on bridged ports. That is understandably so, because standalone mv88e6xxx ports are VLAN-unaware, and VTU entries are said to be a scarce resource. Otherwise said, the following fails lamentably on mv88e6xxx: ip link add br0 type bridge vlan_filtering 1 ip link set lan3 master br0 ip link add link lan10 name lan10.1 type vlan id 1 [485256.724147] mv88e6085 d0032004.mdio-mii:12: p10: hw VLAN 1 already used by port 3 in br0 RTNETLINK answers: Operation not supported This has become a worse issue since commit |
||
|
f5e165e72b |
net: dsa: track unique bridge numbers across all DSA switch trees
Right now, cross-tree bridging setups work somewhat by mistake. In the case of cross-tree bridging with sja1105, all switch instances need to agree upon a common VLAN ID for forwarding a packet that belongs to a certain bridging domain. With TX forwarding offload, the VLAN ID is the bridge VLAN for VLAN-aware bridging, and the tag_8021q TX forwarding offload VID (a VLAN which has non-zero VBID bits) for VLAN-unaware bridging. The VBID for VLAN-unaware bridging is derived from the dp->bridge_num value calculated by DSA independently for each switch tree. If ports from one tree join one bridge, and ports from another tree join another bridge, DSA will assign them the same bridge_num, even though the bridges are different. If cross-tree bridging is supported, this is an issue. Modify DSA to calculate the bridge_num globally across all switch trees. This has the implication for a driver that the dp->bridge_num value that DSA will assign to its ports might not be contiguous, if there are boards with multiple DSA drivers instantiated. Additionally, all bridge_num values eat up towards each switch's ds->num_fwd_offloading_bridges maximum, which is potentially unfortunate, and can be seen as a limitation introduced by this patch. However, that is the lesser evil for now. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
724395f4dc |
net: dsa: tag_8021q: don't broadcast during setup/teardown
Currently, on my board with multiple sja1105 switches in disjoint trees
described in commit
|
||
|
a72808b658 |
net: dsa: create a helper for locating EtherType DSA headers on TX
Create a similar helper for locating the offset to the DSA header relative to skb->data, and make the existing EtherType header taggers to use it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
5d928ff486 |
net: dsa: create a helper for locating EtherType DSA headers on RX
It seems that protocol tagging driver writers are always surprised about the formula they use to reach their EtherType header on RX, which becomes apparent from the fact that there are comments in multiple drivers that mention the same information. Create a helper that returns a void pointer to skb->data - 2, as well as centralize the explanation why that is the case. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
6bef794da6 |
net: dsa: create a helper which allocates space for EtherType DSA headers
Hide away the memmove used by DSA EtherType header taggers to shift the MAC SA and DA to the left to make room for the header, after they've called skb_push(). The call to skb_push() is still left explicit in drivers, to be symmetric with dsa_strip_etype_header, and because not all callers can be refactored to do it (for example, brcm_tag_xmit_ll has common code for a pre-Ethernet DSA tag and an EtherType DSA tag). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
f1dacd7aea |
net: dsa: create a helper that strips EtherType DSA headers on RX
All header taggers open-code a memmove that is fairly not all that obvious, and we can hide the details behind a helper function, since the only thing specific to the driver is the length of the header tag. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
045c45d1f5 |
net: dsa: centralize fast ageing when address learning is turned off
Currently DSA leaves it down to device drivers to fast age the FDB on a port when address learning is disabled on it. There are 2 reasons for doing that in the first place: - when address learning is disabled by user space, through IFLA_BRPORT_LEARNING or the brport_attr_learning sysfs, what user space typically wants to achieve is to operate in a mode with no dynamic FDB entry on that port. But if the port is already up, some addresses might have been already learned on it, and it seems silly to wait for 5 minutes for them to expire until something useful can be done. - when a port leaves a bridge and becomes standalone, DSA turns off address learning on it. This also has the nice side effect of flushing the dynamically learned bridge FDB entries on it, which is a good idea because standalone ports should not have bridge FDB entries on them. We let drivers manage fast ageing under this condition because if DSA were to do it, it would need to track each port's learning state, and act upon the transition, which it currently doesn't. But there are 2 reasons why doing it is better after all: - drivers might get it wrong and not do it (see b53_port_set_learning) - we would like to flush the dynamic entries from the software bridge too, and letting drivers do that would be another pain point So track the port learning state and trigger a fast age process automatically within DSA. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
39f3210154 |
net: dsa: don't fast age standalone ports
DSA drives the procedure to flush dynamic FDB entries from a port based
on the change of STP state: whenever we go from a state where address
learning is enabled (LEARNING, FORWARDING) to a state where it isn't
(LISTENING, BLOCKING, DISABLED), we need to flush the existing dynamic
entries.
However, there are cases when this is not needed. Internally, when a
DSA switch interface is not under a bridge, DSA still keeps it in the
"FORWARDING" STP state. And when that interface joins a bridge, the
bridge will meticulously iterate that port through all STP states,
starting with BLOCKING and ending with FORWARDING. Because there is a
state transition from the standalone version of FORWARDING into the
temporary BLOCKING bridge port state, DSA calls the fast age procedure.
Since commit
|
||
|
c73c57081b |
net: dsa: don't disable multicast flooding to the CPU even without an IGMP querier
Commit |
||
|
bea7907837 |
net: dsa: don't set skb->offload_fwd_mark when not offloading the bridge
DSA has gained the recent ability to deal gracefully with upper interfaces it cannot offload, such as the bridge, bonding or team drivers. When such uppers exist, the ports are still in standalone mode as far as the hardware is concerned. But when we deliver packets to the software bridge in order for that to do the forwarding, there is an unpleasant surprise in that the bridge will refuse to forward them. This is because we unconditionally set skb->offload_fwd_mark = true, meaning that the bridge thinks the frames were already forwarded in hardware by us. Since dp->bridge_dev is populated only when there is hardware offload for it, but not in the software fallback case, let's introduce a new helper that can be called from the tagger data path which sets the skb->offload_fwd_mark accordingly to zero when there is no hardware offload for bridging. This lets the bridge forward packets back to other interfaces of our switch, if needed. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Tobias Waldekranz <tobias@waldekranz.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
884be12f85 |
net: dsa: sja1105: add support for imprecise RX
This is already common knowledge by now, but the sja1105 does not have hardware support for DSA tagging for data plane packets, and tag_8021q sets up a unique pvid per port, transmitted as VLAN-tagged towards the CPU, for the source port to be decoded nonetheless. When the port is part of a VLAN-aware bridge, the pvid committed to hardware is taken from the bridge and not from tag_8021q, so we need to work with that the best we can. Configure the switches to send all packets to the CPU as VLAN-tagged (even ones that were originally untagged on the wire) and make use of dsa_untag_bridge_pvid() to get rid of it before we send those packets up the network stack. With the classified VLAN used by hardware known to the tagger, we first peek at the VID in an attempt to figure out if the packet was received from a VLAN-unaware port (standalone or under a VLAN-unaware bridge), case in which we can continue to call dsa_8021q_rcv(). If that is not the case, the packet probably came from a VLAN-aware bridge. So we call the DSA helper that finds for us a "designated bridge port" - one that is a member of the VLAN ID from the packet, and is in the proper STP state - basically these are all checks performed by br_handle_frame() in the software RX data path. The bridge will accept the packet as valid even if the source port was maybe wrong. So it will maybe learn the MAC SA of the packet on the wrong port, and its software FDB will be out of sync with the hardware FDB. So replies towards this same MAC DA will not work, because the bridge will send towards a different netdev. This is where the bridge data plane offload ("imprecise TX") added by the next patch comes in handy. The software FDB is wrong, true, but the hardware FDB isn't, and by offloading the bridge forwarding plane we have a chance to right a wrong, and have the hardware look up the FDB for us for the reply packet. So it all cancels out. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
123abc06e7 |
net: dsa: add support for bridge TX forwarding offload
For a DSA switch, to offload the forwarding process of a bridge device means to send the packets coming from the software bridge as data plane packets. This is contrary to everything that DSA has done so far, because the current taggers only know to send control packets (ones that target a specific destination port), whereas data plane packets are supposed to be forwarded according to the FDB lookup, much like packets ingressing on any regular ingress port. If the FDB lookup process returns multiple destination ports (flooding, multicast), then replication is also handled by the switch hardware - the bridge only sends a single packet and avoids the skb_clone(). DSA keeps for each bridge port a zero-based index (the number of the bridge). Multiple ports performing TX forwarding offload to the same bridge have the same dp->bridge_num value, and ports not offloading the TX data plane of a bridge have dp->bridge_num = -1. The tagger can check if the packet that is being transmitted on has skb->offload_fwd_mark = true or not. If it does, it can be sure that the packet belongs to the data plane of a bridge, further information about which can be obtained based on dp->bridge_dev and dp->bridge_num. It can then compose a DSA tag for injecting a data plane packet into that bridge number. For the switch driver side, we offer two new dsa_switch_ops methods, called .port_bridge_fwd_offload_{add,del}, which are modeled after .port_bridge_{join,leave}. These methods are provided in case the driver needs to configure the hardware to treat packets coming from that bridge software interface as data plane packets. The switchdev <-> bridge interaction happens during the netdev_master_upper_dev_link() call, so to switch drivers, the effect is that the .port_bridge_fwd_offload_add() method is called immediately after .port_bridge_join(). If the bridge number exceeds the number of bridges for which the switch driver can offload the TX data plane (and this includes the case where the driver can offload none), DSA falls back to simply returning tx_fwd_offload = false in the switchdev_bridge_port_offload() call. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
4e51bf44a0 |
net: bridge: move the switchdev object replay helpers to "push" mode
Starting with commit |
||
|
b94dc99c0d |
net: dsa: use switchdev_handle_fdb_{add,del}_to_device
Using the new fan-out helper for FDB entries installed on the software bridge, we can install host addresses with the proper refcount on the CPU port, such that this case: ip link set swp0 master br0 ip link set swp1 master br0 ip link set swp2 master br0 ip link set swp3 master br0 ip link set br0 address 00:01:02:03:04:05 ip link set swp3 nomaster works properly and the br0 address remains installed as a host entry with refcount 3 instead of getting deleted. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
c64b9c0504 |
net: dsa: tag_8021q: add proper cross-chip notifier support
The big problem which mandates cross-chip notifiers for tag_8021q is this: | sw0p0 sw0p1 sw0p2 sw0p3 sw0p4 [ user ] [ user ] [ user ] [ dsa ] [ cpu ] | +---------+ | sw1p0 sw1p1 sw1p2 sw1p3 sw1p4 [ user ] [ user ] [ user ] [ dsa ] [ dsa ] | +---------+ | sw2p0 sw2p1 sw2p2 sw2p3 sw2p4 [ user ] [ user ] [ user ] [ dsa ] [ dsa ] When the user runs: ip link add br0 type bridge ip link set sw0p0 master br0 ip link set sw2p0 master br0 It doesn't work. This is because dsa_8021q_crosschip_bridge_join() assumes that "ds" and "other_ds" are at most 1 hop away from each other, so it is sufficient to add the RX VLAN of {ds, port} into {other_ds, other_port} and vice versa and presto, the cross-chip link works. When there is another switch in the middle, such as in this case switch 1 with its DSA links sw1p3 and sw1p4, somebody needs to tell it about these VLANs too. Which is exactly why the problem is quadratic: when a port joins a bridge, for each port in the tree that's already in that same bridge we notify a tag_8021q VLAN addition of that port's RX VLAN to the entire tree. It is a very complicated web of VLANs. It must be mentioned that currently we install tag_8021q VLANs on too many ports (DSA links - to be precise, on all of them). For example, when sw2p0 joins br0, and assuming sw1p0 was part of br0 too, we add the RX VLAN of sw2p0 on the DSA links of switch 0 too, even though there isn't any port of switch 0 that is a member of br0 (at least yet). In theory we could notify only the switches which sit in between the port joining the bridge and the port reacting to that bridge_join event. But in practice that is impossible, because of the way 'link' properties are described in the device tree. The DSA bindings require DT writers to list out not only the real/physical DSA links, but in fact the entire routing table, like for example switch 0 above will have: sw0p3: port@3 { link = <&sw1p4 &sw2p4>; }; This was done because: /* TODO: ideally DSA ports would have a single dp->link_dp member, * and no dst->rtable nor this struct dsa_link would be needed, * but this would require some more complex tree walking, * so keep it stupid at the moment and list them all. */ but it is a perfect example of a situation where too much information is actively detrimential, because we are now in the position where we cannot distinguish a real DSA link from one that is put there to avoid the 'complex tree walking'. And because DT is ABI, there is not much we can change. And because we do not know which DSA links are real and which ones aren't, we can't really know if DSA switch A is in the data path between switches B and C, in the general case. So this is why tag_8021q RX VLANs are added on all DSA links, and probably why it will never change. On the other hand, at least the number of additions/deletions is well balanced, and this means that once we implement reference counting at the cross-chip notifier level a la fdb/mdb, there is absolutely zero need for a struct dsa_8021q_crosschip_link, it's all self-managing. In fact, with the tag_8021q notifiers emitted from the bridge join notifiers, it becomes so generic that sja1105 does not need to do anything anymore, we can just delete its implementation of the .crosschip_bridge_{join,leave} methods. Among other things we can simply delete is the home-grown implementation of sja1105_notify_crosschip_switches(). The reason why that is wrong is because it is not quadratic - it only covers remote switches to which we have a cross-chip bridging link and that does not cover in-between switches. This deletion is part of the same patch because sja1105 used to poke deep inside the guts of the tag_8021q context in order to do that. Because the cross-chip links went away, so needs the sja1105 code. Last but not least, dsa_8021q_setup_port() is simplified (and also renamed). Because our TAG_8021Q_VLAN_ADD notifier is designed to react on the CPU port too, the four dsa_8021q_vid_apply() calls: - 1 for RX VLAN on user port - 1 for the user port's RX VLAN on the CPU port - 1 for TX VLAN on user port - 1 for the user port's TX VLAN on the CPU port now get squashed into only 2 notifier calls via dsa_port_tag_8021q_vlan_add. And because the notifiers to add and to delete a tag_8021q VLAN are distinct, now we finally break up the port setup and teardown into separate functions instead of relying on a "bool enabled" flag which tells us what to do. Arguably it should have been this way from the get go. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
e19cc13c9c |
net: dsa: tag_8021q: manage RX VLANs dynamically at bridge join/leave time
There has been at least one wasted opportunity for tag_8021q to be used by a driver: https://patchwork.ozlabs.org/project/netdev/patch/20200710113611.3398-3-kurt@linutronix.de/#2484272 because of a design decision: the declared purpose of tag_8021q is to offer source port/switch identification for a tagging driver for packets coming from a switch with no hardware DSA tagging support. It is not intended to provide VLAN-based port isolation, because its first user, sja1105, had another mechanism for bridging domain isolation, the L2 Forwarding Table. So even if 2 ports are in the same VLAN but they are separated via the L2 Forwarding Table, they will not communicate with one another. The L2 Forwarding Table is managed by the sja1105_bridge_join() and sja1105_bridge_leave() methods. As a consequence, today tag_8021q does not bother too much with hooking into .port_bridge_join() and .port_bridge_leave() because that would introduce yet another degree of freedom, it just iterates statically through all ports of a switch and adds the RX VLAN of one port to all the others. In this way, whenever .port_bridge_join() is called, bridging will magically work because the RX VLANs are already installed everywhere they need to be. This is not to say that the reason for the change in this patch is to satisfy the hellcreek and similar use cases, that is merely a nice side effect. Instead it is to make sja1105 cross-chip links work properly over a DSA link. For context, sja1105 today supports a degenerate form of cross-chip bridging, where the switches are interconnected through their CPU ports ("disjoint trees" topology). There is some code which has been generalized into dsa_8021q_crosschip_link_{add,del}, but it is not enough, and frankly it is impossible to build upon that. Real multi-switch DSA trees, like daisy chains or H trees, which have actual DSA links, do not work. The problem is that sja1105 is unlike mv88e6xxx, and does not have a PVT for cross-chip bridging, which is a table by which the local switch can select the forwarding domain for packets from a certain ingress switch ID and source port. The sja1105 switches cannot parse their own DSA tags, because, well, they don't really have support for DSA tags, it's all VLANs. So to make something like cross-chip bridging between sw0p0 and sw1p0 to work over the sw0p3/sw1p3 DSA link to work with sja1105 in the topology below: | | sw0p0 sw0p1 sw0p2 sw0p3 sw1p3 sw1p2 sw1p1 sw1p0 [ user ] [ user ] [ cpu ] [ dsa ] ---- [ dsa ] [ cpu ] [ user ] [ user ] we need to ask ourselves 2 questions: (1) how should the L2 Forwarding Table be managed? (2) how should the VLAN Lookup Table be managed? i.e. what should prevent packets from going to unwanted ports? Since as mentioned, there is no PVT, the L2 Forwarding Table only contains forwarding rules for local ports. So we can say "all user ports are allowed to forward to all CPU ports and all DSA links". If we allow forwarding to DSA links unconditionally, this means we must prevent forwarding using the VLAN Lookup Table. This is in fact asymmetric with what we do for tag_8021q on ports local to the same switch, and it matters because now that we are making tag_8021q a core DSA feature, we need to hook into .crosschip_bridge_join() to add/remove the tag_8021q VLANs. So for symmetry it makes sense to manage the VLANs for local forwarding in the same way as cross-chip forwarding. Note that there is a very precise reason why tag_8021q hooks into dsa_switch_bridge_join() which acts at the cross-chip notifier level, and not at a higher level such as dsa_port_bridge_join(). We need to install the RX VLAN of the newly joining port into the VLAN table of all the existing ports across the tree that are part of the same bridge, and the notifier already does the iteration through the switches for us. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
4bed397c3e |
net: dsa: ensure during dsa_fdb_offload_notify that dev_hold and dev_put are on the same dev
When (a) "dev" is a bridge port which the DSA switch tree offloads, but is otherwise not a dsa slave (such as a LAG netdev), or (b) "dev" is the bridge net device itself then strange things happen to the dev_hold/dev_put pair: dsa_schedule_work() will still be called with a DSA port that offloads that netdev, but dev_hold() will be called on the non-DSA netdev. Then the "if" condition in dsa_slave_switchdev_event_work() does not pass, because "dev" is not a DSA netdev, so dev_put() is not called. This results in the simple fact that we have a reference counting mismatch on the "dev" net device. This can be seen when we add support for host addresses installed on the bridge net device. ip link add br1 type bridge ip link set br1 address 00:01:02:03:04:05 ip link set swp0 master br1 ip link del br1 [ 968.512278] unregister_netdevice: waiting for br1 to become free. Usage count = 5 It seems foolish to do penny pinching and not add the net_device pointer in the dsa_switchdev_event_work structure, so let's finally do that. As an added bonus, when we start offloading local entries pointing towards the bridge, these will now properly appear as 'offloaded' in 'bridge fdb' (this was not possible before, because 'dev' was assumed to only be a DSA net device): 00:01:02:03:04:05 dev br0 vlan 1 offload master br0 permanent 00:01:02:03:04:05 dev br0 offload master br0 permanent Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
3dc80afc50 |
net: dsa: introduce a separate cross-chip notifier type for host FDBs
DSA treats some bridge FDB entries by trapping them to the CPU port. Currently, the only class of such entries are FDB addresses learnt by the software bridge on a foreign interface. However there are many more to be added: - FDB entries with the is_local flag (for termination) added by the bridge on the user ports (typically containing the MAC address of the bridge port) - FDB entries pointing towards the bridge net device (for termination). Typically these contain the MAC address of the bridge net device. - Static FDB entries installed on a foreign interface that is in the same bridge with a DSA user port. The reason why a separate cross-chip notifier for host FDBs is justified compared to normal FDBs is the same as in the case of host MDBs: the cross-chip notifier matching function in switch.c should avoid installing these entries on routing ports that route towards the targeted switch, but not towards the CPU. This is required in order to have proper support for H-like multi-chip topologies. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
b8e997c490 |
net: dsa: introduce a separate cross-chip notifier type for host MDBs
Commit
|
||
|
7491894532 |
net: dsa: replay a deletion of switchdev objects for ports leaving a bridged LAG
When a DSA switch port leaves a bonding interface that is under a bridge, there might be dangling switchdev objects on that port left behind, because the bridge is not aware that its lower interface (the bond) changed state in any way. Call the bridge replay helpers with adding=false before changing dp->bridge_dev to NULL, because we need to simulate to dsa_slave_port_obj_del() that these notifications were emitted by the bridge. We add this hook to the NETDEV_PRECHANGEUPPER event handler, because we are calling into switchdev (and the __switchdev_handle_port_obj_del fanout helpers expect the upper/lower adjacency lists to still be valid) and PRECHANGEUPPER is the last moment in time when they still are. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
88faba20e2 |
net: dsa: targeted MTU notifiers should only match on one port
dsa_slave_change_mtu() calls dsa_port_mtu_change() twice: - it sends a cross-chip notifier with the MTU of the CPU port which is used to update the DSA links. - it sends one targeted MTU notifier which is supposed to only match the user port on which we are changing the MTU. The "propagate_upstream" variable is used here to bypass the cross-chip notifier system from switch.c But due to a mistake, the second, targeted notifier matches not only on the user port, but also on the DSA link which is a member of the same switch, if that exists. And because the DSA links of the entire dst were programmed in a previous round to the largest_mtu via a "propagate_upstream == true" notification, then the dsa_port_mtu_change(propagate_upstream == false) call that is immediately upcoming will break the MTU on the one DSA link which is chip-wise local to the dp whose MTU is changing right now. Example given this daisy chain topology: sw0p0 sw0p1 sw0p2 sw0p3 sw0p4 [ cpu ] [ user ] [ user ] [ dsa ] [ user ] [ x ] [ ] [ ] [ x ] [ ] | +---------+ | sw1p0 sw1p1 sw1p2 sw1p3 sw1p4 [ user ] [ user ] [ user ] [ dsa ] [ dsa ] [ ] [ ] [ ] [ ] [ x ] ip link set sw0p1 mtu 9000 ip link set sw1p1 mtu 9000 # at this stage, sw0p1 and sw1p1 can talk # to one another using jumbo frames ip link set sw0p2 mtu 1500 # this programs the sw0p3 DSA link first to # the largest_mtu of 9000, then reprograms it to # 1500 with the "propagate_upstream == false" # notifier, breaking communication between # sw0p1 and sw1p1 To escape from this situation, make the targeted match really match on a single port - the user port, and rename the "propagate_upstream" variable to "targeted_match" to clarify the intention and avoid future issues. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
4e50025129 |
net: dsa: generalize overhead for taggers that use both headers and trailers
Some really really weird switches just couldn't decide whether to use a normal or a tail tagger, so they just did both. This creates problems for DSA, because we only have the concept of an 'overhead' which can be applied to the headroom or to the tailroom of the skb (like for example during the central TX reallocation procedure), depending on the value of bool tail_tag, but not to both. We need to generalize DSA to cater for these odd switches by transforming the 'overhead / tail_tag' pair into 'needed_headroom / needed_tailroom'. The DSA master's MTU is increased to account for both. The flow dissector code is modified such that it only calls the DSA adjustment callback if the tagger has a non-zero header length. Taggers are trivially modified to declare either needed_headroom or needed_tailroom, based on the tail_tag value that they currently declare. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
|
010e269f91 |
net: dsa: sync up switchdev objects and port attributes when joining the bridge
If we join an already-created bridge port, such as a bond master interface, then we can miss the initial switchdev notifications emitted by the bridge for this port, while it wasn't offloaded by anybody. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> |