Commit Graph

19 Commits

Author SHA1 Message Date
Mark Brown
baa2cd4170 arm64: stacktrace: Make stack walk callback consistent with generic code
As with the generic arch_stack_walk() code the arm64 stack walk code takes
a callback that is called per stack frame. Currently the arm64 code always
passes a struct stackframe to the callback and the generic code just passes
the pc, however none of the users ever reference anything in the struct
other than the pc value. The arm64 code also uses a return type of int
while the generic code uses a return type of bool though in both cases the
return value is a boolean value and the sense is inverted between the two.

In order to reduce code duplication when arm64 is converted to use
arch_stack_walk() change the signature and return sense of the arm64
specific callback to match that of the generic code.

Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Link: https://lore.kernel.org/r/20200914153409.25097-3-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
2020-09-18 14:24:16 +01:00
Dmitry Safonov
c76898373f arm64: add loglvl to dump_backtrace()
Currently, the log-level of show_stack() depends on a platform
realization.  It creates situations where the headers are printed with
lower log level or higher than the stacktrace (depending on a platform or
user).

Furthermore, it forces the logic decision from user to an architecture
side.  In result, some users as sysrq/kdb/etc are doing tricks with
temporary rising console_loglevel while printing their messages.  And in
result it not only may print unwanted messages from other CPUs, but also
omit printing at all in the unlucky case where the printk() was deferred.

Introducing log-level parameter and KERN_UNSUPPRESSED [1] seems an easier
approach than introducing more printk buffers.  Also, it will consolidate
printings with headers.

Add log level argument to dump_backtrace() as a preparation for
introducing show_stack_loglvl().

[1]: https://lore.kernel.org/lkml/20190528002412.1625-1-dima@arista.com/T/#u

Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200418201944.482088-10-dima@arista.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 09:39:11 -07:00
Yunfeng Ye
bd4298c72b arm64: stacktrace: Factor out some common code into on_stack()
There are some common codes for stack checking, so factors it out into
the function on_stack().

No functional change.

Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Link: https://lore.kernel.org/r/07b3b0e6-3f58-4fed-07ea-7d17b7508948@huawei.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-05-18 18:04:22 +01:00
Mark Rutland
592700f094 arm64: stacktrace: Better handle corrupted stacks
The arm64 stacktrace code is careful to only dereference frame records
in valid stack ranges, ensuring that a corrupted frame record won't
result in a faulting access.

However, it's still possible for corrupt frame records to result in
infinite loops in the stacktrace code, which is also undesirable.

This patch ensures that we complete a stacktrace in finite time, by
keeping track of which stacks we have already completed unwinding, and
verifying that if the next frame record is on the same stack, it is at a
higher address.

As this has turned out to be particularly subtle, comments are added to
explain the procedure.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Tested-by: James Morse <james.morse@arm.com>
Acked-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tengfei Fan <tengfeif@codeaurora.org>
Signed-off-by: Will Deacon <will@kernel.org>
2019-07-22 11:44:15 +01:00
Dave Martin
f3dcbe67ed arm64: stacktrace: Factor out backtrace initialisation
Some common code is required by each stacktrace user to initialise
struct stackframe before the first call to unwind_frame().

In preparation for adding to the common code, this patch factors it
out into a separate function start_backtrace(), and modifies the
stacktrace callers appropriately.

No functional change.

Signed-off-by: Dave Martin <dave.martin@arm.com>
[Mark: drop tsk argument, update more callsites]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
2019-07-22 11:44:08 +01:00
Dave Martin
8caa6e2be7 arm64: stacktrace: Constify stacktrace.h functions
on_accessible_stack() and on_task_stack() shouldn't (and don't)
modify their task argument, so it can be const.

This patch adds the appropriate modifiers. Whitespace violations in the
parameter lists are fixed at the same time.

No functional change.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Dave Martin <dave.martin@arm.com>
[Mark: fixup const location, whitespace]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
2019-07-22 11:44:00 +01:00
Thomas Gleixner
caab277b1d treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 234
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation this program is
  distributed in the hope that it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details you should have received a copy of the gnu general
  public license along with this program if not see http www gnu org
  licenses

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 503 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Enrico Weigelt <info@metux.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204653.811534538@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-19 17:09:07 +02:00
Laura Abbott
8a1ccfbc9e arm64: Add stack information to on_accessible_stack
In preparation for enabling the stackleak plugin on arm64,
we need a way to get the bounds of the current stack. Extend
on_accessible_stack to get this information.

Acked-by: Alexander Popov <alex.popov@linux.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
[will: folded in fix for allmodconfig build breakage w/ sdei]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-07-26 11:36:07 +01:00
Pratyush Anand
9f416319f4 arm64: fix unwind_frame() for filtered out fn for function graph tracing
do_task_stat() calls get_wchan(), which further does unwind_frame().
unwind_frame() restores frame->pc to original value in case function
graph tracer has modified a return address (LR) in a stack frame to hook
a function return. However, if function graph tracer has hit a filtered
function, then we can't unwind it as ftrace_push_return_trace() has
biased the index(frame->graph) with a 'huge negative'
offset(-FTRACE_NOTRACE_DEPTH).

Moreover, arm64 stack walker defines index(frame->graph) as unsigned
int, which can not compare a -ve number.

Similar problem we can have with calling of walk_stackframe() from
save_stack_trace_tsk() or dump_backtrace().

This patch fixes unwind_frame() to test the index for -ve value and
restore index accordingly before we can restore frame->pc.

Reproducer:

cd /sys/kernel/debug/tracing/
echo schedule > set_graph_notrace
echo 1 > options/display-graph
echo wakeup > current_tracer
ps -ef | grep -i agent

Above commands result in:
Unable to handle kernel paging request at virtual address ffff801bd3d1e000
pgd = ffff8003cbe97c00
[ffff801bd3d1e000] *pgd=0000000000000000, *pud=0000000000000000
Internal error: Oops: 96000006 [#1] SMP
[...]
CPU: 5 PID: 11696 Comm: ps Not tainted 4.11.0+ #33
[...]
task: ffff8003c21ba000 task.stack: ffff8003cc6c0000
PC is at unwind_frame+0x12c/0x180
LR is at get_wchan+0xd4/0x134
pc : [<ffff00000808892c>] lr : [<ffff0000080860b8>] pstate: 60000145
sp : ffff8003cc6c3ab0
x29: ffff8003cc6c3ab0 x28: 0000000000000001
x27: 0000000000000026 x26: 0000000000000026
x25: 00000000000012d8 x24: 0000000000000000
x23: ffff8003c1c04000 x22: ffff000008c83000
x21: ffff8003c1c00000 x20: 000000000000000f
x19: ffff8003c1bc0000 x18: 0000fffffc593690
x17: 0000000000000000 x16: 0000000000000001
x15: 0000b855670e2b60 x14: 0003e97f22cf1d0f
x13: 0000000000000001 x12: 0000000000000000
x11: 00000000e8f4883e x10: 0000000154f47ec8
x9 : 0000000070f367c0 x8 : 0000000000000000
x7 : 00008003f7290000 x6 : 0000000000000018
x5 : 0000000000000000 x4 : ffff8003c1c03cb0
x3 : ffff8003c1c03ca0 x2 : 00000017ffe80000
x1 : ffff8003cc6c3af8 x0 : ffff8003d3e9e000

Process ps (pid: 11696, stack limit = 0xffff8003cc6c0000)
Stack: (0xffff8003cc6c3ab0 to 0xffff8003cc6c4000)
[...]
[<ffff00000808892c>] unwind_frame+0x12c/0x180
[<ffff000008305008>] do_task_stat+0x864/0x870
[<ffff000008305c44>] proc_tgid_stat+0x3c/0x48
[<ffff0000082fde0c>] proc_single_show+0x5c/0xb8
[<ffff0000082b27e0>] seq_read+0x160/0x414
[<ffff000008289e6c>] __vfs_read+0x58/0x164
[<ffff00000828b164>] vfs_read+0x88/0x144
[<ffff00000828c2e8>] SyS_read+0x60/0xc0
[<ffff0000080834a0>] __sys_trace_return+0x0/0x4

Fixes: 20380bb390 (arm64: ftrace: fix a stack tracer's output under function graph tracer)
Signed-off-by: Pratyush Anand <panand@redhat.com>
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
[catalin.marinas@arm.com: replace WARN_ON with WARN_ON_ONCE]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-02-23 13:46:38 +00:00
James Morse
f5df269618 arm64: kernel: Add arch-specific SDEI entry code and CPU masking
The Software Delegated Exception Interface (SDEI) is an ARM standard
for registering callbacks from the platform firmware into the OS.
This is typically used to implement RAS notifications.

Such notifications enter the kernel at the registered entry-point
with the register values of the interrupted CPU context. Because this
is not a CPU exception, it cannot reuse the existing entry code.
(crucially we don't implicitly know which exception level we interrupted),

Add the entry point to entry.S to set us up for calling into C code. If
the event interrupted code that had interrupts masked, we always return
to that location. Otherwise we pretend this was an IRQ, and use SDEI's
complete_and_resume call to return to vbar_el1 + offset.

This allows the kernel to deliver signals to user space processes. For
KVM this triggers the world switch, a quick spin round vcpu_run, then
back into the guest, unless there are pending signals.

Add sdei_mask_local_cpu() calls to the smp_send_stop() code, this covers
the panic() code-path, which doesn't invoke cpuhotplug notifiers.

Because we can interrupt entry-from/exit-to another EL, we can't trust the
value in sp_el0 or x29, even if we interrupted the kernel, in this case
the code in entry.S will save/restore sp_el0 and use the value in
__entry_task.

When we have VMAP stacks we can interrupt the stack-overflow test, which
stirs x0 into sp, meaning we have to have our own VMAP stacks. For now
these are allocated when we probe the interface. Future patches will add
refcounting hooks to allow the arch code to allocate them lazily.

Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-13 10:45:17 +00:00
Mark Rutland
872d8327ce arm64: add VMAP_STACK overflow detection
This patch adds stack overflow detection to arm64, usable when vmap'd stacks
are in use.

Overflow is detected in a small preamble executed for each exception entry,
which checks whether there is enough space on the current stack for the general
purpose registers to be saved. If there is not enough space, the overflow
handler is invoked on a per-cpu overflow stack. This approach preserves the
original exception information in ESR_EL1 (and where appropriate, FAR_EL1).

Task and IRQ stacks are aligned to double their size, enabling overflow to be
detected with a single bit test. For example, a 16K stack is aligned to 32K,
ensuring that bit 14 of the SP must be zero. On an overflow (or underflow),
this bit is flipped. Thus, overflow (of less than the size of the stack) can be
detected by testing whether this bit is set.

The overflow check is performed before any attempt is made to access the
stack, avoiding recursive faults (and the loss of exception information
these would entail). As logical operations cannot be performed on the SP
directly, the SP is temporarily swapped with a general purpose register
using arithmetic operations to enable the test to be performed.

This gives us a useful error message on stack overflow, as can be trigger with
the LKDTM overflow test:

[  305.388749] lkdtm: Performing direct entry OVERFLOW
[  305.395444] Insufficient stack space to handle exception!
[  305.395482] ESR: 0x96000047 -- DABT (current EL)
[  305.399890] FAR: 0xffff00000a5e7f30
[  305.401315] Task stack:     [0xffff00000a5e8000..0xffff00000a5ec000]
[  305.403815] IRQ stack:      [0xffff000008000000..0xffff000008004000]
[  305.407035] Overflow stack: [0xffff80003efce4e0..0xffff80003efcf4e0]
[  305.409622] CPU: 0 PID: 1219 Comm: sh Not tainted 4.13.0-rc3-00021-g9636aea #5
[  305.412785] Hardware name: linux,dummy-virt (DT)
[  305.415756] task: ffff80003d051c00 task.stack: ffff00000a5e8000
[  305.419221] PC is at recursive_loop+0x10/0x48
[  305.421637] LR is at recursive_loop+0x38/0x48
[  305.423768] pc : [<ffff00000859f330>] lr : [<ffff00000859f358>] pstate: 40000145
[  305.428020] sp : ffff00000a5e7f50
[  305.430469] x29: ffff00000a5e8350 x28: ffff80003d051c00
[  305.433191] x27: ffff000008981000 x26: ffff000008f80400
[  305.439012] x25: ffff00000a5ebeb8 x24: ffff00000a5ebeb8
[  305.440369] x23: ffff000008f80138 x22: 0000000000000009
[  305.442241] x21: ffff80003ce65000 x20: ffff000008f80188
[  305.444552] x19: 0000000000000013 x18: 0000000000000006
[  305.446032] x17: 0000ffffa2601280 x16: ffff0000081fe0b8
[  305.448252] x15: ffff000008ff546d x14: 000000000047a4c8
[  305.450246] x13: ffff000008ff7872 x12: 0000000005f5e0ff
[  305.452953] x11: ffff000008ed2548 x10: 000000000005ee8d
[  305.454824] x9 : ffff000008545380 x8 : ffff00000a5e8770
[  305.457105] x7 : 1313131313131313 x6 : 00000000000000e1
[  305.459285] x5 : 0000000000000000 x4 : 0000000000000000
[  305.461781] x3 : 0000000000000000 x2 : 0000000000000400
[  305.465119] x1 : 0000000000000013 x0 : 0000000000000012
[  305.467724] Kernel panic - not syncing: kernel stack overflow
[  305.470561] CPU: 0 PID: 1219 Comm: sh Not tainted 4.13.0-rc3-00021-g9636aea #5
[  305.473325] Hardware name: linux,dummy-virt (DT)
[  305.475070] Call trace:
[  305.476116] [<ffff000008088ad8>] dump_backtrace+0x0/0x378
[  305.478991] [<ffff000008088e64>] show_stack+0x14/0x20
[  305.481237] [<ffff00000895a178>] dump_stack+0x98/0xb8
[  305.483294] [<ffff0000080c3288>] panic+0x118/0x280
[  305.485673] [<ffff0000080c2e9c>] nmi_panic+0x6c/0x70
[  305.486216] [<ffff000008089710>] handle_bad_stack+0x118/0x128
[  305.486612] Exception stack(0xffff80003efcf3a0 to 0xffff80003efcf4e0)
[  305.487334] f3a0: 0000000000000012 0000000000000013 0000000000000400 0000000000000000
[  305.488025] f3c0: 0000000000000000 0000000000000000 00000000000000e1 1313131313131313
[  305.488908] f3e0: ffff00000a5e8770 ffff000008545380 000000000005ee8d ffff000008ed2548
[  305.489403] f400: 0000000005f5e0ff ffff000008ff7872 000000000047a4c8 ffff000008ff546d
[  305.489759] f420: ffff0000081fe0b8 0000ffffa2601280 0000000000000006 0000000000000013
[  305.490256] f440: ffff000008f80188 ffff80003ce65000 0000000000000009 ffff000008f80138
[  305.490683] f460: ffff00000a5ebeb8 ffff00000a5ebeb8 ffff000008f80400 ffff000008981000
[  305.491051] f480: ffff80003d051c00 ffff00000a5e8350 ffff00000859f358 ffff00000a5e7f50
[  305.491444] f4a0: ffff00000859f330 0000000040000145 0000000000000000 0000000000000000
[  305.492008] f4c0: 0001000000000000 0000000000000000 ffff00000a5e8350 ffff00000859f330
[  305.493063] [<ffff00000808205c>] __bad_stack+0x88/0x8c
[  305.493396] [<ffff00000859f330>] recursive_loop+0x10/0x48
[  305.493731] [<ffff00000859f358>] recursive_loop+0x38/0x48
[  305.494088] [<ffff00000859f358>] recursive_loop+0x38/0x48
[  305.494425] [<ffff00000859f358>] recursive_loop+0x38/0x48
[  305.494649] [<ffff00000859f358>] recursive_loop+0x38/0x48
[  305.494898] [<ffff00000859f358>] recursive_loop+0x38/0x48
[  305.495205] [<ffff00000859f358>] recursive_loop+0x38/0x48
[  305.495453] [<ffff00000859f358>] recursive_loop+0x38/0x48
[  305.495708] [<ffff00000859f358>] recursive_loop+0x38/0x48
[  305.496000] [<ffff00000859f358>] recursive_loop+0x38/0x48
[  305.496302] [<ffff00000859f358>] recursive_loop+0x38/0x48
[  305.496644] [<ffff00000859f358>] recursive_loop+0x38/0x48
[  305.496894] [<ffff00000859f358>] recursive_loop+0x38/0x48
[  305.497138] [<ffff00000859f358>] recursive_loop+0x38/0x48
[  305.497325] [<ffff00000859f3dc>] lkdtm_OVERFLOW+0x14/0x20
[  305.497506] [<ffff00000859f314>] lkdtm_do_action+0x1c/0x28
[  305.497786] [<ffff00000859f178>] direct_entry+0xe0/0x170
[  305.498095] [<ffff000008345568>] full_proxy_write+0x60/0xa8
[  305.498387] [<ffff0000081fb7f4>] __vfs_write+0x1c/0x128
[  305.498679] [<ffff0000081fcc68>] vfs_write+0xa0/0x1b0
[  305.498926] [<ffff0000081fe0fc>] SyS_write+0x44/0xa0
[  305.499182] Exception stack(0xffff00000a5ebec0 to 0xffff00000a5ec000)
[  305.499429] bec0: 0000000000000001 000000001c4cf5e0 0000000000000009 000000001c4cf5e0
[  305.499674] bee0: 574f4c465245564f 0000000000000000 0000000000000000 8000000080808080
[  305.499904] bf00: 0000000000000040 0000000000000038 fefefeff1b4bc2ff 7f7f7f7f7f7fff7f
[  305.500189] bf20: 0101010101010101 0000000000000000 000000000047a4c8 0000000000000038
[  305.500712] bf40: 0000000000000000 0000ffffa2601280 0000ffffc63f6068 00000000004b5000
[  305.501241] bf60: 0000000000000001 000000001c4cf5e0 0000000000000009 000000001c4cf5e0
[  305.501791] bf80: 0000000000000020 0000000000000000 00000000004b5000 000000001c4cc458
[  305.502314] bfa0: 0000000000000000 0000ffffc63f7950 000000000040a3c4 0000ffffc63f70e0
[  305.502762] bfc0: 0000ffffa2601268 0000000080000000 0000000000000001 0000000000000040
[  305.503207] bfe0: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
[  305.503680] [<ffff000008082fb0>] el0_svc_naked+0x24/0x28
[  305.504720] Kernel Offset: disabled
[  305.505189] CPU features: 0x002082
[  305.505473] Memory Limit: none
[  305.506181] ---[ end Kernel panic - not syncing: kernel stack overflow

This patch was co-authored by Ard Biesheuvel and Mark Rutland.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
2017-08-15 18:36:18 +01:00
Mark Rutland
12964443e8 arm64: add on_accessible_stack()
Both unwind_frame() and dump_backtrace() try to check whether a stack
address is sane to access, with very similar logic. Both will need
updating in order to handle overflow stacks.

Factor out this logic into a helper, so that we can avoid further
duplication when we add overflow stacks.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
2017-08-15 18:36:12 +01:00
Mark Rutland
f60fe78f13 arm64: use an irq stack pointer
We allocate our IRQ stacks using a percpu array. This allows us to generate our
IRQ stack pointers with adr_this_cpu, but bloats the kernel Image with the boot
CPU's IRQ stack. Additionally, these are packed with other percpu variables,
and aren't guaranteed to have guard pages.

When we enable VMAP_STACK we'll want to vmap our IRQ stacks also, in order to
provide guard pages and to permit more stringent alignment requirements. Doing
so will require that we use a percpu pointer to each IRQ stack, rather than
allocating a percpu IRQ stack in the kernel image.

This patch updates our IRQ stack code to use a percpu pointer to the base of
each IRQ stack. This will allow us to change the way the stack is allocated
with minimal changes elsewhere. In some cases we may try to backtrace before
the IRQ stack pointers are initialised, so on_irq_stack() is updated to account
for this.

In testing with cyclictest, there was no measureable difference between using
adr_this_cpu (for irq_stack) and ldr_this_cpu (for irq_stack_ptr) in the IRQ
entry path.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
2017-08-15 18:35:54 +01:00
Mark Rutland
f60ad4edcf arm64: clean up irq stack definitions
Before we add yet another stack to the kernel, it would be nice to
ensure that we consistently organise stack definitions and related
helper functions.

This patch moves the basic IRQ stack defintions to <asm/memory.h> to
live with their task stack counterparts. Helpers used for unwinding are
moved into <asm/stacktrace.h>, where subsequent patches will add helpers
for other stacks. Includes are fixed up accordingly.

This patch is a pure refactoring -- there should be no functional
changes as a result of this patch.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
2017-08-15 18:35:14 +01:00
Ard Biesheuvel
31e43ad3b7 arm64: unwind: remove sp from struct stackframe
The unwind code sets the sp member of struct stackframe to
'frame pointer + 0x10' unconditionally, without regard for whether
doing so produces a legal value. So let's simply remove it now that
we have stopped using it anyway.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
2017-08-09 14:10:29 +01:00
Kefeng Wang
1149aad10b arm64: Add dump_backtrace() in show_regs
Generic code expects show_regs() to dump the stack, but arm64's
show_regs() does not. This makes it hard to debug softlockups and
other issues that result in show_regs() being called.

This patch updates arm64's show_regs() to dump the stack, as common
code expects.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
[will: folded in bug_handler fix from mrutland]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-05-30 11:07:42 +01:00
AKASHI Takahiro
20380bb390 arm64: ftrace: fix a stack tracer's output under function graph tracer
Function graph tracer modifies a return address (LR) in a stack frame
to hook a function return. This will result in many useless entries
(return_to_handler) showing up in
 a) a stack tracer's output
 b) perf call graph (with perf record -g)
 c) dump_backtrace (at panic et al.)

For example, in case of a),
  $ echo function_graph > /sys/kernel/debug/tracing/current_tracer
  $ echo 1 > /proc/sys/kernel/stack_trace_enabled
  $ cat /sys/kernel/debug/tracing/stack_trace
        Depth    Size   Location    (54 entries)
        -----    ----   --------
  0)     4504      16   gic_raise_softirq+0x28/0x150
  1)     4488      80   smp_cross_call+0x38/0xb8
  2)     4408      48   return_to_handler+0x0/0x40
  3)     4360      32   return_to_handler+0x0/0x40
  ...

In case of b),
  $ echo function_graph > /sys/kernel/debug/tracing/current_tracer
  $ perf record -e mem:XXX:x -ag -- sleep 10
  $ perf report
                  ...
                  |          |          |--0.22%-- 0x550f8
                  |          |          |          0x10888
                  |          |          |          el0_svc_naked
                  |          |          |          sys_openat
                  |          |          |          return_to_handler
                  |          |          |          return_to_handler
                  ...

In case of c),
  $ echo function_graph > /sys/kernel/debug/tracing/current_tracer
  $ echo c > /proc/sysrq-trigger
  ...
  Call trace:
  [<ffffffc00044d3ac>] sysrq_handle_crash+0x24/0x30
  [<ffffffc000092250>] return_to_handler+0x0/0x40
  [<ffffffc000092250>] return_to_handler+0x0/0x40
  ...

This patch replaces such entries with real addresses preserved in
current->ret_stack[] at unwind_frame(). This way, we can cover all
the cases.

Reviewed-by: Jungseok Lee <jungseoklee85@gmail.com>
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
[will: fixed minor context changes conflicting with irq stack bits]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-12-21 17:26:02 +00:00
AKASHI Takahiro
fe13f95b72 arm64: pass a task parameter to unwind_frame()
Function graph tracer modifies a return address (LR) in a stack frame
to hook a function's return. This will result in many useless entries
(return_to_handler) showing up in a call stack list.
We will fix this problem in a later patch ("arm64: ftrace: fix a stack
tracer's output under function graph tracer"). But since real return
addresses are saved in ret_stack[] array in struct task_struct,
unwind functions need to be notified of, in addition to a stack pointer
address, which task is being traced in order to find out real return
addresses.

This patch extends unwind functions' interfaces by adding an extra
argument of a pointer to task_struct.

Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-12-21 17:26:01 +00:00
Catalin Marinas
60ffc30d56 arm64: Exception handling
The patch contains the exception entry code (kernel/entry.S), pt_regs
structure and related accessors, undefined instruction trapping and
stack tracing.

AArch64 Linux kernel (including kernel threads) runs in EL1 mode using
the SP1 stack. The vectors don't have a fixed address, only alignment
(2^11) requirements.

Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
2012-09-17 10:24:46 +01:00