The EFI_SYSTEM_TABLES status bit is set by all EFI supporting architectures
upon discovery of the EFI system table, but the bit is never tested in any
code we have in the tree. So remove it.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Luck, Tony <tony.luck@intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1461614832-17633-2-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The variable_matches() function can currently read "var_name[len]", for
example when:
- var_name[0] == 'a',
- len == 1
- match_name points to the NUL-terminated string "ab".
This function is supposed to accept "var_name" inputs that are not
NUL-terminated (hence the "len" parameter"). Document the function, and
access "var_name[*match]" only if "*match" is smaller than "len".
Reported-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Cc: Peter Jones <pjones@redhat.com>
Cc: Matthew Garrett <mjg59@coreos.com>
Cc: Jason Andryuk <jandryuk@gmail.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: <stable@vger.kernel.org> # v3.10+
Link: http://thread.gmane.org/gmane.comp.freedesktop.xorg.drivers.intel/86906
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
memblock_remove() takes a phys_addr_t, which may be narrower than 64 bits,
causing a harmless warning:
drivers/firmware/efi/arm-init.c: In function 'reserve_regions':
include/linux/kernel.h:29:20: error: large integer implicitly truncated to unsigned type [-Werror=overflow]
#define ULLONG_MAX (~0ULL)
^
drivers/firmware/efi/arm-init.c:152:21: note: in expansion of macro 'ULLONG_MAX'
memblock_remove(0, ULLONG_MAX);
This adds an explicit typecast to avoid the warning
Fixes: 500899c2cc ("efi: ARM/arm64: ignore DT memory nodes instead of removing them")
Acked-by Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Will Deacon <will.deacon@arm.com>
There are two problems with the UEFI stub DT memory node removal
routine:
- it deletes nodes as it traverses the tree, which happens to work
but is not supported, as deletion invalidates the node iterator;
- deleting memory nodes entirely may discard annotations in the form
of additional properties on the nodes.
Since the discovery of DT memory nodes occurs strictly before the
UEFI init sequence, we can simply clear the memblock memory table
before parsing the UEFI memory map. This way, it is no longer
necessary to remove the nodes, so we can remove that logic from the
stub as well.
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Acked-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: David Daney <david.daney@cavium.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit 4dffbfc48d ("arm64/efi: mark UEFI reserved regions as
MEMBLOCK_NOMAP") updated the mapping logic of both the RuntimeServices
regions as well as the kernel's copy of the UEFI memory map to set the
MEMBLOCK_NOMAP flag, which causes these regions to be omitted from the
kernel direct mapping, and from being covered by a struct page.
For the RuntimeServices regions, this is an obvious win, since the contents
of these regions have significance to the firmware executable code itself,
and are mapped in the EFI page tables using attributes that are described in
the UEFI memory map, and which may differ from the attributes we use for
mapping system RAM. It also prevents the contents from being modified
inadvertently, since the EFI page tables are only live during runtime
service invocations.
None of these concerns apply to the allocation that covers the UEFI memory
map, since it is entirely owned by the kernel. Setting the MEMBLOCK_NOMAP on
the region did allow us to use ioremap_cache() to map it both on arm64 and
on ARM, since the latter does not allow ioremap_cache() to be used on
regions that are covered by a struct page.
The ioremap_cache() on ARM restriction will be lifted in the v4.7 timeframe,
but in the mean time, it has been reported that commit 4dffbfc48d causes
a regression on 64k granule kernels. This is due to the fact that, given
the 64 KB page size, the region that we end up removing from the kernel
direct mapping is rounded up to 64 KB, and this 64 KB page frame may be
shared with the initrd when booting via GRUB (which does not align its
EFI_LOADER_DATA allocations to 64 KB like the stub does). This will crash
the kernel as soon as it tries to access the initrd.
Since the issue is specific to arm64, revert back to memblock_reserve()'ing
the UEFI memory map when running on arm64. This is a temporary fix for v4.5
and v4.6, and will be superseded in the v4.7 timeframe when we will be able
to move back to memblock_reserve() unconditionally.
Fixes: 4dffbfc48d ("arm64/efi: mark UEFI reserved regions as MEMBLOCK_NOMAP")
Reported-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Jeremy Linton <jeremy.linton@arm.com>
Cc: Mark Langsdorf <mlangsdo@redhat.com>
Cc: <stable@vger.kernel.org> # v4.5
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
kcov provides code coverage collection for coverage-guided fuzzing
(randomized testing). Coverage-guided fuzzing is a testing technique
that uses coverage feedback to determine new interesting inputs to a
system. A notable user-space example is AFL
(http://lcamtuf.coredump.cx/afl/). However, this technique is not
widely used for kernel testing due to missing compiler and kernel
support.
kcov does not aim to collect as much coverage as possible. It aims to
collect more or less stable coverage that is function of syscall inputs.
To achieve this goal it does not collect coverage in soft/hard
interrupts and instrumentation of some inherently non-deterministic or
non-interesting parts of kernel is disbled (e.g. scheduler, locking).
Currently there is a single coverage collection mode (tracing), but the
API anticipates additional collection modes. Initially I also
implemented a second mode which exposes coverage in a fixed-size hash
table of counters (what Quentin used in his original patch). I've
dropped the second mode for simplicity.
This patch adds the necessary support on kernel side. The complimentary
compiler support was added in gcc revision 231296.
We've used this support to build syzkaller system call fuzzer, which has
found 90 kernel bugs in just 2 months:
https://github.com/google/syzkaller/wiki/Found-Bugs
We've also found 30+ bugs in our internal systems with syzkaller.
Another (yet unexplored) direction where kcov coverage would greatly
help is more traditional "blob mutation". For example, mounting a
random blob as a filesystem, or receiving a random blob over wire.
Why not gcov. Typical fuzzing loop looks as follows: (1) reset
coverage, (2) execute a bit of code, (3) collect coverage, repeat. A
typical coverage can be just a dozen of basic blocks (e.g. an invalid
input). In such context gcov becomes prohibitively expensive as
reset/collect coverage steps depend on total number of basic
blocks/edges in program (in case of kernel it is about 2M). Cost of
kcov depends only on number of executed basic blocks/edges. On top of
that, kernel requires per-thread coverage because there are always
background threads and unrelated processes that also produce coverage.
With inlined gcov instrumentation per-thread coverage is not possible.
kcov exposes kernel PCs and control flow to user-space which is
insecure. But debugfs should not be mapped as user accessible.
Based on a patch by Quentin Casasnovas.
[akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode']
[akpm@linux-foundation.org: unbreak allmodconfig]
[akpm@linux-foundation.org: follow x86 Makefile layout standards]
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Kees Cook <keescook@google.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Drysdale <drysdale@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This should make no difference on any architecture, as x86's historical
is_compat_task behavior really did check whether the calling syscall was
a compat syscall. x86's is_compat_task is going away, though.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull EFI updates from Ingo Molnar:
"The main changes are:
- Use separate EFI page tables when executing EFI firmware code.
This isolates the EFI context from the rest of the kernel, which
has security and general robustness advantages. (Matt Fleming)
- Run regular UEFI firmware with interrupts enabled. This is already
the status quo under other OSs. (Ard Biesheuvel)
- Various x86 EFI enhancements, such as the use of non-executable
attributes for EFI memory mappings. (Sai Praneeth Prakhya)
- Various arm64 UEFI enhancements. (Ard Biesheuvel)
- ... various fixes and cleanups.
The separate EFI page tables feature got delayed twice already,
because it's an intrusive change and we didn't feel confident about
it - third time's the charm we hope!"
* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
x86/mm/pat: Fix boot crash when 1GB pages are not supported by the CPU
x86/efi: Only map kernel text for EFI mixed mode
x86/efi: Map EFI_MEMORY_{XP,RO} memory region bits to EFI page tables
x86/mm/pat: Don't implicitly allow _PAGE_RW in kernel_map_pages_in_pgd()
efi/arm*: Perform hardware compatibility check
efi/arm64: Check for h/w support before booting a >4 KB granular kernel
efi/arm: Check for LPAE support before booting a LPAE kernel
efi/arm-init: Use read-only early mappings
efi/efistub: Prevent __init annotations from being used
arm64/vmlinux.lds.S: Handle .init.rodata.xxx and .init.bss sections
efi/arm64: Drop __init annotation from handle_kernel_image()
x86/mm/pat: Use _PAGE_GLOBAL bit for EFI page table mappings
efi/runtime-wrappers: Run UEFI Runtime Services with interrupts enabled
efi: Reformat GUID tables to follow the format in UEFI spec
efi: Add Persistent Memory type name
efi: Add NV memory attribute
x86/efi: Show actual ending addresses in efi_print_memmap
x86/efi/bgrt: Don't ignore the BGRT if the 'valid' bit is 0
efivars: Use to_efivar_entry
efi: Runtime-wrapper: Get rid of the rtc_lock spinlock
...
Pull 'objtool' stack frame validation from Ingo Molnar:
"This tree adds a new kernel build-time object file validation feature
(ONFIG_STACK_VALIDATION=y): kernel stack frame correctness validation.
It was written by and is maintained by Josh Poimboeuf.
The motivation: there's a category of hard to find kernel bugs, most
of them in assembly code (but also occasionally in C code), that
degrades the quality of kernel stack dumps/backtraces. These bugs are
hard to detect at the source code level. Such bugs result in
incorrect/incomplete backtraces most of time - but can also in some
rare cases result in crashes or other undefined behavior.
The build time correctness checking is done via the new 'objtool'
user-space utility that was written for this purpose and which is
hosted in the kernel repository in tools/objtool/. The tool's (very
simple) UI and source code design is shaped after Git and perf and
shares quite a bit of infrastructure with tools/perf (which tooling
infrastructure sharing effort got merged via perf and is already
upstream). Objtool follows the well-known kernel coding style.
Objtool does not try to check .c or .S files, it instead analyzes the
resulting .o generated machine code from first principles: it decodes
the instruction stream and interprets it. (Right now objtool supports
the x86-64 architecture.)
From tools/objtool/Documentation/stack-validation.txt:
"The kernel CONFIG_STACK_VALIDATION option enables a host tool named
objtool which runs at compile time. It has a "check" subcommand
which analyzes every .o file and ensures the validity of its stack
metadata. It enforces a set of rules on asm code and C inline
assembly code so that stack traces can be reliable.
Currently it only checks frame pointer usage, but there are plans to
add CFI validation for C files and CFI generation for asm files.
For each function, it recursively follows all possible code paths
and validates the correct frame pointer state at each instruction.
It also follows code paths involving special sections, like
.altinstructions, __jump_table, and __ex_table, which can add
alternative execution paths to a given instruction (or set of
instructions). Similarly, it knows how to follow switch statements,
for which gcc sometimes uses jump tables."
When this new kernel option is enabled (it's disabled by default), the
tool, if it finds any suspicious assembly code pattern, outputs
warnings in compiler warning format:
warning: objtool: rtlwifi_rate_mapping()+0x2e7: frame pointer state mismatch
warning: objtool: cik_tiling_mode_table_init()+0x6ce: call without frame pointer save/setup
warning: objtool:__schedule()+0x3c0: duplicate frame pointer save
warning: objtool:__schedule()+0x3fd: sibling call from callable instruction with changed frame pointer
... so that scripts that pick up compiler warnings will notice them.
All known warnings triggered by the tool are fixed by the tree, most
of the commits in fact prepare the kernel to be warning-free. Most of
them are bugfixes or cleanups that stand on their own, but there are
also some annotations of 'special' stack frames for justified cases
such entries to JIT-ed code (BPF) or really special boot time code.
There are two other long-term motivations behind this tool as well:
- To improve the quality and reliability of kernel stack frames, so
that they can be used for optimized live patching.
- To create independent infrastructure to check the correctness of
CFI stack frames at build time. CFI debuginfo is notoriously
unreliable and we cannot use it in the kernel as-is without extra
checking done both on the kernel side and on the build side.
The quality of kernel stack frames matters to debuggability as well,
so IMO we can merge this without having to consider the live patching
or CFI debuginfo angle"
* 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
objtool: Only print one warning per function
objtool: Add several performance improvements
tools: Copy hashtable.h into tools directory
objtool: Fix false positive warnings for functions with multiple switch statements
objtool: Rename some variables and functions
objtool: Remove superflous INIT_LIST_HEAD
objtool: Add helper macros for traversing instructions
objtool: Fix false positive warnings related to sibling calls
objtool: Compile with debugging symbols
objtool: Detect infinite recursion
objtool: Prevent infinite recursion in noreturn detection
objtool: Detect and warn if libelf is missing and don't break the build
tools: Support relative directory path for 'O='
objtool: Support CROSS_COMPILE
x86/asm/decoder: Use explicitly signed chars
objtool: Enable stack metadata validation on 64-bit x86
objtool: Add CONFIG_STACK_VALIDATION option
objtool: Add tool to perform compile-time stack metadata validation
x86/kprobes: Mark kretprobe_trampoline() stack frame as non-standard
sched: Always inline context_switch()
...
- Initial page table creation reworked to avoid breaking large block
mappings (huge pages) into smaller ones. The ARM architecture requires
break-before-make in such cases to avoid TLB conflicts but that's not
always possible on live page tables
- Kernel virtual memory layout: the kernel image is no longer linked to
the bottom of the linear mapping (PAGE_OFFSET) but at the bottom of
the vmalloc space, allowing the kernel to be loaded (nearly) anywhere
in physical RAM
- Kernel ASLR: position independent kernel Image and modules being
randomly mapped in the vmalloc space with the randomness is provided
by UEFI (efi_get_random_bytes() patches merged via the arm64 tree,
acked by Matt Fleming)
- Implement relative exception tables for arm64, required by KASLR
(initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c but
actual x86 conversion to deferred to 4.7 because of the merge
dependencies)
- Support for the User Access Override feature of ARMv8.2: this allows
uaccess functions (get_user etc.) to be implemented using LDTR/STTR
instructions. Such instructions, when run by the kernel, perform
unprivileged accesses adding an extra level of protection. The
set_fs() macro is used to "upgrade" such instruction to privileged
accesses via the UAO bit
- Half-precision floating point support (part of ARMv8.2)
- Optimisations for CPUs with or without a hardware prefetcher (using
run-time code patching)
- copy_page performance improvement to deal with 128 bytes at a time
- Sanity checks on the CPU capabilities (via CPUID) to prevent
incompatible secondary CPUs from being brought up (e.g. weird
big.LITTLE configurations)
- valid_user_regs() reworked for better sanity check of the sigcontext
information (restored pstate information)
- ACPI parking protocol implementation
- CONFIG_DEBUG_RODATA enabled by default
- VDSO code marked as read-only
- DEBUG_PAGEALLOC support
- ARCH_HAS_UBSAN_SANITIZE_ALL enabled
- Erratum workaround Cavium ThunderX SoC
- set_pte_at() fix for PROT_NONE mappings
- Code clean-ups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW6u95AAoJEGvWsS0AyF7xMyoP/3x2O6bgreSQ84BdO4JChN4+
RQ9OVdX8u2ItO9sgaCY2AA6KoiBuEjGmPl/XRuK0I7DpODTtRjEXQHuNNhz8AelC
hn4AEVqamY6Z5BzHFIjs8G9ydEbq+OXcKWEdwSsBhP/cMvI7ss3dps1f5iNPT5Vv
50E/kUz+aWYy7pKlB18VDV7TUOA3SuYuGknWV8+bOY5uPb8hNT3Y3fHOg/EuNNN3
DIuYH1V7XQkXtF+oNVIGxzzJCXULBE7egMcWAm1ydSOHK0JwkZAiL7OhI7ceVD0x
YlDxBnqmi4cgzfBzTxITAhn3OParwN6udQprdF1WGtFF6fuY2eRDSH/L/iZoE4DY
OulL951OsBtF8YC3+RKLk908/0bA2Uw8ftjCOFJTYbSnZBj1gWK41VkCYMEXiHQk
EaN8+2Iw206iYIoyvdjGCLw7Y0oakDoVD9vmv12SOaHeQljTkjoN8oIlfjjKTeP7
3AXj5v9BDMDVh40nkVayysRNvqe48Kwt9Wn0rhVTLxwdJEiFG/OIU6HLuTkretdN
dcCNFSQrRieSFHpBK9G0vKIpIss1ZwLm8gjocVXH7VK4Mo/TNQe4p2/wAF29mq4r
xu1UiXmtU3uWxiqZnt72LOYFCarQ0sFA5+pMEvF5W+NrVB0wGpXhcwm+pGsIi4IM
LepccTgykiUBqW5TRzPz
=/oS+
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"Here are the main arm64 updates for 4.6. There are some relatively
intrusive changes to support KASLR, the reworking of the kernel
virtual memory layout and initial page table creation.
Summary:
- Initial page table creation reworked to avoid breaking large block
mappings (huge pages) into smaller ones. The ARM architecture
requires break-before-make in such cases to avoid TLB conflicts but
that's not always possible on live page tables
- Kernel virtual memory layout: the kernel image is no longer linked
to the bottom of the linear mapping (PAGE_OFFSET) but at the bottom
of the vmalloc space, allowing the kernel to be loaded (nearly)
anywhere in physical RAM
- Kernel ASLR: position independent kernel Image and modules being
randomly mapped in the vmalloc space with the randomness is
provided by UEFI (efi_get_random_bytes() patches merged via the
arm64 tree, acked by Matt Fleming)
- Implement relative exception tables for arm64, required by KASLR
(initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c
but actual x86 conversion to deferred to 4.7 because of the merge
dependencies)
- Support for the User Access Override feature of ARMv8.2: this
allows uaccess functions (get_user etc.) to be implemented using
LDTR/STTR instructions. Such instructions, when run by the kernel,
perform unprivileged accesses adding an extra level of protection.
The set_fs() macro is used to "upgrade" such instruction to
privileged accesses via the UAO bit
- Half-precision floating point support (part of ARMv8.2)
- Optimisations for CPUs with or without a hardware prefetcher (using
run-time code patching)
- copy_page performance improvement to deal with 128 bytes at a time
- Sanity checks on the CPU capabilities (via CPUID) to prevent
incompatible secondary CPUs from being brought up (e.g. weird
big.LITTLE configurations)
- valid_user_regs() reworked for better sanity check of the
sigcontext information (restored pstate information)
- ACPI parking protocol implementation
- CONFIG_DEBUG_RODATA enabled by default
- VDSO code marked as read-only
- DEBUG_PAGEALLOC support
- ARCH_HAS_UBSAN_SANITIZE_ALL enabled
- Erratum workaround Cavium ThunderX SoC
- set_pte_at() fix for PROT_NONE mappings
- Code clean-ups"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (99 commits)
arm64: kasan: Fix zero shadow mapping overriding kernel image shadow
arm64: kasan: Use actual memory node when populating the kernel image shadow
arm64: Update PTE_RDONLY in set_pte_at() for PROT_NONE permission
arm64: Fix misspellings in comments.
arm64: efi: add missing frame pointer assignment
arm64: make mrs_s prefixing implicit in read_cpuid
arm64: enable CONFIG_DEBUG_RODATA by default
arm64: Rework valid_user_regs
arm64: mm: check at build time that PAGE_OFFSET divides the VA space evenly
arm64: KVM: Move kvm_call_hyp back to its original localtion
arm64: mm: treat memstart_addr as a signed quantity
arm64: mm: list kernel sections in order
arm64: lse: deal with clobbered IP registers after branch via PLT
arm64: mm: dump: Use VA_START directly instead of private LOWEST_ADDR
arm64: kconfig: add submenu for 8.2 architectural features
arm64: kernel: acpi: fix ioremap in ACPI parking protocol cpu_postboot
arm64: Add support for Half precision floating point
arm64: Remove fixmap include fragility
arm64: Add workaround for Cavium erratum 27456
arm64: mm: Mark .rodata as RO
...
Code which runs outside the kernel's normal mode of operation often does
unusual things which can cause a static analysis tool like objtool to
emit false positive warnings:
- boot image
- vdso image
- relocation
- realmode
- efi
- head
- purgatory
- modpost
Set OBJECT_FILES_NON_STANDARD for their related files and directories,
which will tell objtool to skip checking them. It's ok to skip them
because they don't affect runtime stack traces.
Also skip the following code which does the right thing with respect to
frame pointers, but is too "special" to be validated by a tool:
- entry
- mcount
Also skip the test_nx module because it modifies its exception handling
table at runtime, which objtool can't understand. Fortunately it's
just a test module so it doesn't matter much.
Currently objtool is the only user of OBJECT_FILES_NON_STANDARD, but it
might eventually be useful for other tools.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: Pedro Alves <palves@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/366c080e3844e8a5b6a0327dc7e8c2b90ca3baeb.1456719558.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since arm64 does not use a decompressor that supplies an execution
environment where it is feasible to some extent to provide a source of
randomness, the arm64 KASLR kernel depends on the bootloader to supply
some random bits in the /chosen/kaslr-seed DT property upon kernel entry.
On UEFI systems, we can use the EFI_RNG_PROTOCOL, if supplied, to obtain
some random bits. At the same time, use it to randomize the offset of the
kernel Image in physical memory.
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Before we can move the command line processing before the allocation
of the kernel, which is required for detecting the 'nokaslr' option
which controls that allocation, move the converted command line higher
up in memory, to prevent it from interfering with the kernel itself.
Since x86 needs the address to fit in 32 bits, use UINT_MAX as the upper
bound there. Otherwise, use ULONG_MAX (i.e., no limit)
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This implements efi_random_alloc(), which allocates a chunk of memory of
a certain size at a certain alignment, and uses the random_seed argument
it receives to randomize the address of the allocation.
This is implemented by iterating over the UEFI memory map, counting the
number of suitable slots (aligned offsets) within each region, and picking
a random number between 0 and 'number of slots - 1' to select the slot,
This should guarantee that each possible offset is chosen equally likely.
Suggested-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This exposes the firmware's implementation of EFI_RNG_PROTOCOL via a new
function efi_get_random_bytes().
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Before proceeding with relocating the kernel and parsing the command line,
insert a call to check_platform_features() to allow an arch specific check
to be performed whether the current kernel can execute on the current
hardware.
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Reviewed-by: Jeremy Linton <jeremy.linton@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1455712566-16727-11-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A kernel built with support for a page size that is not supported by the
hardware it runs on cannot boot to a state where it can inform the user
about the failure.
If we happen to be booting via UEFI, we can fail gracefully so check
if the currently configured page size is supported by the hardware before
entering the kernel proper. Note that UEFI mandates support for 4 KB pages,
so in that case, no check is needed.
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Reviewed-by: Jeremy Linton <jeremy.linton@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1455712566-16727-10-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A kernel built with support for LPAE cannot boot to a state where it
can inform the user about if it has to fail due to missing LPAE support
in the hardware.
If we happen to be booting via UEFI, we can fail gracefully so check
for LPAE support in the hardware on CONFIG_ARM_LPAE builds before
entering the kernel proper.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Reviewed-by: Jeremy Linton <jeremy.linton@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1455712566-16727-9-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The early mappings of the EFI system table contents and the UEFI memory
map are read-only from the OS point of view. So map them read-only to
protect them from inadvertent modification.
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1455712566-16727-8-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
__init annotations should not be used in the EFI stub, since the code is
either included in the decompressor (x86, ARM) where they have no effect,
or the whole stub is __init annotated at the section level (arm64), by
renaming the sections.
In the second case the __init annotations will be redundant, and will
result in section names like .init.init.text, and our linker script does
not expect that.
So un-#define __init so that its inadvertent use will force a build error.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1455712566-16727-7-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
After moving arm64-stub.c to libstub/, all of its sections are emitted
as .init.xxx sections automatically, and the __init annotation of
handle_kernel_image() causes it to end up in .init.init.text, which is
not recognized as an __init section by the linker scripts. So drop the
annotation.
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1455712566-16727-5-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The UEFI spec allows Runtime Services to be invoked with interrupts
enabled. The only reason we were disabling interrupts was to prevent
recursive calls into the services on the same CPU, which will lead to
deadlock. However, the only context where such invocations may occur
legally is from efi-pstore via efivars, and that code has been updated
to call a non-blocking alternative when invoked from a non-interruptible
context.
So instead, update the ordinary, blocking UEFI Runtime Services wrappers
to execute with interrupts enabled. This aims to prevent excessive interrupt
latencies on uniprocessor platforms with slow variable stores.
Note that other OSes such as Windows call UEFI Runtime Services with
interrupts enabled as well.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1455712566-16727-3-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Laszlo explains why this is a good idea,
'This is because the pstore filesystem can be backed by UEFI variables,
and (for example) a crash might dump the last kilobytes of the dmesg
into a number of pstore entries, each entry backed by a separate UEFI
variable in the above GUID namespace, and with a variable name
according to the above pattern.
Please see "drivers/firmware/efi/efi-pstore.c".
While this patch series will not prevent the user from deleting those
UEFI variables via the pstore filesystem (i.e., deleting a pstore fs
entry will continue to delete the backing UEFI variable), I think it
would be nice to preserve the possibility for the sysadmin to delete
Linux-created UEFI variables that carry portions of the crash log,
*without* having to mount the pstore filesystem.'
There's also no chance of causing machines to become bricked by
deleting these variables, which is the whole purpose of excluding
things from the whitelist.
Use the LINUX_EFI_CRASH_GUID guid and a wildcard '*' for the match so
that we don't have to update the string in the future if new variable
name formats are created for crash dump variables.
Reported-by: Laszlo Ersek <lersek@redhat.com>
Acked-by: Peter Jones <pjones@redhat.com>
Tested-by: Peter Jones <pjones@redhat.com>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: "Lee, Chun-Yi" <jlee@suse.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
"rm -rf" is bricking some peoples' laptops because of variables being
used to store non-reinitializable firmware driver data that's required
to POST the hardware.
These are 100% bugs, and they need to be fixed, but in the mean time it
shouldn't be easy to *accidentally* brick machines.
We have to have delete working, and picking which variables do and don't
work for deletion is quite intractable, so instead make everything
immutable by default (except for a whitelist), and make tools that
aren't quite so broad-spectrum unset the immutable flag.
Signed-off-by: Peter Jones <pjones@redhat.com>
Tested-by: Lee, Chun-Yi <jlee@suse.com>
Acked-by: Matthew Garrett <mjg59@coreos.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
All the variables in this list so far are defined to be in the global
namespace in the UEFI spec, so this just further ensures we're
validating the variables we think we are.
Including the guid for entries will become more important in future
patches when we decide whether or not to allow deletion of variables
based on presence in this list.
Signed-off-by: Peter Jones <pjones@redhat.com>
Tested-by: Lee, Chun-Yi <jlee@suse.com>
Acked-by: Matthew Garrett <mjg59@coreos.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Actually translate from ucs2 to utf8 before doing the test, and then
test against our other utf8 data, instead of fudging it.
Signed-off-by: Peter Jones <pjones@redhat.com>
Acked-by: Matthew Garrett <mjg59@coreos.com>
Tested-by: Lee, Chun-Yi <jlee@suse.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Translate EFI's UCS-2 variable names to UTF-8 instead of just assuming
all variable names fit in ASCII.
Signed-off-by: Peter Jones <pjones@redhat.com>
Acked-by: Matthew Garrett <mjg59@coreos.com>
Tested-by: Lee, Chun-Yi <jlee@suse.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
The rtc_lock spinlock aims to serialize access to the CMOS RTC
between the UEFI firmware and the kernel drivers that use it
directly. However, x86 is the only arch that performs such
direct accesses, and that never uses the time related UEFI
runtime services. Since no other UEFI enlightened architectures
have a legcay CMOS RTC anyway, we can remove the rtc_lock
spinlock entirely.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1454364428-494-7-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This code is long gone, so remove the comment as well.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1454364428-494-6-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The function efi_query_variable_store() may be invoked by
efivar_entry_set_nonblocking(), which itself takes care to only
call a non-blocking version of the SetVariable() runtime
wrapper. However, efi_query_variable_store() may call the
SetVariable() wrapper directly, as well as the wrapper for
QueryVariableInfo(), both of which could deadlock in the same
way we are trying to prevent by calling
efivar_entry_set_nonblocking() in the first place.
So instead, modify efi_query_variable_store() to use the
non-blocking variants of QueryVariableInfo() (and give up rather
than free up space if the available space is below
EFI_MIN_RESERVE) if invoked with the 'nonblocking' argument set
to true.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1454364428-494-5-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This introduces a new runtime wrapper for the
QueryVariableInfo() UEFI Runtime Service, which gives up
immediately rather than spins on failure to grab the efi_runtime
spinlock.
This is required in the non-blocking path of the efi-pstore
code.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1454364428-494-4-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 6d80dba1c9 ("efi: Provide a non-blocking SetVariable()
operation") implemented a non-blocking alternative for the UEFI
SetVariable() invocation performed by efivars, since it may
occur in atomic context. However, this version of the function
was never exposed via the efivars struct, so the non-blocking
versions was not actually callable. Fix that.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Fixes: 6d80dba1c9 ("efi: Provide a non-blocking SetVariable() operation")
Link: http://lkml.kernel.org/r/1454364428-494-2-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
UBSAN uses compile-time instrumentation to catch undefined behavior
(UB). Compiler inserts code that perform certain kinds of checks before
operations that could cause UB. If check fails (i.e. UB detected)
__ubsan_handle_* function called to print error message.
So the most of the work is done by compiler. This patch just implements
ubsan handlers printing errors.
GCC has this capability since 4.9.x [1] (see -fsanitize=undefined
option and its suboptions).
However GCC 5.x has more checkers implemented [2].
Article [3] has a bit more details about UBSAN in the GCC.
[1] - https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/Debugging-Options.html
[2] - https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html
[3] - http://developerblog.redhat.com/2014/10/16/gcc-undefined-behavior-sanitizer-ubsan/
Issues which UBSAN has found thus far are:
Found bugs:
* out-of-bounds access - 97840cb67f ("netfilter: nfnetlink: fix
insufficient validation in nfnetlink_bind")
undefined shifts:
* d48458d4a7 ("jbd2: use a better hash function for the revoke
table")
* 10632008b9 ("clockevents: Prevent shift out of bounds")
* 'x << -1' shift in ext4 -
http://lkml.kernel.org/r/<5444EF21.8020501@samsung.com>
* undefined rol32(0) -
http://lkml.kernel.org/r/<1449198241-20654-1-git-send-email-sasha.levin@oracle.com>
* undefined dirty_ratelimit calculation -
http://lkml.kernel.org/r/<566594E2.3050306@odin.com>
* undefined roundown_pow_of_two(0) -
http://lkml.kernel.org/r/<1449156616-11474-1-git-send-email-sasha.levin@oracle.com>
* [WONTFIX] undefined shift in __bpf_prog_run -
http://lkml.kernel.org/r/<CACT4Y+ZxoR3UjLgcNdUm4fECLMx2VdtfrENMtRRCdgHB2n0bJA@mail.gmail.com>
WONTFIX here because it should be fixed in bpf program, not in kernel.
signed overflows:
* 32a8df4e0b ("sched: Fix odd values in effective_load()
calculations")
* mul overflow in ntp -
http://lkml.kernel.org/r/<1449175608-1146-1-git-send-email-sasha.levin@oracle.com>
* incorrect conversion into rtc_time in rtc_time64_to_tm() -
http://lkml.kernel.org/r/<1449187944-11730-1-git-send-email-sasha.levin@oracle.com>
* unvalidated timespec in io_getevents() -
http://lkml.kernel.org/r/<CACT4Y+bBxVYLQ6LtOKrKtnLthqLHcw-BMp3aqP3mjdAvr9FULQ@mail.gmail.com>
* [NOTABUG] signed overflow in ktime_add_safe() -
http://lkml.kernel.org/r/<CACT4Y+aJ4muRnWxsUe1CMnA6P8nooO33kwG-c8YZg=0Xc8rJqw@mail.gmail.com>
[akpm@linux-foundation.org: fix unused local warning]
[akpm@linux-foundation.org: fix __int128 build woes]
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Yury Gribov <y.gribov@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull trivial tree updates from Jiri Kosina.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial:
floppy: make local variable non-static
exynos: fixes an incorrect header guard
dt-bindings: fixes some incorrect header guards
cpufreq-dt: correct dead link in documentation
cpufreq: ARM big LITTLE: correct dead link in documentation
treewide: Fix typos in printk
Documentation: filesystem: Fix typo in fs/eventfd.c
fs/super.c: use && instead of & for warn_on condition
Documentation: fix sysfs-ptp
lib: scatterlist: fix Kconfig description
The code in efi.c uses early_memremap(), but relies on a transitive
include rather than including asm/early_ioremap.h directly, since
this header did not exist on ia64.
Commit f7d9248942 ("arm64/efi: refactor EFI init and runtime code
for reuse by 32-bit ARM") attempted to work around this by including
asm/efi.h, which transitively includes asm/early_ioremap.h on most
architectures. However, since asm/efi.h does not exist on ia64 either,
this is not much of an improvement.
Now that we have created an asm/early_ioremap.h for ia64, we can just
include it directly.
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Pull ARM updates from Russell King:
- UEFI boot and runtime services support for ARM from Ard Biesheuvel
and Roy Franz.
- DT compatibility with old atags booting protocol for Nokia N900
devices from Ivaylo Dimitrov.
- PSCI firmware interface using new arm-smc calling convention from
Jens Wiklander.
- Runtime patching for udiv/sdiv instructions for ARMv7 CPUs that
support these instructions from Nicolas Pitre.
- L2x0 cache updates from Dirk B and Linus Walleij.
- Randconfig fixes from Arnd Bergmann.
- ARMv7M (nommu) updates from Ezequiel Garcia
* 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-arm: (34 commits)
ARM: 8481/2: drivers: psci: replace psci firmware calls
ARM: 8480/2: arm64: add implementation for arm-smccc
ARM: 8479/2: add implementation for arm-smccc
ARM: 8478/2: arm/arm64: add arm-smccc
ARM: 8494/1: mm: Enable PXN when running non-LPAE kernel on LPAE processor
ARM: 8496/1: OMAP: RX51: save ATAGS data in the early boot stage
ARM: 8495/1: ATAGS: move save_atags() to arch/arm/include/asm/setup.h
ARM: 8452/3: PJ4: make coprocessor access sequences buildable in Thumb2 mode
ARM: 8482/1: l2x0: make it possible to disable outer sync from DT
ARM: 8488/1: Make IPI_CPU_BACKTRACE a "non-secure" SGI
ARM: 8487/1: Remove IPI_CALL_FUNC_SINGLE
ARM: 8485/1: cpuidle: remove cpu parameter from the cpuidle_ops suspend hook
ARM: 8484/1: Documentation: l2c2x0: Mention separate controllers explicitly
ARM: 8483/1: Documentation: l2c: Rename l2cc to l2c2x0
ARM: 8477/1: runtime patch udiv/sdiv instructions into __aeabi_{u}idiv()
ARM: 8476/1: VDSO: use PTR_ERR_OR_ZERO for vma check
ARM: 8453/2: proc-v7.S: don't locate temporary stack space in .text section
ARM: add UEFI stub support
ARM: wire up UEFI init and runtime support
ARM: only consider memblocks with NOMAP cleared for linear mapping
...
This moves the DISABLE_BRANCH_PROFILING define from the x86 specific
to the general CFLAGS definition for the stub. This fixes build errors
when building for arm64 with CONFIG_PROFILE_ALL_BRANCHES_ENABLED.
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Reported-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Starting with this commit 35eb8b81edd4 ("x86/efi: Build our own page
table structures") efi regions have a separate page directory called
"efi_pgd". In order to access any efi region we have to first shift %cr3
to this page table. In the bgrt code we are trying to copy bgrt_header
and image, but these regions fall under "EFI_BOOT_SERVICES_DATA"
and to access these regions we have to shift %cr3 to efi_pgd and not
doing so will cause page fault as shown below.
[ 0.251599] Last level dTLB entries: 4KB 64, 2MB 0, 4MB 0, 1GB 4
[ 0.259126] Freeing SMP alternatives memory: 32K (ffffffff8230e000 - ffffffff82316000)
[ 0.271803] BUG: unable to handle kernel paging request at fffffffefce35002
[ 0.279740] IP: [<ffffffff821bca49>] efi_bgrt_init+0x144/0x1fd
[ 0.286383] PGD 300f067 PUD 0
[ 0.289879] Oops: 0000 [#1] SMP
[ 0.293566] Modules linked in:
[ 0.297039] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.4.0-rc1-eywa-eywa-built-in-47041+ #2
[ 0.306619] Hardware name: Intel Corporation Skylake Client platform/Skylake Y LPDDR3 RVP3, BIOS SKLSE2R1.R00.B104.B01.1511110114 11/11/2015
[ 0.320925] task: ffffffff820134c0 ti: ffffffff82000000 task.ti: ffffffff82000000
[ 0.329420] RIP: 0010:[<ffffffff821bca49>] [<ffffffff821bca49>] efi_bgrt_init+0x144/0x1fd
[ 0.338821] RSP: 0000:ffffffff82003f18 EFLAGS: 00010246
[ 0.344852] RAX: fffffffefce35000 RBX: fffffffefce35000 RCX: fffffffefce2b000
[ 0.352952] RDX: 000000008a82b000 RSI: ffffffff8235bb80 RDI: 000000008a835000
[ 0.361050] RBP: ffffffff82003f30 R08: 000000008a865000 R09: ffffffffff202850
[ 0.369149] R10: ffffffff811ad62f R11: 0000000000000000 R12: 0000000000000000
[ 0.377248] R13: ffff88016dbaea40 R14: ffffffff822622c0 R15: ffffffff82003fb0
[ 0.385348] FS: 0000000000000000(0000) GS:ffff88016d800000(0000) knlGS:0000000000000000
[ 0.394533] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 0.401054] CR2: fffffffefce35002 CR3: 000000000300c000 CR4: 00000000003406f0
[ 0.409153] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 0.417252] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 0.425350] Stack:
[ 0.427638] ffffffffffffffff ffffffff82256900 ffff88016dbaea40 ffffffff82003f40
[ 0.436086] ffffffff821bbce0 ffffffff82003f88 ffffffff8219c0c2 0000000000000000
[ 0.444533] ffffffff8219ba4a ffffffff822622c0 0000000000083000 00000000ffffffff
[ 0.452978] Call Trace:
[ 0.455763] [<ffffffff821bbce0>] efi_late_init+0x9/0xb
[ 0.461697] [<ffffffff8219c0c2>] start_kernel+0x463/0x47f
[ 0.467928] [<ffffffff8219ba4a>] ? set_init_arg+0x55/0x55
[ 0.474159] [<ffffffff8219b120>] ? early_idt_handler_array+0x120/0x120
[ 0.481669] [<ffffffff8219b5ee>] x86_64_start_reservations+0x2a/0x2c
[ 0.488982] [<ffffffff8219b72d>] x86_64_start_kernel+0x13d/0x14c
[ 0.495897] Code: 00 41 b4 01 48 8b 78 28 e8 09 36 01 00 48 85 c0 48 89 c3 75 13 48 c7 c7 f8 ac d3 81 31 c0 e8 d7 3b fb fe e9 b5 00 00 00 45 84 e4 <44> 8b 6b 02 74 0d be 06 00 00 00 48 89 df e8 ae 34 0$
[ 0.518151] RIP [<ffffffff821bca49>] efi_bgrt_init+0x144/0x1fd
[ 0.524888] RSP <ffffffff82003f18>
[ 0.528851] CR2: fffffffefce35002
[ 0.532615] ---[ end trace 7b06521e6ebf2aea ]---
[ 0.537852] Kernel panic - not syncing: Attempted to kill the idle task!
As said above one way to fix this bug is to shift %cr3 to efi_pgd but we
are not doing that way because it leaks inner details of how we switch
to EFI page tables into a new call site and it also adds duplicate code.
Instead, we remove the call to efi_lookup_mapped_addr() and always
perform early_mem*() instead of early_io*() because we want to remap RAM
regions and not I/O regions. We also delete efi_lookup_mapped_addr()
because we are no longer using it.
Signed-off-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Reported-by: Wendy Wang <wendy.wang@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
kobject_init_and_add takes a format string+args, so there's no reason
to do this formatting in advance.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Peter Jones <pjones@redhat.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
This patch adds EFI stub support for the ARM Linux kernel.
The EFI stub operates similarly to the x86 and arm64 stubs: it is a
shim between the EFI firmware and the normal zImage entry point, and
sets up the environment that the zImage is expecting. This includes
optionally loading the initrd and device tree from the system partition
based on the kernel command line.
Signed-off-by: Roy Franz <roy.franz@linaro.org>
Tested-by: Ryan Harkin <ryan.harkin@linaro.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
This adds support to the kernel proper for booting via UEFI. It shares
most of the code with arm64, so this patch mostly just wires it up for
use with ARM.
Note that this does not include the EFI stub, it is added in a subsequent
patch.
Tested-by: Ryan Harkin <ryan.harkin@linaro.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
This refactors the EFI init and runtime code that will be shared
between arm64 and ARM so that it can be built for both archs.
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This splits off the early EFI init and runtime code that
- discovers the EFI params and the memory map from the FDT, and installs
the memblocks and config tables.
- prepares and installs the EFI page tables so that UEFI Runtime Services
can be invoked at the virtual address installed by the stub.
This will allow it to be reused for 32-bit ARM.
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch fix multiple spelling typos found in
various part of kernel.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
backend drivers to be unloaded.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWN9nyAAoJEKurIx+X31iBlSQQALBEB5pwkCEBcJlXa1SL1uRN
WFOUhoNI6Rh1Wlsu6t0P9AhtotCHUeSRtF+Y05EXcytBb1EqsW90fk4m7VFDFuCp
drDYPJhNaFcvxDkt1PKKGRysGLXsCjr5szuApCFpYwg3FaxqddXTfFdZ7zdWaRb2
NkUd+aSElNr1avrulgyTqHjWFCP93bWMh6tFhUjCRjwmXDhxvHxLtlRUMtPlsgrC
nWuawkyrR31EJJoQ9lnvEQBjP6i5qSMfU+2o6nUm6/5LNe/m9iWDxmWakoa7p8e4
XArywFijO18byvjsvaJhUOLzLV0TT+PoL14m5U7JP0JA9mtpCYNvnb62CWmFulM2
Q75FGdfj2UQOnwMnaBpYPNC6S/ddLtl0iWGivgI3ja47xG9TGzEYmTrObt9LfVzd
kv1Nw/dNUY0fTb+n7rPBkpyHKO9ZQPQSebDOU7MJ61uuS/QB/sEbk2gU7HsV/Q68
ivOvy1zui9ggpPOuApqQTVi/OCHtb+TJep2+U5O8NR6DFY/bhQCH6g8mPaMKU5G0
6HF0kwx4h905VHWiP4I0EphmrDWVvpFMUgZoHgi3CCdmbm64+BPXYa6AiJ3I00Ed
FstB7pYuwsJ8jsYhxRVVSEW7vKZQ+jS5tzbLBjuTYe+KfBLFm7A5OdBHmhpXug0k
zw4kssZrm30mCpWR90ew
=liJx
-----END PGP SIGNATURE-----
Merge tag 'please-pull-pstore' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux
Pull pstore updates from Tony Luck:
"Half dozen small cleanups plus change to allow pstore backend drivers
to be unloaded"
* tag 'please-pull-pstore' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux:
pstore: fix code comment to match code
efi-pstore: fix kernel-doc argument name
pstore: Fix return type of pstore_is_mounted()
pstore: add pstore unregister
pstore: add a helper function pstore_register_kmsg
pstore: add vmalloc error check
- "genirq: Introduce generic irq migration for cpu hotunplugged" patch
merged from tip/irq/for-arm to allow the arm64-specific part to be
upstreamed via the arm64 tree
- CPU feature detection reworked to cope with heterogeneous systems
where CPUs may not have exactly the same features. The features
reported by the kernel via internal data structures or ELF_HWCAP are
delayed until all the CPUs are up (and before user space starts)
- Support for 16KB pages, with the additional bonus of a 36-bit VA
space, though the latter only depending on EXPERT
- Implement native {relaxed, acquire, release} atomics for arm64
- New ASID allocation algorithm which avoids IPI on roll-over, together
with TLB invalidation optimisations (using local vs global where
feasible)
- KASan support for arm64
- EFI_STUB clean-up and isolation for the kernel proper (required by
KASan)
- copy_{to,from,in}_user optimisations (sharing the memcpy template)
- perf: moving arm64 to the arm32/64 shared PMU framework
- L1_CACHE_BYTES increased to 128 to accommodate Cavium hardware
- Support for the contiguous PTE hint on kernel mapping (16 consecutive
entries may be able to use a single TLB entry)
- Generic CONFIG_HZ now used on arm64
- defconfig updates
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWOkmIAAoJEGvWsS0AyF7x4GgQAINU3NePjFFvWZNCkqobeH9+
jFKwtXamIudhTSdnXNXyYWmtRL9Krg3qI4zDQf68dvDFAZAze2kVuOi1yPpCbpFZ
/j/afNyQc7+PoyqRAzmT+EMPZlcuOA84Prrl1r3QWZ58QaFeVk/6ZxrHunTHxN0x
mR9PIXfWx73MTo+UnG8FChkmEY6LmV4XpemgTaMR9FqFhdT51OZSxDDAYXOTm4JW
a5HdN9OWjjJ2rhLlFEaC7tszG9B5doHdy2tr5ge/YERVJzIPDogHkMe8ZhfAJc+x
SQU5tKN6Pg4MOi+dLhxlk0/mKCvHLiEQ5KVREJnt8GxupAR54Bat+DQ+rP9cSnpq
dRQTcARIOyy9LGgy+ROAsSo+NiyM5WuJ0/WJUYKmgWTJOfczRYoZv6TMKlwNOUYb
tGLCZHhKPM3yBHJlWbQykl3xmSuudxCMmjlZzg7B+MVfTP6uo0CRSPmYl+v67q+J
bBw/Z2RYXWYGnvlc6OfbMeImI6prXeE36+5ytyJFga0m+IqcTzRGzjcLxKEvdbiU
pr8n9i+hV9iSsT/UwukXZ8ay6zH7PrTLzILWQlieutfXlvha7MYeGxnkbLmdYcfe
GCj374io5cdImHcVKmfhnOMlFOLuOHphl9cmsd/O2LmCIqBj9BIeNH2Om8mHVK2F
YHczMdpESlJApE7kUc1e
=3six
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- "genirq: Introduce generic irq migration for cpu hotunplugged" patch
merged from tip/irq/for-arm to allow the arm64-specific part to be
upstreamed via the arm64 tree
- CPU feature detection reworked to cope with heterogeneous systems
where CPUs may not have exactly the same features. The features
reported by the kernel via internal data structures or ELF_HWCAP are
delayed until all the CPUs are up (and before user space starts)
- Support for 16KB pages, with the additional bonus of a 36-bit VA
space, though the latter only depending on EXPERT
- Implement native {relaxed, acquire, release} atomics for arm64
- New ASID allocation algorithm which avoids IPI on roll-over, together
with TLB invalidation optimisations (using local vs global where
feasible)
- KASan support for arm64
- EFI_STUB clean-up and isolation for the kernel proper (required by
KASan)
- copy_{to,from,in}_user optimisations (sharing the memcpy template)
- perf: moving arm64 to the arm32/64 shared PMU framework
- L1_CACHE_BYTES increased to 128 to accommodate Cavium hardware
- Support for the contiguous PTE hint on kernel mapping (16 consecutive
entries may be able to use a single TLB entry)
- Generic CONFIG_HZ now used on arm64
- defconfig updates
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (91 commits)
arm64/efi: fix libstub build under CONFIG_MODVERSIONS
ARM64: Enable multi-core scheduler support by default
arm64/efi: move arm64 specific stub C code to libstub
arm64: page-align sections for DEBUG_RODATA
arm64: Fix build with CONFIG_ZONE_DMA=n
arm64: Fix compat register mappings
arm64: Increase the max granular size
arm64: remove bogus TASK_SIZE_64 check
arm64: make Timer Interrupt Frequency selectable
arm64/mm: use PAGE_ALIGNED instead of IS_ALIGNED
arm64: cachetype: fix definitions of ICACHEF_* flags
arm64: cpufeature: declare enable_cpu_capabilities as static
genirq: Make the cpuhotplug migration code less noisy
arm64: Constify hwcap name string arrays
arm64/kvm: Make use of the system wide safe values
arm64/debug: Make use of the system wide safe value
arm64: Move FP/ASIMD hwcap handling to common code
arm64/HWCAP: Use system wide safe values
arm64/capabilities: Make use of system wide safe value
arm64: Delay cpu feature capability checks
...
The first argument name in the kernel-doc argument list for
efi_pstore_scan_sysfs_enter() was slightly off. Fix it for the
kernel doc.
Signed-off-by: Geliang Tang <geliangtang@163.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Now that we strictly forbid absolute relocations in libstub code,
make sure that we don't emit any when CONFIG_MODVERSIONS is enabled,
by stripping the kcrctab sections from the object file. This fixes
a build problem under CONFIG_MODVERSIONS=y.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that we added special handling to the C files in libstub, move
the one remaining arm64 specific EFI stub C file to libstub as
well, so that it gets the same treatment. This should prevent future
changes from resulting in binaries that may execute incorrectly in
UEFI context.
With efi-entry.S the only remaining EFI stub source file under
arch/arm64, we can also simplify the Makefile logic somewhat.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Commit:
0f96a99dab ("efi: Add "efi_fake_mem" boot option")
introduced the following warning message:
drivers/firmware/efi/fake_mem.c:186:20: warning: cast to pointer from integer of different size [-Wint-to-pointer-cast]
new_memmap_phy was defined as a u64 value and cast to void*,
causing a int-to-pointer-cast warning on x86 32-bit builds.
However, since the void* type is inappropriate for a physical
address, the definition of struct efi_memory_map::phys_map has
been changed to phys_addr_t in the previous patch, and so the
cast can be dropped entirely.
This patch also changes the type of the "new_memmap_phy"
variable from "u64" to "phys_addr_t" to align with the types of
memblock_alloc() and struct efi_memory_map::phys_map.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Taku Izumi <izumi.taku@jp.fujitsu.com>
[ Removed void* cast, updated commit log]
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kamezawa.hiroyu@jp.fujitsu.com
Cc: linux-efi@vger.kernel.org
Cc: matt.fleming@intel.com
Link: http://lkml.kernel.org/r/1445593697-1342-2-git-send-email-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We have been getting away with using a void* for the physical
address of the UEFI memory map, since, even on 32-bit platforms
with 64-bit physical addresses, no truncation takes place if the
memory map has been allocated by the firmware (which only uses
1:1 virtually addressable memory), which is usually the case.
However, commit:
0f96a99dab ("efi: Add "efi_fake_mem" boot option")
adds code that clones and modifies the UEFI memory map, and the
clone may live above 4 GB on 32-bit platforms.
This means our use of void* for struct efi_memory_map::phys_map has
graduated from 'incorrect but working' to 'incorrect and
broken', and we need to fix it.
So redefine struct efi_memory_map::phys_map as phys_addr_t, and
get rid of a bunch of casts that are now unneeded.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: izumi.taku@jp.fujitsu.com
Cc: kamezawa.hiroyu@jp.fujitsu.com
Cc: linux-efi@vger.kernel.org
Cc: matt.fleming@intel.com
Link: http://lkml.kernel.org/r/1445593697-1342-1-git-send-email-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
non-modular by ripping out the module_* code since Kconfig doesn't
allow it to be built as a module anyway - Paul Gortmaker
* Make the x86 efi=debug kernel parameter, which enables EFI debug
code and output, generic and usable by arm64 - Leif Lindholm
* Add support to the x86 EFI boot stub for 64-bit Graphics Output
Protocol frame buffer addresses - Matt Fleming
* Detect when the UEFI v2.5 EFI_PROPERTIES_TABLE feature is enabled
in the firmware and set an efi.flags bit so the kernel knows when
it can apply more strict runtime mapping attributes - Ard Biesheuvel
* Auto-load the efi-pstore module on EFI systems, just like we
currently do for the efivars module - Ben Hutchings
* Add "efi_fake_mem" kernel parameter which allows the system's EFI
memory map to be updated with additional attributes for specific
memory ranges. This is useful for testing the kernel code that handles
the EFI_MEMORY_MORE_RELIABLE memmap bit even if your firmware
doesn't include support - Taku Izumi
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWG7OwAAoJEC84WcCNIz1VEEEP/0SsdrwJ66B4MfP5YNjqHYWm
+OTHR6Ovv2i10kc+NjOV/GN8sWPndnkLfIfJ4EqJ9BoQ9PDEYZilV2aleSQ4DrPm
H7uGwBXQkfd76tZKX9pMToK76mkhg6M7M2LR3Suv3OGfOEzuozAOt3Ez37lpksTN
2ByhHr/oGbhu99jC2ki5+k0ySH8PMqDBRxqrPbBzTD+FfB7bM11vAJbSNbSMQ21R
ZwX0acZBLqb9J2Vf7tDsW+fCfz0TFo8JHW8jdLRFm/y2dpquzxswkkBpODgA8+VM
0F5UbiUdkaIRug75I6N/OJ8+yLwdzuxm7ul+tbS3JrXGLAlK3850+dP2Pr5zQ2Ce
zaYGRUy+tD5xMXqOKgzpu+Ia8XnDRLhOlHabiRd5fG6ZC9nR8E9uK52g79voSN07
pADAJnVB03CGV/HdduDOI4C4UykUKubuArbQVkqWJcecV1Jic/tYI0gjeACmU1VF
v8FzXpBUe3U3A0jauOz8PBz8M+k5qky/GbIrnEvXreBtKdt999LN9fykTN7rBOpo
dk/6vTR1Jyv3aYc9EXHmRluktI6KmfWCqmRBOIgQveX1VhdRM+1w2LKC0+8co3dF
v/DBh19KDyfPI8eOvxKykhn164UeAt03EXqDa46wFGr2nVOm/JiShL/d+QuyYU4G
8xb/rET4JrhCG4gFMUZ7
=1Oee
-----END PGP SIGNATURE-----
Merge tag 'efi-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into core/efi
Pull v4.4 EFI updates from Matt Fleming:
- Make the EFI System Resource Table (ESRT) driver explicitly
non-modular by ripping out the module_* code since Kconfig doesn't
allow it to be built as a module anyway. (Paul Gortmaker)
- Make the x86 efi=debug kernel parameter, which enables EFI debug
code and output, generic and usable by arm64. (Leif Lindholm)
- Add support to the x86 EFI boot stub for 64-bit Graphics Output
Protocol frame buffer addresses. (Matt Fleming)
- Detect when the UEFI v2.5 EFI_PROPERTIES_TABLE feature is enabled
in the firmware and set an efi.flags bit so the kernel knows when
it can apply more strict runtime mapping attributes - Ard Biesheuvel
- Auto-load the efi-pstore module on EFI systems, just like we
currently do for the efivars module. (Ben Hutchings)
- Add "efi_fake_mem" kernel parameter which allows the system's EFI
memory map to be updated with additional attributes for specific
memory ranges. This is useful for testing the kernel code that handles
the EFI_MEMORY_MORE_RELIABLE memmap bit even if your firmware
doesn't include support. (Taku Izumi)
Note: there is a semantic conflict between the following two commits:
8a53554e12 ("x86/efi: Fix multiple GOP device support")
ae2ee627dc ("efifb: Add support for 64-bit frame buffer addresses")
I fixed up the interaction in the merge commit, changing the type of
current_fb_base from u32 to u64.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch adds arch specific code for kernel address sanitizer
(see Documentation/kasan.txt).
1/8 of kernel addresses reserved for shadow memory. There was no
big enough hole for this, so virtual addresses for shadow were
stolen from vmalloc area.
At early boot stage the whole shadow region populated with just
one physical page (kasan_zero_page). Later, this page reused
as readonly zero shadow for some memory that KASan currently
don't track (vmalloc).
After mapping the physical memory, pages for shadow memory are
allocated and mapped.
Functions like memset/memmove/memcpy do a lot of memory accesses.
If bad pointer passed to one of these function it is important
to catch this. Compiler's instrumentation cannot do this since
these functions are written in assembly.
KASan replaces memory functions with manually instrumented variants.
Original functions declared as weak symbols so strong definitions
in mm/kasan/kasan.c could replace them. Original functions have aliases
with '__' prefix in name, so we could call non-instrumented variant
if needed.
Some files built without kasan instrumentation (e.g. mm/slub.c).
Original mem* function replaced (via #define) with prefixed variants
to disable memory access checks for such files.
Signed-off-by: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Tested-by: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since arm64 does not use a builtin decompressor, the EFI stub is built
into the kernel proper. So far, this has been working fine, but actually,
since the stub is in fact a PE/COFF relocatable binary that is executed
at an unknown offset in the 1:1 mapping provided by the UEFI firmware, we
should not be seamlessly sharing code with the kernel proper, which is a
position dependent executable linked at a high virtual offset.
So instead, separate the contents of libstub and its dependencies, by
putting them into their own namespace by prefixing all of its symbols
with __efistub. This way, we have tight control over what parts of the
kernel proper are referenced by the stub.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
With the stub to kernel interface being promoted to a proper interface
so that other agents than the stub can boot the kernel proper in EFI
mode, we can remove the linux,uefi-stub-kern-ver field, considering
that its original purpose was to prevent this from happening in the
first place.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch introduces new boot option named "efi_fake_mem".
By specifying this parameter, you can add arbitrary attribute
to specific memory range.
This is useful for debugging of Address Range Mirroring feature.
For example, if "efi_fake_mem=2G@4G:0x10000,2G@0x10a0000000:0x10000"
is specified, the original (firmware provided) EFI memmap will be
updated so that the specified memory regions have
EFI_MEMORY_MORE_RELIABLE attribute (0x10000):
<original>
efi: mem36: [Conventional Memory| | | | | | |WB|WT|WC|UC] range=[0x0000000100000000-0x00000020a0000000) (129536MB)
<updated>
efi: mem36: [Conventional Memory| |MR| | | | |WB|WT|WC|UC] range=[0x0000000100000000-0x0000000180000000) (2048MB)
efi: mem37: [Conventional Memory| | | | | | |WB|WT|WC|UC] range=[0x0000000180000000-0x00000010a0000000) (61952MB)
efi: mem38: [Conventional Memory| |MR| | | | |WB|WT|WC|UC] range=[0x00000010a0000000-0x0000001120000000) (2048MB)
efi: mem39: [Conventional Memory| | | | | | |WB|WT|WC|UC] range=[0x0000001120000000-0x00000020a0000000) (63488MB)
And you will find that the following message is output:
efi: Memory: 4096M/131455M mirrored memory
Signed-off-by: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
efi-pstore should be auto-loaded on EFI systems, same as efivars.
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Lee, Chun-Yi <jlee@suse.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
UEFI v2.5 introduces a runtime memory protection feature that splits
PE/COFF runtime images into separate code and data regions. Since this
may require special handling by the OS, allocate a EFI_xxx bit to
keep track of whether this feature is currently active or not.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Version 2.5 of the UEFI spec introduces a new configuration table
called the 'EFI Properties table'. Currently, it is only used to
convey whether the Memory Protection feature is enabled, which splits
PE/COFF images into separate code and data memory regions.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
UEFI spec 2.5 introduces new Memory Attribute Definition named
EFI_MEMORY_MORE_RELIABLE. This patch adds this new attribute
support to efi_md_typeattr_format().
Signed-off-by: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
As we now have a common debug infrastructure between core and arm64 efi,
drop the bit of the interface passing verbose output flags around.
Signed-off-by: Leif Lindholm <leif.lindholm@linaro.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
fed6cefe3b ("x86/efi: Add a "debug" option to the efi= cmdline")
adds the DBG flag, but does so for x86 only. Move this early param
parsing to core code.
Signed-off-by: Leif Lindholm <leif.lindholm@linaro.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
The Kconfig for this driver is currently hidden with:
config EFI_ESRT
bool
...meaning that it currently is not being built as a module by anyone.
Lets remove the modular code that is essentially orphaned, so that
when reading the driver there is no doubt it is builtin-only.
Since module_init translates to device_initcall in the non-modular
case, the init ordering remains unchanged with this commit.
We leave some tags like MODULE_AUTHOR for documentation purposes.
We don't replace module.h with init.h since the file already has that.
Cc: Peter Jones <pjones@redhat.com>
Cc: linux-efi@vger.kernel.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Guenter reports that commit:
7bf793115d ("efi, x86: Rearrange efi_mem_attributes()")
breaks the IA64 compilation with the following error:
drivers/built-in.o: In function `efi_mem_attributes': (.text+0xde962): undefined reference to `memmap'
Instead of using the (rather poorly named) global variable
'memmap' which doesn't exist on IA64, use efi.memmap which
points to the 'memmap' object on x86 and arm64 and which is NULL
for IA64.
The fact that efi.memmap is NULL for IA64 is OK because IA64
provides its own implementation of efi_mem_attributes().
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jonathan Zhang <zjzhang@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/20151003222607.GA2682@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The new Properties Table feature introduced in UEFIv2.5 may
split memory regions that cover PE/COFF memory images into
separate code and data regions. Since these regions only differ
in the type (runtime code vs runtime data) and the permission
bits, but not in the memory type attributes (UC/WC/WT/WB), the
spec does not require them to be aligned to 64 KB.
Since the relative offset of PE/COFF .text and .data segments
cannot be changed on the fly, this means that we can no longer
pad out those regions to be mappable using 64 KB pages.
Unfortunately, there is no annotation in the UEFI memory map
that identifies data regions that were split off from a code
region, so we must apply this logic to all adjacent runtime
regions whose attributes only differ in the permission bits.
So instead of rounding each memory region to 64 KB alignment at
both ends, only round down regions that are not directly
preceded by another runtime region with the same type
attributes. Since the UEFI spec does not mandate that the memory
map be sorted, this means we also need to sort it first.
Note that this change will result in all EFI_MEMORY_RUNTIME
regions whose start addresses are not aligned to the OS page
size to be mapped with executable permissions (i.e., on kernels
compiled with 64 KB pages). However, since these mappings are
only active during the time that UEFI Runtime Services are being
invoked, the window for abuse is rather small.
Tested-by: Mark Salter <msalter@redhat.com>
Tested-by: Mark Rutland <mark.rutland@arm.com> [UEFI 2.4 only]
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Reviewed-by: Mark Salter <msalter@redhat.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Cc: <stable@vger.kernel.org> # v4.0+
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1443218539-7610-3-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In not-instrumented code KASAN replaces instrumented memset/memcpy/memmove
with not-instrumented analogues __memset/__memcpy/__memove.
However, on x86 the EFI stub is not linked with the kernel. It uses
not-instrumented mem*() functions from arch/x86/boot/compressed/string.c
So we don't replace them with __mem*() variants in EFI stub.
On ARM64 the EFI stub is linked with the kernel, so we should replace
mem*() functions with __mem*(), because the EFI stub runs before KASAN
sets up early shadow.
So let's move these #undef mem* into arch's asm/efi.h which is also
included by the EFI stub.
Also, this will fix the warning in 32-bit build reported by kbuild test
robot:
efi-stub-helper.c:599:2: warning: implicit declaration of function 'memcpy'
[akpm@linux-foundation.org: use 80 cols in comment]
Signed-off-by: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Reported-by: Fengguang Wu <fengguang.wu@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Matt Fleming <matt.fleming@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two kexec load syscalls, kexec_load another and kexec_file_load.
kexec_file_load has been splited as kernel/kexec_file.c. In this patch I
split kexec_load syscall code to kernel/kexec.c.
And add a new kconfig option KEXEC_CORE, so we can disable kexec_load and
use kexec_file_load only, or vice verse.
The original requirement is from Ted Ts'o, he want kexec kernel signature
being checked with CONFIG_KEXEC_VERIFY_SIG enabled. But kexec-tools use
kexec_load syscall can bypass the checking.
Vivek Goyal proposed to create a common kconfig option so user can compile
in only one syscall for loading kexec kernel. KEXEC/KEXEC_FILE selects
KEXEC_CORE so that old config files still work.
Because there's general code need CONFIG_KEXEC_CORE, so I updated all the
architecture Kconfig with a new option KEXEC_CORE, and let KEXEC selects
KEXEC_CORE in arch Kconfig. Also updated general kernel code with to
kexec_load syscall.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Dave Young <dyoung@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Josh Boyer <jwboyer@fedoraproject.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
x86 and ia64 implement efi_mem_attributes() differently. This
function needs to be available for other architectures
(such as arm64) as well, such as for the purpose of ACPI/APEI.
ia64 EFI does not set up a 'memmap' variable and does not set
the EFI_MEMMAP flag, so it needs to have its unique implementation
of efi_mem_attributes().
Move efi_mem_attributes() implementation from x86 to the core
EFI code, and declare it with __weak.
It is recommended that other architectures should not override
the default implementation.
Signed-off-by: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Reviewed-by: Matt Fleming <matt.fleming@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1438936621-5215-4-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The UEFI spec v2.5 introduces a new memory attribute
EFI_MEMORY_RO, which is now the preferred attribute to convey
that the nature of the contents of such a region allows it to be
mapped read-only (i.e., it contains .text and .rodata only).
The specification of the existing EFI_MEMORY_WP attribute has been
updated to align more closely with its common use as a
cacheability attribute rather than a permission attribute.
Add the #define and add the attribute to the memory map dumping
routine.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1438936621-5215-1-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Even though it is documented how to specifiy efi parameters, it is
possible to cause a kernel panic due to a dereference of a NULL pointer when
parsing such parameters if "efi" alone is given:
PANIC: early exception 0e rip 10:ffffffff812fb361 error 0 cr2 0
[ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 4.2.0-rc1+ #450
[ 0.000000] ffffffff81fe20a9 ffffffff81e03d50 ffffffff8184bb0f 00000000000003f8
[ 0.000000] 0000000000000000 ffffffff81e03e08 ffffffff81f371a1 64656c62616e6520
[ 0.000000] 0000000000000069 000000000000005f 0000000000000000 0000000000000000
[ 0.000000] Call Trace:
[ 0.000000] [<ffffffff8184bb0f>] dump_stack+0x45/0x57
[ 0.000000] [<ffffffff81f371a1>] early_idt_handler_common+0x81/0xae
[ 0.000000] [<ffffffff812fb361>] ? parse_option_str+0x11/0x90
[ 0.000000] [<ffffffff81f4dd69>] arch_parse_efi_cmdline+0x15/0x42
[ 0.000000] [<ffffffff81f376e1>] do_early_param+0x50/0x8a
[ 0.000000] [<ffffffff8106b1b3>] parse_args+0x1e3/0x400
[ 0.000000] [<ffffffff81f37a43>] parse_early_options+0x24/0x28
[ 0.000000] [<ffffffff81f37691>] ? loglevel+0x31/0x31
[ 0.000000] [<ffffffff81f37a78>] parse_early_param+0x31/0x3d
[ 0.000000] [<ffffffff81f3ae98>] setup_arch+0x2de/0xc08
[ 0.000000] [<ffffffff8109629a>] ? vprintk_default+0x1a/0x20
[ 0.000000] [<ffffffff81f37b20>] start_kernel+0x90/0x423
[ 0.000000] [<ffffffff81f37495>] x86_64_start_reservations+0x2a/0x2c
[ 0.000000] [<ffffffff81f37582>] x86_64_start_kernel+0xeb/0xef
[ 0.000000] RIP 0xffffffff81ba2efc
This panic is not reproducible with "efi=" as this will result in a non-NULL
zero-length string.
Thus, verify that the pointer to the parameter string is not NULL. This is
consistent with other parameter-parsing functions which check for NULL pointers.
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
caused old UEFI spec (< 2.3) versions of the memory error record
structure to be declared invalid - Tony Luck
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVpmyaAAoJEC84WcCNIz1Vy8sP/2k/io83aTzuePeJb2ub4TXn
/ZFA2jMQqKcZ69tr91F+zTeb/isA7+yijOzkJ4dO7HSfzsc8IWxujZf+iqGKQnpQ
JRq0zWfy3jXKnIE9CqDPEVRF0wkMgVIsowPTDVHhLeuy8R9LaF3KxO5ZM7FwPYAK
bAhZ8jYdw1DRQ0Vns4XD8B3j1GYe3BJ/ptAZCWoZ4Go3bxoU4VBsW7goZlVfcwg7
TY8mmwp7zoZS0frv3Ba42xGli9s3g4+8WJcWYVcYuB9NqKYhFjze2kmWZO68Le0o
3Vnppf3pYWE3YqgBsx8KlZ8XT0KwvPzc93XtW962+E8N603v8sbl6oy9gOe9KJEN
oDCH3TqTcFGcOwrVMgXgAHupXlHH1qHy0jevWVJ3mxsIyTNQN6fpTpIAaWRtmVW1
p9JTA62rTJ+bB7C1JXjVaLtLTBD/YnXqZM2z/O7zhomm1Myv+JrtphZ0MGb6cHqj
Db9OLU3SMONFsgp/FD4XDMz0BxpUxekvKHzzWL/PM8muN1O0RPhG/QE+m6P4007F
XtAb5oleKQawAmzzTyUN7gaRi2V4WI7+0BZ/Y9L9KnNZ01XX0LXgF/+nqdgfyqG+
lnWpuaEVePMsOPA2amtqY88AlRERZGjOuSbSO1NLjhHYzpVL2t+CuBJvDLfBGEc4
NtuxnN0bFL7RroIHIVQL
=kSV0
-----END PGP SIGNATURE-----
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into x86/urgent
Pull an EFI fix from Matt Fleming:
- Fix a bug in the Common Platform Error Record (CPER) driver that
caused old UEFI spec (< 2.3) versions of the memory error record
structure to be declared invalid. (Tony Luck)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The memory error record structure includes as its first field a
bitmask of which subsequent fields are valid. The allows new fields
to be added to the structure while keeping compatibility with older
software that parses these records. This mechanism was used between
versions 2.2 and 2.3 to add four new fields, growing the size of the
structure from 73 bytes to 80. But Linux just added all the new
fields so this test:
if (gdata->error_data_length >= sizeof(*mem_err))
cper_print_mem(newpfx, mem_err);
else
goto err_section_too_small;
now make Linux complain about old format records being too short.
Add a definition for the old format of the structure and use that
for the minimum size check. Pass the actual size to cper_print_mem()
so it can sanity check the validation_bits field to ensure that if
a BIOS using the old format sets bits as if it were new, we won't
access fields beyond the end of the structure.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Pull user namespace updates from Eric Biederman:
"Long ago and far away when user namespaces where young it was realized
that allowing fresh mounts of proc and sysfs with only user namespace
permissions could violate the basic rule that only root gets to decide
if proc or sysfs should be mounted at all.
Some hacks were put in place to reduce the worst of the damage could
be done, and the common sense rule was adopted that fresh mounts of
proc and sysfs should allow no more than bind mounts of proc and
sysfs. Unfortunately that rule has not been fully enforced.
There are two kinds of gaps in that enforcement. Only filesystems
mounted on empty directories of proc and sysfs should be ignored but
the test for empty directories was insufficient. So in my tree
directories on proc, sysctl and sysfs that will always be empty are
created specially. Every other technique is imperfect as an ordinary
directory can have entries added even after a readdir returns and
shows that the directory is empty. Special creation of directories
for mount points makes the code in the kernel a smidge clearer about
it's purpose. I asked container developers from the various container
projects to help test this and no holes were found in the set of mount
points on proc and sysfs that are created specially.
This set of changes also starts enforcing the mount flags of fresh
mounts of proc and sysfs are consistent with the existing mount of
proc and sysfs. I expected this to be the boring part of the work but
unfortunately unprivileged userspace winds up mounting fresh copies of
proc and sysfs with noexec and nosuid clear when root set those flags
on the previous mount of proc and sysfs. So for now only the atime,
read-only and nodev attributes which userspace happens to keep
consistent are enforced. Dealing with the noexec and nosuid
attributes remains for another time.
This set of changes also addresses an issue with how open file
descriptors from /proc/<pid>/ns/* are displayed. Recently readlink of
/proc/<pid>/fd has been triggering a WARN_ON that has not been
meaningful since it was added (as all of the code in the kernel was
converted) and is not now actively wrong.
There is also a short list of issues that have not been fixed yet that
I will mention briefly.
It is possible to rename a directory from below to above a bind mount.
At which point any directory pointers below the renamed directory can
be walked up to the root directory of the filesystem. With user
namespaces enabled a bind mount of the bind mount can be created
allowing the user to pick a directory whose children they can rename
to outside of the bind mount. This is challenging to fix and doubly
so because all obvious solutions must touch code that is in the
performance part of pathname resolution.
As mentioned above there is also a question of how to ensure that
developers by accident or with purpose do not introduce exectuable
files on sysfs and proc and in doing so introduce security regressions
in the current userspace that will not be immediately obvious and as
such are likely to require breaking userspace in painful ways once
they are recognized"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
vfs: Remove incorrect debugging WARN in prepend_path
mnt: Update fs_fully_visible to test for permanently empty directories
sysfs: Create mountpoints with sysfs_create_mount_point
sysfs: Add support for permanently empty directories to serve as mount points.
kernfs: Add support for always empty directories.
proc: Allow creating permanently empty directories that serve as mount points
sysctl: Allow creating permanently empty directories that serve as mountpoints.
fs: Add helper functions for permanently empty directories.
vfs: Ignore unlocked mounts in fs_fully_visible
mnt: Modify fs_fully_visible to deal with locked ro nodev and atime
mnt: Refactor the logic for mounting sysfs and proc in a user namespace
A whole lot of bug fixes. Nothing stands out here except the ability to
enable CONFIG_OF on every architecture, and an import of a newer version
of dtc.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVlAkwAAoJEMWQL496c2LNNYMP/23EdDPyRneoaIynd0nNk9SO
UfhOSJdSo7vMmT9Rea2eBHdn3leJrx9m9JXvIrBwGdcDxMNsS4mS1k9Bj63aqEVn
kK+IrI1Jbx7F6/AlBh3u4nHixIjoTc3IWlFdxUTBKQ2ATYKmCVhVCsf6UyfSxAj+
xPL6bmALegEZ2kJzK+qhk6K0j7GeQDnk1SAS3xMvTpJH76Ac2F+Gi9u7J68GqXAS
d7WBCAjijkqskfAdeP13XasvSdU7ZCOnDjClwJd83ZQGmtp77T8PWF0lzLlnC8Ho
sMwDhoWHnCtFP0U1hnhUF1pXhhn8W9NlxymtYbxR1tJcku0fSiYlibZ6jnzTRc2m
TsqzaWDR3U/VX4t5wH5FtXM1Cum/eAfV6HX9fGXeYYP7Einl7Kg6yXYjIY+b7HG9
R3znQ2TKoYPsUr/WWXrZK52ZTesTe+LG98WYH1YhNbZ5riev9fLZxI2zMl/h83/Z
LrF0g0MLQobHuBCUSIXSUot6RTQgLzFWHtnSrNOUycMwlRNZHYOY3DSvzLYLw+hJ
XwV9p2k3DV/l/XnQJPy3y/MA+7jEudzlq7HukmtYVhh9rOy3y+Sq3GMGAiUFjAqj
YDxBrrIpoPWNp/OJJX2yhnTvnNaV/BjhCB1CiJooFCjHz78I5daqBXO155hn9msY
7To1PHvyEngabBpdN/MZ
=tm5y
-----END PGP SIGNATURE-----
Merge tag 'devicetree-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/glikely/linux
Pull devicetree updates from Grant Likely:
"A whole lot of bug fixes.
Nothing stands out here except the ability to enable CONFIG_OF on
every architecture, and an import of a newer version of dtc"
* tag 'devicetree-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/glikely/linux: (22 commits)
of/irq: Rename "intc_desc" to "of_intc_desc" to fix OF on sh
of/irq: Fix pSeries boot failure
Documentation: DT: Fix a typo in the filename "lantiq,<chip>-pinumx.txt"
of: define of_find_node_by_phandle for !CONFIG_OF
of/address: use atomic allocation in pci_register_io_range()
of: Add vendor prefix for Zodiac Inflight Innovations
dt/fdt: add empty versions of early_init_dt_*_memory_arch
of: clean-up unnecessary libfdt include paths
of: make unittest select OF_EARLY_FLATTREE instead of depend on it
of: make CONFIG_OF user selectable
MIPS: prepare for user enabling of CONFIG_OF
of/fdt: fix argument name and add comments of unflatten_dt_node()
of: return NUMA_NO_NODE from fallback of_node_to_nid()
tps6507x.txt: Remove executable permission
of/overlay: Grammar s/an negative/a negative/
of/fdt: Make fdt blob input parameters of unflatten functions const
of: add helper function to retrive match data
of: Grammar s/property exist/property exists/
of: Move OF flags to be visible even when !CONFIG_OF
scripts/dtc: Update to upstream version 9d3649bd3be245c9
...
This allows for better documentation in the code and
it allows for a simpler and fully correct version of
fs_fully_visible to be written.
The mount points converted and their filesystems are:
/sys/hypervisor/s390/ s390_hypfs
/sys/kernel/config/ configfs
/sys/kernel/debug/ debugfs
/sys/firmware/efi/efivars/ efivarfs
/sys/fs/fuse/connections/ fusectl
/sys/fs/pstore/ pstore
/sys/kernel/tracing/ tracefs
/sys/fs/cgroup/ cgroup
/sys/kernel/security/ securityfs
/sys/fs/selinux/ selinuxfs
/sys/fs/smackfs/ smackfs
Cc: stable@vger.kernel.org
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
So, I'm told this problem exists in the world:
> Subject: Build error in -next due to 'efi: Add esrt support'
>
> Building ia64:defconfig ... failed
> --------------
> Error log:
>
> drivers/firmware/efi/esrt.c:28:31: fatal error: asm/early_ioremap.h: No such file or directory
>
I'm not really sure how it's okay that we have things in asm-generic on
some platforms but not others - is having it the same everywhere not the
whole point of asm-generic?
That said, ia64 doesn't have early_ioremap.h . So instead, since it's
difficult to imagine new IA64 machines with UEFI 2.5, just don't build
this code there.
To me this looks like a workaround - doing something like:
generic-y += early_ioremap.h
in arch/ia64/include/asm/Kbuild would appear to be more correct, but
ia64 has its own early_memremap() decl in arch/ia64/include/asm/io.h ,
and it's a macro. So adding the above /and/ requiring that asm/io.h be
included /after/ asm/early_ioremap.h in all cases would fix it, but
that's pretty ugly as well. Since I'm not going to spend the rest of my
life rectifying ia64 headers vs "generic" headers that aren't generic,
it's much simpler to just not build there.
Note that I've only actually tried to build this patch on x86_64, but
esrt.o still gets built there, and that would seem to demonstrate that
the conditional building is working correctly at all the places the code
built before. I no longer have any ia64 machines handy to test that the
exclusion actually works there.
Signed-off-by: Peter Jones <pjones@redhat.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Guenter Roeck <linux@roeck-us.net>
(Compile-)Tested-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
With the libfdt include fixups to use "" instead of <> in the
latest dtc import in commit 4760597 (scripts/dtc: Update to upstream
version 9d3649bd3be245c9), it is no longer necessary to add explicit
include paths to use libfdt. Remove these across the kernel.
Signed-off-by: Rob Herring <robh@kernel.org>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Grant Likely <grant.likely@linaro.org>
Cc: linux-mips@linux-mips.org
Cc: linuxppc-dev@lists.ozlabs.org
instead of returning '1' to indicate error - Dan Carpenter
* New support to expose the EFI System Resource Tables in sysfs, which
provides information for performing firmware updates - Peter Jones
* Documentation cleanup in the EFI handover protocol section which
falsely claimed that 'cmdline_size' needed to be filled out by the
boot loader - Alex Smith
* Align the order of SMBIOS tables in /sys/firmware/efi/systab to match
the way that we do things for ACPI and add documentation to
Documentation/ABI - Jean Delvare
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVazVXAAoJEC84WcCNIz1VtVIP/1bwaRIw4eHBuunTY5ONZ9FP
+uP0hyvUyGajES91PArqWpCeubn6hOAENT98+Tp+w81n3BPL3ZKKZB5jIbIpVqiF
IOlpUud+MlpoHbyBleCVQHBG6+8pfE8ty3sC+gljjDhjaXnT1QJt9IdoEMpLnx7P
pS0b9RzBVHJX1Y0ILMXstJKtNjyZfsxZ031XbjEuRfw7V2DtptkjRivR8EKDBKsG
kNYcHxJJX/+DE9+pNPc3wrByBasQlBmrnZpwP3LIG12GRtoEZzbogHmFExeQZ+9k
Gp3xuyOFx2Texl7bXM0artWbtTdzQj1ai8MoT5fQexy0UzO1TtlkdfaBkYKd3mtY
AxvLPxCQpmGMV16T3QNaHEocFDAHSUvc2o85sQj+EdHhUcSkFybi4rSpDFf7HzO6
x6xkt2Fu9d7GEpZG1O7V/v1uMNsp3tOBRMiMdruRq2Ui2UV8s616DqfjtoX/pkS3
clNGrGZlUfDegKhkCuQqfUZY4jz/gioCEciY1S4auz/OX5jK0NTWUmAWzBnnWjsC
M/RHbTbRbYGh1lTUSZQIdGSe5ejW/kBGMCeNh5ZmaxsZx057TYywSqLvo4PVoxON
DTJUMwP2X/rzS2L3o3KVdjDTf3PTw7tQbieAjr5M4N7cd0I+BjRWBcQaCOnA0qN0
SQwqdWeY/ZHcZftbgCAw
=Twjn
-----END PGP SIGNATURE-----
Merge tag 'efi-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into x86/efi
Pull EFI changes from Matt Fleming:
- Use idiomatic negative error values in efivar_create_sysfs_entry()
instead of returning '1' to indicate error. (Dan Carpenter)
- Implement new support to expose the EFI System Resource Tables in sysfs,
which provides information for performing firmware updates. (Peter Jones)
- Documentation cleanup in the EFI handover protocol section which
falsely claimed that 'cmdline_size' needed to be filled out by the
boot loader. (Alex Smith)
- Align the order of SMBIOS tables in /sys/firmware/efi/systab to match
the way that we do things for ACPI and add documentation to
Documentation/ABI. (Jean Delvare)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
EFI variable name - Ross Lagerwall
* Stop erroneously dropping upper 32-bits of boot command line pointer
in EFI boot stub and stash them in ext_cmd_line_ptr - Roy Franz
* Fix double-free bug in error handling code path of EFI runtime map
code - Dan Carpenter
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVSOSjAAoJEC84WcCNIz1VXk4P/R4GwmmzZBdYAseiwv6u/NRm
bTXnK7SN1ZyY8WibEm8ptXJuTIyXZxmQYr4lY97canJy8P7umtoCP7P3tS0Ier8U
N1AMFGes7xlwBhjIRz2Cr9e5plr5H3qk65JNMuUDp0/MVuPEiNEzi6efbL82dh9S
RCLxQ94paX+wV6ltQMKWGD3v0WnHkzouuCdETCGaozqQmJx6PGzDmJ51kXYRWDyP
esTCZpRHlIzKN0u3XEFgswlIev2wab0BtjXYOzUqb0AH1Q13OgQfiswX3WIG6k+c
3xuMH4JByBIDwOLudgu0D6Sst2QwVJZnw6JavoEgGCFao0n6IPzUGolAWLFMdDhL
Kparzc6ObHpiqYtqBjJXW+awOENVS4qIrn9MHc9wwsJxXOy++0YnyYCgge0iia47
F2/pOHvkd52QiQ0gC442W0EdX1VlPCUR04G0s4d3UX3O875yl80QTyLQ4n7ZK074
3wfi/9+Fuv8wWMJ4HI8FJgaTl57KzAP4ZPh2cy8oPs6bkiiwlnMWH24bEhlxKBK4
mEIze045kyswz3rV7j1WX3MSXrPA2cM95L5WlvVTxckMn40QwLPBWSDCOJIj3K5K
yhXNHHfHzG/GRm3SfD2i1EcK4gUW82awl72jJn0F69YMI5a+T1BIppEMP2pzsWE4
FcwvWDxzWwKxYKJosfkk
=f7a2
-----END PGP SIGNATURE-----
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into x86/urgent
Pull EFI fixes from Matt Fleming:
* Avoid garbage names in efivarfs due to buggy firmware by zeroing
EFI variable name. (Ross Lagerwall)
* Stop erroneously dropping upper 32 bits of boot command line pointer
in EFI boot stub and stash them in ext_cmd_line_ptr. (Roy Franz)
* Fix double-free bug in error handling code path of EFI runtime map
code. (Dan Carpenter)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The SMBIOS3 table should appear before the SMBIOS table in
/sys/firmware/efi/systab. This allows user-space utilities which
support both to pick the SMBIOS3 table with a single pass on systems
where both are implemented. The SMBIOS3 entry point is more capable
than the SMBIOS entry point so it should be preferred.
This follows the same logic as the ACPI20 table being listed before
the ACPI table.
Signed-off-by: Jean Delvare <jdelvare@suse.de>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
I spotted two (difficult to hit) bugs while reviewing this.
1) There is a double free bug because we unregister "map_kset" in
add_sysfs_runtime_map_entry() and also efi_runtime_map_init().
2) If we fail to allocate "entry" then we should return
ERR_PTR(-ENOMEM) instead of NULL.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Guangyu Sun <guangyu.sun@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Apparently I missed some compiler warnings on 32-bit platforms, where
phys_addr_t isn't the same size as void * and I casted it to make printk
work. Obviously I should have thought "I'm printing some random type,
instead of typecasting I should check Documentation/printk-formats.txt
and see how to do it." o/~ The More You Know ☆彡 o/~
This patch also fixes one other warning about an uninitialized variable
some compiler versions seem to see. You can't actually hit the code
path where it would be uninitialized, because there's a prior test that
would error out, but gcc hasn't figured that out. Anyway, it now has a
test and returns the error at both places.
Signed-off-by: Peter Jones <pjones@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Add sysfs files for the EFI System Resource Table (ESRT) under
/sys/firmware/efi/esrt and for each EFI System Resource Entry under
entries/ as a subdir.
The EFI System Resource Table (ESRT) provides a read-only catalog of
system components for which the system accepts firmware upgrades via
UEFI's "Capsule Update" feature. This module allows userland utilities
to evaluate what firmware updates can be applied to this system, and
potentially arrange for those updates to occur.
The ESRT is described as part of the UEFI specification, in version 2.5
which should be available from http://uefi.org/specifications in early
2015. If you're a member of the UEFI Forum, information about its
addition to the standard is available as UEFI Mantis 1090.
For some hardware platforms, additional restrictions may be found at
http://msdn.microsoft.com/en-us/library/windows/hardware/jj128256.aspx ,
and additional documentation may be found at
http://download.microsoft.com/download/5/F/5/5F5D16CD-2530-4289-8019-94C6A20BED3C/windows-uefi-firmware-update-platform.docx
.
Signed-off-by: Peter Jones <pjones@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
It's not very normal to return 1 on failure and 0 on success. There
isn't a reason for it here, the callers don't care so long as it's
non-zero on failure.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
When allocating memory for the copy of the FDT that the stub
modifies and passes to the kernel, it uses the current size as
an estimate of how much memory to allocate, and increases it page
by page if it turns out to be too small. However, when loading
the FDT from a UEFI configuration table, the estimated size is
left at its default value of zero, and the allocation loop runs
starting from zero all the way up to the allocation size that
finally fits the updated FDT.
Instead, retrieve the size of the FDT from the FDT header when
loading it from the UEFI config table.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Roy Franz <roy.franz@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
and a type bug that could lead to integer overflow - Ivan Khoronzhuk
* Fix boundary checking in efi_high_alloc() which can lead to memory
corruption in the EFI boot stubs - Yinghai Lu
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJU9FtlAAoJEC84WcCNIz1VjfsP/jnZPtkSapSsFP9c7AfV/vpg
i4PLGk+18QhXpNrCVC1U4sdx3y+zefqImrDNEv72BLX6YDb10RvtydxEy4Kg2aaE
XzCRinHWu3+IEwv4fKAmNj2HORTl+jn79JDZ97jm1PN5sOxVcRG9e3QBg6aTVhHr
MdTXRMAKHYD+ZX5hrCMrbFXi1dboxVsUb1zwMTbJcmPSVPWToqNKCruSwp29LNfP
/2ZsJJSHgFP3tobk37JHDTHxjXaN/GUIwQC9cIWUQMPiwU3+WeOvROBPeKUTFNv7
kS4CXY5Q6eKz+pWYqG+FhbfHM71GTWPyFEJNeLtALg2DSKbgL6lJbtkrPpBVXrcU
TeHlHnYTlqEpcMqHW3JtrVb0Of0/8X/9YfWjpmdxNcNbbp7KvzTtoBcP8MjGdbIq
CztyB4clFsiyy1bEoGHFTVArzch5nn7sRCL3mYhTNQaeyN6TZc0wMXOFF/JU7N5a
GCn9VO6T396L/7WdzG0B/Uo01xw11OS/R0jZVoDvtGfAregO+NU+yLunTEYaRtkC
prxQ62Bu21EjLKJcdr/toFkEG8sT08XJnGTixRJnJlw+hmsK8WaigBrdpirXT5SV
TDJJNyo6A/drfjcPoTI4lCR1CpPV3QXjCTmhh+K6tbvX5/npuWN/i4KJh54WuwT4
BKouS5gjrgYcHH/XJjsQ
=GJnM
-----END PGP SIGNATURE-----
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into x86/urgent
Pull EFI fixes from Matt Fleming:
" - Fix regression in DMI sysfs code for handling "End of Table" entry
and a type bug that could lead to integer overflow. (Ivan Khoronzhuk)
- Fix boundary checking in efi_high_alloc() which can lead to memory
corruption in the EFI boot stubs. (Yinghai Lu)"
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While adding support loading kernel and initrd above 4G to grub2 in legacy
mode, I was referring to efi_high_alloc().
That will allocate buffer for kernel and then initrd, and initrd will
use kernel buffer start as limit.
During testing found two buffers will be overlapped when initrd size is
very big like 400M.
It turns out efi_high_alloc() boundary checking is not right.
end - size will be the new start, and should not compare new
start with max, we need to make sure end is smaller than max.
[ Basically, with the current efi_high_alloc() code it's possible to
allocate memory above 'max', because efi_high_alloc() doesn't check
that the tail of the allocation is below 'max'.
If you have an EFI memory map with a single entry that looks like so,
[0xc0000000-0xc0004000]
And want to allocate 0x3000 bytes below 0xc0003000 the current code
will allocate [0xc0001000-0xc0004000], not [0xc0000000-0xc0003000]
like you would expect. - Matt ]
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Pull misc x86 fixes from Ingo Molnar:
"This contains:
- EFI fixes
- a boot printout fix
- ASLR/kASLR fixes
- intel microcode driver fixes
- other misc fixes
Most of the linecount comes from an EFI revert"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm/ASLR: Avoid PAGE_SIZE redefinition for UML subarch
x86/microcode/intel: Handle truncated microcode images more robustly
x86/microcode/intel: Guard against stack overflow in the loader
x86, mm/ASLR: Fix stack randomization on 64-bit systems
x86/mm/init: Fix incorrect page size in init_memory_mapping() printks
x86/mm/ASLR: Propagate base load address calculation
Documentation/x86: Fix path in zero-page.txt
x86/apic: Fix the devicetree build in certain configs
Revert "efi/libstub: Call get_memory_map() to obtain map and desc sizes"
x86/efi: Avoid triple faults during EFI mixed mode calls
This reverts commit d1a8d66b91.
Ard reported a boot failure when running UEFI under Qemu and Xen and
experimenting with various Tianocore build options,
"As it turns out, when allocating room for the UEFI memory map using
UEFI's AllocatePool (), it may result in two new memory map entries
being created, for instance, when using Tianocore's preallocated region
feature. For example, the following region
0x00005ead5000-0x00005ebfffff [Conventional Memory| | | | | |WB|WT|WC|UC]
may be split like this
0x00005ead5000-0x00005eae2fff [Conventional Memory| | | | | |WB|WT|WC|UC]
0x00005eae3000-0x00005eae4fff [Loader Data | | | | | |WB|WT|WC|UC]
0x00005eae5000-0x00005ebfffff [Conventional Memory| | | | | |WB|WT|WC|UC]
if the preallocated Loader Data region was chosen to be right in the
middle of the original free space.
After patch d1a8d66b91 ("efi/libstub: Call get_memory_map() to
obtain map and desc sizes"), this is not being dealt with correctly
anymore, as the existing logic to allocate room for a single additional
entry has become insufficient."
Mark requested to reinstate the old loop we had before commit
d1a8d66b91, which grows the memory map buffer until it's big enough to
hold the EFI memory map.
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Recently instrumentation of builtin functions calls was removed from GCC
5.0. To check the memory accessed by such functions, userspace asan
always uses interceptors for them.
So now we should do this as well. This patch declares
memset/memmove/memcpy as weak symbols. In mm/kasan/kasan.c we have our
own implementation of those functions which checks memory before accessing
it.
Default memset/memmove/memcpy now now always have aliases with '__'
prefix. For files that built without kasan instrumentation (e.g.
mm/slub.c) original mem* replaced (via #define) with prefixed variants,
cause we don't want to check memory accesses there.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kernel Address sanitizer (KASan) is a dynamic memory error detector. It
provides fast and comprehensive solution for finding use-after-free and
out-of-bounds bugs.
KASAN uses compile-time instrumentation for checking every memory access,
therefore GCC > v4.9.2 required. v4.9.2 almost works, but has issues with
putting symbol aliases into the wrong section, which breaks kasan
instrumentation of globals.
This patch only adds infrastructure for kernel address sanitizer. It's
not available for use yet. The idea and some code was borrowed from [1].
Basic idea:
The main idea of KASAN is to use shadow memory to record whether each byte
of memory is safe to access or not, and use compiler's instrumentation to
check the shadow memory on each memory access.
Address sanitizer uses 1/8 of the memory addressable in kernel for shadow
memory and uses direct mapping with a scale and offset to translate a
memory address to its corresponding shadow address.
Here is function to translate address to corresponding shadow address:
unsigned long kasan_mem_to_shadow(unsigned long addr)
{
return (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET;
}
where KASAN_SHADOW_SCALE_SHIFT = 3.
So for every 8 bytes there is one corresponding byte of shadow memory.
The following encoding used for each shadow byte: 0 means that all 8 bytes
of the corresponding memory region are valid for access; k (1 <= k <= 7)
means that the first k bytes are valid for access, and other (8 - k) bytes
are not; Any negative value indicates that the entire 8-bytes are
inaccessible. Different negative values used to distinguish between
different kinds of inaccessible memory (redzones, freed memory) (see
mm/kasan/kasan.h).
To be able to detect accesses to bad memory we need a special compiler.
Such compiler inserts a specific function calls (__asan_load*(addr),
__asan_store*(addr)) before each memory access of size 1, 2, 4, 8 or 16.
These functions check whether memory region is valid to access or not by
checking corresponding shadow memory. If access is not valid an error
printed.
Historical background of the address sanitizer from Dmitry Vyukov:
"We've developed the set of tools, AddressSanitizer (Asan),
ThreadSanitizer and MemorySanitizer, for user space. We actively use
them for testing inside of Google (continuous testing, fuzzing,
running prod services). To date the tools have found more than 10'000
scary bugs in Chromium, Google internal codebase and various
open-source projects (Firefox, OpenSSL, gcc, clang, ffmpeg, MySQL and
lots of others): [2] [3] [4].
The tools are part of both gcc and clang compilers.
We have not yet done massive testing under the Kernel AddressSanitizer
(it's kind of chicken and egg problem, you need it to be upstream to
start applying it extensively). To date it has found about 50 bugs.
Bugs that we've found in upstream kernel are listed in [5].
We've also found ~20 bugs in out internal version of the kernel. Also
people from Samsung and Oracle have found some.
[...]
As others noted, the main feature of AddressSanitizer is its
performance due to inline compiler instrumentation and simple linear
shadow memory. User-space Asan has ~2x slowdown on computational
programs and ~2x memory consumption increase. Taking into account that
kernel usually consumes only small fraction of CPU and memory when
running real user-space programs, I would expect that kernel Asan will
have ~10-30% slowdown and similar memory consumption increase (when we
finish all tuning).
I agree that Asan can well replace kmemcheck. We have plans to start
working on Kernel MemorySanitizer that finds uses of unitialized
memory. Asan+Msan will provide feature-parity with kmemcheck. As
others noted, Asan will unlikely replace debug slab and pagealloc that
can be enabled at runtime. Asan uses compiler instrumentation, so even
if it is disabled, it still incurs visible overheads.
Asan technology is easily portable to other architectures. Compiler
instrumentation is fully portable. Runtime has some arch-dependent
parts like shadow mapping and atomic operation interception. They are
relatively easy to port."
Comparison with other debugging features:
========================================
KMEMCHECK:
- KASan can do almost everything that kmemcheck can. KASan uses
compile-time instrumentation, which makes it significantly faster than
kmemcheck. The only advantage of kmemcheck over KASan is detection of
uninitialized memory reads.
Some brief performance testing showed that kasan could be
x500-x600 times faster than kmemcheck:
$ netperf -l 30
MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost (127.0.0.1) port 0 AF_INET
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec
no debug: 87380 16384 16384 30.00 41624.72
kasan inline: 87380 16384 16384 30.00 12870.54
kasan outline: 87380 16384 16384 30.00 10586.39
kmemcheck: 87380 16384 16384 30.03 20.23
- Also kmemcheck couldn't work on several CPUs. It always sets
number of CPUs to 1. KASan doesn't have such limitation.
DEBUG_PAGEALLOC:
- KASan is slower than DEBUG_PAGEALLOC, but KASan works on sub-page
granularity level, so it able to find more bugs.
SLUB_DEBUG (poisoning, redzones):
- SLUB_DEBUG has lower overhead than KASan.
- SLUB_DEBUG in most cases are not able to detect bad reads,
KASan able to detect both reads and writes.
- In some cases (e.g. redzone overwritten) SLUB_DEBUG detect
bugs only on allocation/freeing of object. KASan catch
bugs right before it will happen, so we always know exact
place of first bad read/write.
[1] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel
[2] https://code.google.com/p/address-sanitizer/wiki/FoundBugs
[3] https://code.google.com/p/thread-sanitizer/wiki/FoundBugs
[4] https://code.google.com/p/memory-sanitizer/wiki/FoundBugs
[5] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel#Trophies
Based on work by Andrey Konovalov.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Acked-by: Michal Marek <mmarek@suse.cz>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- reimplementation of the virtual remapping of UEFI Runtime Services in
a way that is stable across kexec
- emulation of the "setend" instruction for 32-bit tasks (user
endianness switching trapped in the kernel, SCTLR_EL1.E0E bit set
accordingly)
- compat_sys_call_table implemented in C (from asm) and made it a
constant array together with sys_call_table
- export CPU cache information via /sys (like other architectures)
- DMA API implementation clean-up in preparation for IOMMU support
- macros clean-up for KVM
- dropped some unnecessary cache+tlb maintenance
- CONFIG_ARM64_CPU_SUSPEND clean-up
- defconfig update (CPU_IDLE)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJU25v3AAoJEGvWsS0AyF7xYjcP/j8ESvs+z0BPgeJ6XREfOnCh
cp+w/1rJ5BafJ5RRkibrciwTNOIJS4FGMivWyURtoh430lS0Rh7fxZ3Ouna3xjrT
Nf7AxenWoA8Lo6wHh+FlNUeGk3iWfX6WwA2tYrbKudK+LBJ1wHjwpE7cWQO0FgwJ
aFDahu+QD5/u45p/VcVctMtiEDvOxBdO8gfat6r+YkLm7pbRxQkZnpA/JE4Gps1p
Td5jvMNH9pXI5pffSbeR9Q+vs/r0yqKLXQg01Eb2bZgGDgwf9yzADrHuaKamZt35
X5flmLiTGC6swJCJvUkZC1Nuue33bXcvW5+vgvar+MNGyXsxv+B/wARLqGhiWhQZ
nLGwFpuNu6wdY9tGHb/XR8khcewkw1/lRH1hHKhchrmRyUqHvXcPgC5tamjLrY8C
BV3BAeQvRho8OKwWUmbXIlyON1vPux6CJdj4D/A5NL+qph2WHeVWJCXg6nVFx0Wc
Eb3bXbI4QRwTFL7pGRF8RyZJBAQtgYhQMKWMW2GHgUgn+r1EixG73BZoSwvpHrrw
FOR9AVNfVBqmNON8xiIb3DN4EViq76EF0jrsZh5I9EoWS2w5qtk60kJQgXE+M4EE
vOlmh3dhEVfCN2SxOn0bgoQmTulyjqGauTSSJKQbIBuinPFveukrJfGNFIWt0SZs
f38FBMo6sgU4VG85B+Fr
=X5x/
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"arm64 updates for 3.20:
- reimplementation of the virtual remapping of UEFI Runtime Services
in a way that is stable across kexec
- emulation of the "setend" instruction for 32-bit tasks (user
endianness switching trapped in the kernel, SCTLR_EL1.E0E bit set
accordingly)
- compat_sys_call_table implemented in C (from asm) and made it a
constant array together with sys_call_table
- export CPU cache information via /sys (like other architectures)
- DMA API implementation clean-up in preparation for IOMMU support
- macros clean-up for KVM
- dropped some unnecessary cache+tlb maintenance
- CONFIG_ARM64_CPU_SUSPEND clean-up
- defconfig update (CPU_IDLE)
The EFI changes going via the arm64 tree have been acked by Matt
Fleming. There is also a patch adding sys_*stat64 prototypes to
include/linux/syscalls.h, acked by Andrew Morton"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (47 commits)
arm64: compat: Remove incorrect comment in compat_siginfo
arm64: Fix section mismatch on alloc_init_p[mu]d()
arm64: Avoid breakage caused by .altmacro in fpsimd save/restore macros
arm64: mm: use *_sect to check for section maps
arm64: drop unnecessary cache+tlb maintenance
arm64:mm: free the useless initial page table
arm64: Enable CPU_IDLE in defconfig
arm64: kernel: remove ARM64_CPU_SUSPEND config option
arm64: make sys_call_table const
arm64: Remove asm/syscalls.h
arm64: Implement the compat_sys_call_table in C
syscalls: Declare sys_*stat64 prototypes if __ARCH_WANT_(COMPAT_)STAT64
compat: Declare compat_sys_sigpending and compat_sys_sigprocmask prototypes
arm64: uapi: expose our struct ucontext to the uapi headers
smp, ARM64: Kill SMP single function call interrupt
arm64: Emulate SETEND for AArch32 tasks
arm64: Consolidate hotplug notifier for instruction emulation
arm64: Track system support for mixed endian EL0
arm64: implement generic IOMMU configuration
arm64: Combine coherent and non-coherent swiotlb dma_ops
...
since that's a more logical and accurate place - Leif Lindholm
* Update efibootmgr URL in Kconfig help - Peter Jones
* Improve accuracy of EFI guid function names - Borislav Petkov
* Expose firmware platform size in sysfs for the benefit of EFI boot
loader installers and other utilities - Steve McIntyre
* Cleanup __init annotations for arm64/efi code - Ard Biesheuvel
* Mark the UIE as unsupported for rtc-efi - Ard Biesheuvel
* Fix memory leak in error code path of runtime map code - Dan Carpenter
* Improve robustness of get_memory_map() by removing assumptions on the
size of efi_memory_desc_t (which could change in future spec
versions) and querying the firmware instead of guessing about the
memmap size - Ard Biesheuvel
* Remove superfluous guid unparse calls - Ivan Khoronzhuk
* Delete unnecessary chosen@0 DT node FDT code since was duplicated
from code in drivers/of and is entirely unnecessary - Leif Lindholm
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJUv69oAAoJEC84WcCNIz1VEYgP/1b27WRfCXs4q/8FP+UheSDS
nAFbGe9PjVPnxo5pA9VwPP6eNQ2zYiyNGEK1BlbQlFPZdSD1updIraA78CiF5iys
iSYyG9xVIcTB23RZI8aJLnBXbosIUKPJZ3FORv1LPhI6Mz1rCpraEaaUlv67rUKr
FLBG9cR7t9f/f+fJw6LOAAISGIG/4s0wQdA5/noaYkj5R5bICl2UTGtbwa0oNstb
NUO93aKDgaG/VljpIEeG6XV96Ioz7cHjQsEaX8sTrvT0n7nPNIqSDjFJOqWKJOXl
RsFrzyl8fFIbMuQatYv1f3efPvyH+iKOfHnHrvcjUNje0xhm7F0Bd86BkOw1a3JQ
pNb0YUWecI0Z/8GSzN8X0JQ7cowa3wI15Z/Hfs03odTXiM6VqwFAhuz/s5DEUdKS
U+rOPjU0ezt3G4oBB/VGgF9w5JWKfsMcsHgmLX9P+JYzKFrxggo1SXAtXUeRAqQp
agKmUB+k6Y1baQO8efkoM7rKL2F0q1SR9QiK+16BHCCkevD23v7IFGrHm2r1xKil
kvWlY4MkRVa4KGPxEFEDVty0HjXxImwYsxTaYVHTS7SMeoP41f6koHKB19NaB3No
5fqn/rT1KcJuhQj/I+vAixIX4WMJkX/MQVbtKfqSaKlAiRg3eRY6ONYr0jOglfF6
gaMuvmDd0HlV6UJvH/9L
=iPpM
-----END PGP SIGNATURE-----
Merge tag 'efi-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into x86/efi
Pull EFI updates from Matt Fleming:
" - Move efivarfs from the misc filesystem section to pseudo filesystem,
since that's a more logical and accurate place - Leif Lindholm
- Update efibootmgr URL in Kconfig help - Peter Jones
- Improve accuracy of EFI guid function names - Borislav Petkov
- Expose firmware platform size in sysfs for the benefit of EFI boot
loader installers and other utilities - Steve McIntyre
- Cleanup __init annotations for arm64/efi code - Ard Biesheuvel
- Mark the UIE as unsupported for rtc-efi - Ard Biesheuvel
- Fix memory leak in error code path of runtime map code - Dan Carpenter
- Improve robustness of get_memory_map() by removing assumptions on the
size of efi_memory_desc_t (which could change in future spec
versions) and querying the firmware instead of guessing about the
memmap size - Ard Biesheuvel
- Remove superfluous guid unparse calls - Ivan Khoronzhuk
- Delete unnecessary chosen@0 DT node FDT code since was duplicated
from code in drivers/of and is entirely unnecessary - Leif Lindholm
There's nothing super scary, mainly cleanups, and a merge from Ricardo who
kindly picked up some patches from the linux-efi mailing list while I
was out on annual leave in December.
Perhaps the biggest risk is the get_memory_map() change from Ard, which
changes the way that both the arm64 and x86 EFI boot stub build the
early memory map. It would be good to have it bake in linux-next for a
while.
"
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Due to some scary special case handling noticed in drivers/of, various
bits of the ARM* EFI support patches did duplicate looking for @0
variants of various nodes. Unless on an ancient PPC system, these are
not in fact required. Most instances have become refactored out along
the way, this removes the last one.
Signed-off-by: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
There is no reason to translate guid number to string here.
So remove it in order to not do unneeded work.
Signed-off-by: Ivan Khoronzhuk <ivan.khoronzhuk@linaro.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
This fixes two minor issues in the implementation of get_memory_map():
- Currently, it assumes that sizeof(efi_memory_desc_t) == desc_size,
which is usually true, but not mandated by the spec. (This was added
intentionally to allow future additions to the definition of
efi_memory_desc_t). The way the loop is implemented currently, the
added slack space may be insufficient if desc_size is larger, which in
some corner cases could result in the loop never terminating.
- It allocates 32 efi_memory_desc_t entries first (again, using the size
of the struct instead of desc_size), and frees and reallocates if it
turns out to be insufficient. Few implementations of UEFI have such small
memory maps, which results in a unnecessary allocate/free pair on each
invocation.
Fix this by calling the get_memory_map() boot service first with a '0'
input value for map size to retrieve the map size and desc size from the
firmware and only then perform the allocation, using desc_size rather
than sizeof(efi_memory_desc_t).
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
The "> 0" here should ">= 0" so we free map_entries[0].
Fixes: 926172d460 ('efi: Export EFI runtime memory mapping to sysfs')
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
This ensures all stub component are freed when the kernel proper is
done booting, by prefixing the names of all ELF sections that have
the SHF_ALLOC attribute with ".init". This approach ensures that even
implicitly emitted allocated data (like initializer values and string
literals) are covered.
At the same time, remove some __init annotations in the stub that have
now become redundant, and add the __init annotation to handle_kernel_image
which will now trigger a section mismatch warning without it.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
In order to support kexec, the kernel needs to be able to deal with the
state of the UEFI firmware after SetVirtualAddressMap() has been called.
To avoid having separate code paths for non-kexec and kexec, let's move
the call to SetVirtualAddressMap() to the stub: this will guarantee us
that it will only be called once (since the stub is not executed during
kexec), and ensures that the UEFI state is identical between kexec and
normal boot.
This implies that the layout of the virtual mapping needs to be created
by the stub as well. All regions are rounded up to a naturally aligned
multiple of 64 KB (for compatibility with 64k pages kernels) and recorded
in the UEFI memory map. The kernel proper reads those values and installs
the mappings in a dedicated set of page tables that are swapped in during
UEFI Runtime Services calls.
Acked-by: Leif Lindholm <leif.lindholm@linaro.org>
Acked-by: Matt Fleming <matt.fleming@intel.com>
Tested-by: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
In some cases (e.g. Intel Bay Trail machines), the kernel will happily
run in 64-bit even if the underlying UEFI firmware platform is
32-bit. That's great, but it's difficult for userland utilities like
grub-install to do the right thing in such a situation.
The kernel already knows about the size of the firmware via
efi_enabled(EFI_64BIT). Add an extra sysfs interface
/sys/firmware/efi/fw_platform_size to expose that information to
userland for low-level utilities to use.
Signed-off-by: Steve McIntyre <steve@einval.com>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
On systems with 64 KB pages, it is preferable for UEFI memory map
entries to be 64 KB aligned multiples of 64 KB, because it relieves
us of having to deal with the residues.
So, if EFI_ALLOC_ALIGN is #define'd by the platform, use it to round
up all memory allocations made.
Acked-by: Matt Fleming <matt.fleming@intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Tested-by: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Split of the remapping code from efi_config_init() so that the caller
can perform its own remapping. This is necessary to correctly handle
virtually remapped UEFI memory regions under kexec, as efi.systab will
have been updated to a virtual address.
Acked-by: Matt Fleming <matt.fleming@intel.com>
Tested-by: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Call it what it does - "unparse" is plain-misleading.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Matt Domsch changed the dell page to point to the new upstream quite
some time ago; kernel should reflect that here as well.
Cc: Matt Domsch <Matt_Domsch@dell.com>
Signed-off-by: Peter Jones <pjones@redhat.com>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
to the trace_seq code. It also removed the return values to the
trace_seq_*() functions and use trace_seq_has_overflowed() to see if
the buffer filled up or not. This is similar to work being done to the
seq_file code as well in another tree.
Some of the other goodies include:
o Added some "!" (NOT) logic to the tracing filter.
o Fixed the frame pointer logic to the x86_64 mcount trampolines
o Added the logic for dynamic trampolines on !CONFIG_PREEMPT systems.
That is, the ftrace trampoline can be dynamically allocated
and be called directly by functions that only have a single hook
to them.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJUhbLGAAoJEEjnJuOKh9ldRV4H/3NcLbgGB2iu96la1zdYE6pG
Q7cDJMxXK80YIIL70h9G0IItcD4t62LMb72lfBnMGRj3msgFb3AgISW57EuI0Pxk
xk24wuIPoTG2S7v9sc3SboNFwO8qbtIjxD2OBmqIUrGo2sZIiGjyj3gX7mCY3uzL
WB2bUOSFz/22OgaANinR5EELHA3pZZCf54Vz1K9ndmtK0xp0j1a7xJShD6TrMdYv
mZ3zH5ViIhW4A3mdcMceh6fy2JLQAiEKF0uPTvcMMz7NlVul0mxyL/+10P7AE/3R
Ehw4fzmm4NDshPDtBOkKH0LsppgXzuItFuQUTpact3JlqTg++bV6onSsrkt1hlY=
=Z7Cm
-----END PGP SIGNATURE-----
Merge tag 'trace-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"There was a lot of clean ups and minor fixes. One of those clean ups
was to the trace_seq code. It also removed the return values to the
trace_seq_*() functions and use trace_seq_has_overflowed() to see if
the buffer filled up or not. This is similar to work being done to
the seq_file code as well in another tree.
Some of the other goodies include:
- Added some "!" (NOT) logic to the tracing filter.
- Fixed the frame pointer logic to the x86_64 mcount trampolines
- Added the logic for dynamic trampolines on !CONFIG_PREEMPT systems.
That is, the ftrace trampoline can be dynamically allocated and be
called directly by functions that only have a single hook to them"
* tag 'trace-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (55 commits)
tracing: Truncated output is better than nothing
tracing: Add additional marks to signal very large time deltas
Documentation: describe trace_buf_size parameter more accurately
tracing: Allow NOT to filter AND and OR clauses
tracing: Add NOT to filtering logic
ftrace/fgraph/x86: Have prepare_ftrace_return() take ip as first parameter
ftrace/x86: Get rid of ftrace_caller_setup
ftrace/x86: Have save_mcount_regs macro also save stack frames if needed
ftrace/x86: Add macro MCOUNT_REG_SIZE for amount of stack used to save mcount regs
ftrace/x86: Simplify save_mcount_regs on getting RIP
ftrace/x86: Have save_mcount_regs store RIP in %rdi for first parameter
ftrace/x86: Rename MCOUNT_SAVE_FRAME and add more detailed comments
ftrace/x86: Move MCOUNT_SAVE_FRAME out of header file
ftrace/x86: Have static tracing also use ftrace_caller_setup
ftrace/x86: Have static function tracing always test for function graph
kprobes: Add IPMODIFY flag to kprobe_ftrace_ops
ftrace, kprobes: Support IPMODIFY flag to find IP modify conflict
kprobes/ftrace: Recover original IP if pre_handler doesn't change it
tracing/trivial: Fix typos and make an int into a bool
tracing: Deletion of an unnecessary check before iput()
...
Pull EFI updates from Ingo Molnar:
"Changes in this cycle are:
- support module unload for efivarfs (Mathias Krause)
- another attempt at moving x86 to libstub taking advantage of the
__pure attribute (Ard Biesheuvel)
- add EFI runtime services section to ptdump (Mathias Krause)"
* 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, ptdump: Add section for EFI runtime services
efi/x86: Move x86 back to libstub
efivarfs: Allow unloading when build as module
Use the helper function trace_seq_buffer_ptr() to get the current location
of the next buffer write of a trace_seq object, instead of open coding
it.
This facilitates the conversion of trace_seq to use seq_buf.
Tested-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Cc: Chen Gong <gong.chen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
This reverts commit 84be880560, which itself reverted my original
attempt to move x86 from #include'ing .c files from across the tree
to using the EFI stub built as a static library.
The issue that affected the original approach was that splitting
the implementation into several .o files resulted in the variable
'efi_early' becoming a global with external linkage, which under
-fPIC implies that references to it must go through the GOT. However,
dealing with this additional GOT entry turned out to be troublesome
on some EFI implementations. (GCC's visibility=hidden attribute is
supposed to lift this requirement, but it turned out not to work on
the 32-bit build.)
Instead, use a pure getter function to get a reference to efi_early.
This approach results in no additional GOT entries being generated,
so there is no need for any changes in the early GOT handling.
Tested-by: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
In the absence of a DTB configuration table, the EFI stub will happily
continue attempting to boot a kernel, despite the fact that this kernel
may not function without a description of the hardware. In this case, as
with a typo'd "dtb=" option (e.g. "dbt=") or many other possible
failures, the only output seen by the user will be the rather terse
output from the EFI stub:
EFI stub: Booting Linux Kernel...
To aid those attempting to debug such failures, this patch adds a notice
when no DTB is found, making the output more helpful:
EFI stub: Booting Linux Kernel...
EFI stub: Generating empty DTB
Additionally, a positive acknowledgement is added when a user-specified
DTB is in use:
EFI stub: Booting Linux Kernel...
EFI stub: Using DTB from command line
Similarly, a positive acknowledgement is added when a DTB from a
configuration table is in use:
EFI stub: Booting Linux Kernel...
EFI stub: Using DTB from configuration table
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Leif Lindholm <leif.lindholm@linaro.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Roy Franz <roy.franz@linaro.org>
Acked-by: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
This adds support to the UEFI side for detecting the presence of
a SMBIOS 3.0 64-bit entry point. This allows the actual SMBIOS
structure table to reside at a physical offset over 4 GB, which
cannot be supported by the legacy SMBIOS 32-bit entry point.
Since the firmware can legally provide both entry points, store
the SMBIOS 3.0 entry point in a separate variable, and let the
DMI decoding layer decide which one will be used.
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Acked-by: Leif Lindholm <leif.lindholm@linaro.org>
Acked-by: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
commit 5dc3826d9f08 ("efi: Implement mandatory locking for UEFI Runtime
Services") implemented some conditional locking when accessing variable
runtime services that Ingo described as "pretty disgusting".
The intention with the !efi_in_nmi() checks was to avoid live-locks when
trying to write pstore crash data into an EFI variable. Such lockless
accesses are allowed according to the UEFI specification when we're in a
"non-recoverable" state, but whether or not things are implemented
correctly in actual firmware implementations remains an unanswered
question, and so it would seem sensible to avoid doing any kind of
unsynchronized variable accesses.
Furthermore, the efi_in_nmi() tests are inadequate because they don't
account for the case where we call EFI variable services from panic or
oops callbacks and aren't executing in NMI context. In other words,
live-locking is still possible.
Let's just remove the conditional locking altogether. Now we've got the
->set_variable_nonblocking() EFI variable operation we can abort if the
runtime lock is already held. Aborting is by far the safest option.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
There are some circumstances that call for trying to write an EFI
variable in a non-blocking way. One such scenario is when writing pstore
data in efi_pstore_write() via the pstore_dump() kdump callback.
Now that we have an EFI runtime spinlock we need a way of aborting if
there is contention instead of spinning, since when writing pstore data
from the kdump callback, the runtime lock may already be held by the CPU
that's running the callback if we crashed in the middle of an EFI
variable operation.
The situation is sufficiently special that a new EFI variable operation
is warranted.
Introduce ->set_variable_nonblocking() for this use case. It is an
optional EFI backend operation, and need only be implemented by those
backends that usually acquire locks to serialize access to EFI
variables, as is the case for virt_efi_set_variable() where we now grab
the EFI runtime spinlock.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
It is a really bad idea to declare variables or parameters that
have the same name as common types. It is valid C, but it gets
surprising if a macro expansion attempts to declare an inner
local with that type. Change the local names to eliminate the
hazard.
Change s16 => str16, s8 => str8.
This resolves warnings seen when using W=2 during make, for instance:
drivers/firmware/efi/vars.c: In function ‘dup_variable_bug’:
drivers/firmware/efi/vars.c:324:44: warning: declaration of ‘s16’ shadows a global declaration [-Wshadow]
static void dup_variable_bug(efi_char16_t *s16, efi_guid_t *vendor_guid,
drivers/firmware/efi/vars.c:328:8: warning: declaration of ‘s8’ shadows a global declaration [-Wshadow]
char *s8;
Signed-off-by: Mark Rustad <mark.d.rustad@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
At the moment, there are three architectures debug-printing the EFI memory
map at initialization: x86, ia64, and arm64. They all use different format
strings, plus the EFI memory type and the EFI memory attributes are
similarly hard to decode for a human reader.
Introduce a helper __init function that formats the memory type and the
memory attributes in a unified way, to a user-provided character buffer.
The array "memory_type_name" is copied from the arm64 code, temporarily
duplicating it. The (otherwise optional) braces around each string literal
in the initializer list are dropped in order to match the kernel coding
style more closely. The element size is tightened from 32 to 20 bytes
(maximum actual string length + 1) so that we can derive the field width
from the element size.
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[ Dropped useless 'register' keyword, which compiler will ignore ]
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
noefi kernel param means actually disabling efi runtime, Per suggestion
from Leif Lindholm efi=noruntime should be better. But since noefi is
already used in X86 thus just adding another param efi=noruntime for
same purpose.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
noefi param can be used for arches other than X86 later, thus move it
out of x86 platform code.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
We need a way to customize the behaviour of the EFI boot stub, in
particular, we need a way to disable the "chunking" workaround, used
when reading files from the EFI System Partition.
One of my machines doesn't cope well when reading files in 1MB chunks to
a buffer above the 4GB mark - it appears that the "chunking" bug
workaround triggers another firmware bug. This was only discovered with
commit 4bf7111f50 ("x86/efi: Support initrd loaded above 4G"), and
that commit is perfectly valid. The symptom I observed was a corrupt
initrd rather than any kind of crash.
efi= is now used to specify EFI parameters in two very different
execution environments, the EFI boot stub and during kernel boot.
There is also a slight performance optimization by enabling efi=nochunk,
but that's offset by the fact that you're more likely to run into
firmware issues, at least on x86. This is the rationale behind leaving
the workaround enabled by default.
Also provide some documentation for EFI_READ_CHUNK_SIZE and why we're
using the current value of 1MB.
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Roy Franz <roy.franz@linaro.org>
Cc: Maarten Lankhorst <m.b.lankhorst@gmail.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Borislav Petkov <bp@suse.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
According to section 7.1 of the UEFI spec, Runtime Services are not fully
reentrant, and there are particular combinations of calls that need to be
serialized. Use a spinlock to serialize all Runtime Services with respect
to all others, even if this is more than strictly needed.
We've managed to get away without requiring a runtime services lock
until now because most of the interactions with EFI involve EFI
variables, and those operations are already serialised with
__efivars->lock.
Some of the assumptions underlying the decision whether locks are
needed or not (e.g., SetVariable() against ResetSystem()) may not
apply universally to all [new] architectures that implement UEFI.
Rather than try to reason our way out of this, let's just implement at
least what the spec requires in terms of locking.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
This reverts commit f23cf8bd5c ("efi/x86: efistub: Move shared
dependencies to <asm/efi.h>") as well as the x86 parts of commit
f4f75ad574 ("efi: efistub: Convert into static library").
The road leading to these two reverts is long and winding.
The above two commits were merged during the v3.17 merge window and
turned the common EFI boot stub code into a static library. This
necessitated making some symbols global in the x86 boot stub which
introduced new entries into the early boot GOT.
The problem was that we weren't fixing up the newly created GOT entries
before invoking the EFI boot stub, which sometimes resulted in hangs or
resets. This failure was reported by Maarten on his Macbook pro.
The proposed fix was commit 9cb0e39423 ("x86/efi: Fixup GOT in all
boot code paths"). However, that caused issues for Linus when booting
his Sony Vaio Pro 11. It was subsequently reverted in commit
f3670394c2.
So that leaves us back with Maarten's Macbook pro not booting.
At this stage in the release cycle the least risky option is to revert
the x86 EFI boot stub to the pre-merge window code structure where we
explicitly #include efi-stub-helper.c instead of linking with the static
library. The arm64 code remains unaffected.
We can take another swing at the x86 parts for v3.18.
Conflicts:
arch/x86/include/asm/efi.h
Tested-by: Josh Boyer <jwboyer@fedoraproject.org>
Tested-by: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Tested-by: Leif Lindholm <leif.lindholm@linaro.org> [arm64]
Tested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>,
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Commit 86c8b27a01:
"arm64: ignore DT memreserve entries when booting in UEFI mode
prevents early_init_fdt_scan_reserved_mem() from being called for
arm64 kernels booting via UEFI. This was done because the kernel
will use the UEFI memory map to determine reserved memory regions.
That approach has problems in that early_init_fdt_scan_reserved_mem()
also reserves the FDT itself and any node-specific reserved memory.
By chance of some kernel configs, the FDT may be overwritten before
it can be unflattened and the kernel will fail to boot. More subtle
problems will result if the FDT has node specific reserved memory
which is not really reserved.
This patch has the UEFI stub remove the memory reserve map entries
from the FDT as it does with the memory nodes. This allows
early_init_fdt_scan_reserved_mem() to be called unconditionally
so that the other needed reservations are made.
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
spin_is_locked() always returns false for uniprocessor configurations
in several architectures, so do not use WARN_ON with it.
Use lockdep_assert_held() instead to also reduce overhead in
non-debug kernels.
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
This patch does two things. It passes EFI run time mappings to second
kernel in bootparams efi_info. Second kernel parse this info and create
new mappings in second kernel. That means mappings in first and second
kernel will be same. This paves the way to enable EFI in kexec kernel.
This patch also prepares and passes EFI setup data through bootparams.
This contains bunch of information about various tables and their
addresses.
These information gathering and passing has been written along the lines
of what current kexec-tools is doing to make kexec work with UEFI.
[akpm@linux-foundation.org: s/get_efi/efi_get/g, per Matt]
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: WANG Chao <chaowang@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Matt Fleming <matt@console-pimps.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- ACPICA update to upstream version 20140724. That includes
ACPI 5.1 material (support for the _CCA and _DSD predefined names,
changes related to the DMAR and PCCT tables and ARM support among
other things) and cleanups related to using ACPICA's header files.
A major part of it is related to acpidump and the core code used
by that utility. Changes from Bob Moore, David E Box, Lv Zheng,
Sascha Wildner, Tomasz Nowicki, Hanjun Guo.
- Radix trees for memory bitmaps used by the hibernation core from
Joerg Roedel.
- Support for waking up the system from suspend-to-idle (also known
as the "freeze" sleep state) using ACPI-based PCI wakeup signaling
(Rafael J Wysocki).
- Fixes for issues related to ACPI button events (Rafael J Wysocki).
- New device ID for an ACPI-enumerated device included into the
Wildcat Point PCH from Jie Yang.
- ACPI video updates related to backlight handling from Hans de Goede
and Linus Torvalds.
- Preliminary changes needed to support ACPI on ARM from Hanjun Guo
and Graeme Gregory.
- ACPI PNP core cleanups from Arjun Sreedharan and Zhang Rui.
- Cleanups related to ACPI_COMPANION() and ACPI_HANDLE() macros
(Rafael J Wysocki).
- ACPI-based device hotplug cleanups from Wei Yongjun and
Rafael J Wysocki.
- Cleanups and improvements related to system suspend from
Lan Tianyu, Randy Dunlap and Rafael J Wysocki.
- ACPI battery cleanup from Wei Yongjun.
- cpufreq core fixes from Viresh Kumar.
- Elimination of a deadband effect from the cpufreq ondemand
governor and intel_pstate driver cleanups from Stratos Karafotis.
- 350MHz CPU support for the powernow-k6 cpufreq driver from
Mikulas Patocka.
- Fix for the imx6 cpufreq driver from Anson Huang.
- cpuidle core and governor cleanups from Daniel Lezcano,
Sandeep Tripathy and Mohammad Merajul Islam Molla.
- Build fix for the big_little cpuidle driver from Sachin Kamat.
- Configuration fix for the Operation Performance Points (OPP)
framework from Mark Brown.
- APM cleanup from Jean Delvare.
- cpupower utility fixes and cleanups from Peter Senna Tschudin,
Andrey Utkin, Himangi Saraogi, Rickard Strandqvist, Thomas Renninger.
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJT4nhtAAoJEILEb/54YlRxtZEP/2rtVQFSFdAW8l0Xm1SeSsl4
EnZpSNT1TFn+NdG23vSIot5Jzdz1/dLfeoJEbXpoVt4DPC9/PK4HPlv5FEDQYfh5
srftvvGcAva969sXzSBRNUeR+M8Yd2RdoYCfmqTEUjzf8GJLL4jC0VAIwMtsQklt
EbiQX8JaHQS7RIql7MDg1N2vaTo+zxkf39Kkcl56usmO/uATP7cAPjFreF/xQ3d8
OyBhz1cOXIhPw7bd9Dv9AgpJzA8WFpktDYEgy2sluBWMv+mLYjdZRCFkfpIRzmea
pt+hJDeAy8ZL6/bjWCzz2x6wG7uJdDLblreI28sgnJx/VHR3Co6u4H1BqUBj18ct
CHV6zQ55WFmx9/uJqBtwFy333HS2ysJziC5ucwmg8QjkvAn4RK8S0qHMfRvSSaHj
F9ejnHGxyrc3zzfsngUf/VXIp67FReaavyKX3LYxjHjMPZDMw2xCtCWEpUs52l2o
fAbkv8YFBbUalIv0RtELH5XnKQ2ggMP8UgvT74KyfXU6LaliH8lEV20FFjMgwrPI
sMr2xk04eS8mNRNAXL8OMMwvh6DY/Qsmb7BVg58RIw6CdHeFJl834yztzcf7+j56
4oUmA16QYBCFA3udGQ3Tb07mi8XTfrMdTOGA0koQG9tjswKXuLUXUk9WAXZe4vml
ItRpZKE86BCs3mLJMYre
=ZODv
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-3.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI and power management updates from Rafael Wysocki:
"Again, ACPICA leads the pack (47 commits), followed by cpufreq (18
commits) and system suspend/hibernation (9 commits).
From the new code perspective, the ACPICA update brings ACPI 5.1 to
the table, including a new device configuration object called _DSD
(Device Specific Data) that will hopefully help us to operate device
properties like Device Trees do (at least to some extent) and changes
related to supporting ACPI on ARM.
Apart from that we have hibernation changes making it use radix trees
to store memory bitmaps which should speed up some operations carried
out by it quite significantly. We also have some power management
changes related to suspend-to-idle (the "freeze" sleep state) support
and more preliminary changes needed to support ACPI on ARM (outside of
ACPICA).
The rest is fixes and cleanups pretty much everywhere.
Specifics:
- ACPICA update to upstream version 20140724. That includes ACPI 5.1
material (support for the _CCA and _DSD predefined names, changes
related to the DMAR and PCCT tables and ARM support among other
things) and cleanups related to using ACPICA's header files. A
major part of it is related to acpidump and the core code used by
that utility. Changes from Bob Moore, David E Box, Lv Zheng,
Sascha Wildner, Tomasz Nowicki, Hanjun Guo.
- Radix trees for memory bitmaps used by the hibernation core from
Joerg Roedel.
- Support for waking up the system from suspend-to-idle (also known
as the "freeze" sleep state) using ACPI-based PCI wakeup signaling
(Rafael J Wysocki).
- Fixes for issues related to ACPI button events (Rafael J Wysocki).
- New device ID for an ACPI-enumerated device included into the
Wildcat Point PCH from Jie Yang.
- ACPI video updates related to backlight handling from Hans de Goede
and Linus Torvalds.
- Preliminary changes needed to support ACPI on ARM from Hanjun Guo
and Graeme Gregory.
- ACPI PNP core cleanups from Arjun Sreedharan and Zhang Rui.
- Cleanups related to ACPI_COMPANION() and ACPI_HANDLE() macros
(Rafael J Wysocki).
- ACPI-based device hotplug cleanups from Wei Yongjun and Rafael J
Wysocki.
- Cleanups and improvements related to system suspend from Lan
Tianyu, Randy Dunlap and Rafael J Wysocki.
- ACPI battery cleanup from Wei Yongjun.
- cpufreq core fixes from Viresh Kumar.
- Elimination of a deadband effect from the cpufreq ondemand governor
and intel_pstate driver cleanups from Stratos Karafotis.
- 350MHz CPU support for the powernow-k6 cpufreq driver from Mikulas
Patocka.
- Fix for the imx6 cpufreq driver from Anson Huang.
- cpuidle core and governor cleanups from Daniel Lezcano, Sandeep
Tripathy and Mohammad Merajul Islam Molla.
- Build fix for the big_little cpuidle driver from Sachin Kamat.
- Configuration fix for the Operation Performance Points (OPP)
framework from Mark Brown.
- APM cleanup from Jean Delvare.
- cpupower utility fixes and cleanups from Peter Senna Tschudin,
Andrey Utkin, Himangi Saraogi, Rickard Strandqvist, Thomas
Renninger"
* tag 'pm+acpi-3.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (118 commits)
ACPI / LPSS: add LPSS device for Wildcat Point PCH
ACPI / PNP: Replace faulty is_hex_digit() by isxdigit()
ACPICA: Update version to 20140724.
ACPICA: ACPI 5.1: Update for PCCT table changes.
ACPICA/ARM: ACPI 5.1: Update for GTDT table changes.
ACPICA/ARM: ACPI 5.1: Update for MADT changes.
ACPICA/ARM: ACPI 5.1: Update for FADT changes.
ACPICA: ACPI 5.1: Support for the _CCA predifined name.
ACPICA: ACPI 5.1: New notify value for System Affinity Update.
ACPICA: ACPI 5.1: Support for the _DSD predefined name.
ACPICA: Debug object: Add current value of Timer() to debug line prefix.
ACPICA: acpihelp: Add UUID support, restructure some existing files.
ACPICA: Utilities: Fix local printf issue.
ACPICA: Tables: Update for DMAR table changes.
ACPICA: Remove some extraneous printf arguments.
ACPICA: Update for comments/formatting. No functional changes.
ACPICA: Disassembler: Add support for the ToUUID opererator (macro).
ACPICA: Remove a redundant cast to acpi_size for ACPI_OFFSET() macro.
ACPICA: Work around an ancient GCC bug.
ACPI / processor: Make it possible to get local x2apic id via _MAT
...
Pull RAS updates from Ingo Molnar:
"The main changes in this cycle are:
- RAS tracing/events infrastructure, by Gong Chen.
- Various generalizations of the APEI code to make it available to
non-x86 architectures, by Tomasz Nowicki"
* 'x86-ras-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ras: Fix build warnings in <linux/aer.h>
acpi, apei, ghes: Factor out ioremap virtual memory for IRQ and NMI context.
acpi, apei, ghes: Make NMI error notification to be GHES architecture extension.
apei, mce: Factor out APEI architecture specific MCE calls.
RAS, extlog: Adjust init flow
trace, eMCA: Add a knob to adjust where to save event log
trace, RAS: Add eMCA trace event interface
RAS, debugfs: Add debugfs interface for RAS subsystem
CPER: Adjust code flow of some functions
x86, MCE: Robustify mcheck_init_device
trace, AER: Move trace into unified interface
trace, RAS: Add basic RAS trace event
x86, MCE: Kill CPU_POST_DEAD
Pull EFI changes from Ingo Molnar:
"Main changes in this cycle are:
- arm64 efi stub fixes, preservation of FP/SIMD registers across
firmware calls, and conversion of the EFI stub code into a static
library - Ard Biesheuvel
- Xen EFI support - Daniel Kiper
- Support for autoloading the efivars driver - Lee, Chun-Yi
- Use the PE/COFF headers in the x86 EFI boot stub to request that
the stub be loaded with CONFIG_PHYSICAL_ALIGN alignment - Michael
Brown
- Consolidate all the x86 EFI quirks into one file - Saurabh Tangri
- Additional error logging in x86 EFI boot stub - Ulf Winkelvos
- Support loading initrd above 4G in EFI boot stub - Yinghai Lu
- EFI reboot patches for ACPI hardware reduced platforms"
* 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (31 commits)
efi/arm64: Handle missing virtual mapping for UEFI System Table
arch/x86/xen: Silence compiler warnings
xen: Silence compiler warnings
x86/efi: Request desired alignment via the PE/COFF headers
x86/efi: Add better error logging to EFI boot stub
efi: Autoload efivars
efi: Update stale locking comment for struct efivars
arch/x86: Remove efi_set_rtc_mmss()
arch/x86: Replace plain strings with constants
xen: Put EFI machinery in place
xen: Define EFI related stuff
arch/x86: Remove redundant set_bit(EFI_MEMMAP) call
arch/x86: Remove redundant set_bit(EFI_SYSTEM_TABLES) call
efi: Introduce EFI_PARAVIRT flag
arch/x86: Do not access EFI memory map if it is not available
efi: Use early_mem*() instead of early_io*()
arch/ia64: Define early_memunmap()
x86/reboot: Add EFI reboot quirk for ACPI Hardware Reduced flag
efi/reboot: Allow powering off machines using EFI
efi/reboot: Add generic wrapper around EfiResetSystem()
...
The primary dependency is that GHES uses the x86 NMI for hardware
error notification and MCE for memory error handling. These patches
remove that dependency.
Other APEI features such as error reporting via external IRQ, error
serialization, or error injection, do not require changes to use them
on non-x86 architectures.
The following patch set eliminates the APEI Kconfig x86 dependency
by making these changes:
- treat NMI notification as GHES architecture - HAVE_ACPI_APEI_NMI
- group and wrap around #ifdef CONFIG_HAVE_ACPI_APEI_NMI code which
is used only for NMI path
- identify architectural boxes and abstract it accordingly (tlb flush and MCE)
- rework ioremap for both IRQ and NMI context
NMI code is kept in ghes.c file since NMI and IRQ context are tightly coupled.
Note, these patches introduce no functional changes for x86. The NMI notification
feature is hard selected for x86. Architectures that want to use this
feature should also provide NMI code infrastructure.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJT2BaPAAoJEKurIx+X31iBLGMP/0yyWOna4229p9CmuElSP3os
Kb+9Thru+Wg4ihj43CYW0nznQnamCaqBa5NpDXZn0Ebtxc08SSGVzbf+z+vBMeD+
HW4093m4g8sGL7i4JdAol0MEPpKTQRdpj525N/h/xWVSDXQ0Bq3vQ7DS1/j1Bp4k
Lq3G8dEk+4LjNPcQ5YBPl71zWJOC4iUctfh1OpFdfgA04804Vis3j8T6ljE7/72M
51xXK3af9ktIg6MU2HOwraUsSspVeJs/4lPu4fab4XI07BRDb4T7yx19a9VaBy67
m6TaTd3eC/Z0Uh+51grNuXSnWQK4fvahRZJEwiRdC0wL3w3mhdZkmqm0nBdBFyof
5b251+FOazOtZdMsWS/mMjQUjybQ+4k9zpnndIPw/5rqxJ8lgaP7o81e+hw1Xh1Q
E0ZWUMXnAIkRmkyYLUv5aTICRYIZtAC/C1QrR5ZB/9Q+yvtxp13dbqGzWhcF7AIw
UK/yb5T5ZAzvuJlmPG0ZiV75HH9bjX4OFV3AhXJIEG/iTOdVVpat8yICFrT33Xpc
uAwRXQvz6mn2c2xpZcJqSJQlXKg2nbrfUmscU8P8Zu6mQpvBB/+2cDbW/5wfuKbE
NpD0aB5PxhHY+nNvIfOsTUk72aZcZdUEQJt/792vhnMYb/IK1X/qa4zrVmOqlZKt
mtXwUQWdj3kSG36mgssO
=nYdd
-----END PGP SIGNATURE-----
Merge tag 'please-pull-apei' into x86/ras
APEI is currently implemented so that it depends on x86 hardware.
The primary dependency is that GHES uses the x86 NMI for hardware
error notification and MCE for memory error handling. These patches
remove that dependency.
Other APEI features such as error reporting via external IRQ, error
serialization, or error injection, do not require changes to use them
on non-x86 architectures.
The following patch set eliminates the APEI Kconfig x86 dependency
by making these changes:
- treat NMI notification as GHES architecture - HAVE_ACPI_APEI_NMI
- group and wrap around #ifdef CONFIG_HAVE_ACPI_APEI_NMI code which
is used only for NMI path
- identify architectural boxes and abstract it accordingly (tlb flush and MCE)
- rework ioremap for both IRQ and NMI context
NMI code is kept in ghes.c file since NMI and IRQ context are tightly coupled.
Note, these patches introduce no functional changes for x86. The NMI notification
feature is hard selected for x86. Architectures that want to use this
feature should also provide NMI code infrastructure.
* acpica: (30 commits)
ACPICA: Add new GPE public interface - acpi_mark_gpe_for_wake.
ACPICA: GPEs: Do not allow enable for GPEs that have no handler(s).
ACPICA: Fix a regression for deletion of Alias() objects.
ACPICA: Update version to 20140627
ACPICA: Tables: Merge DMAR table structure updates
ACPICA: Hardware: back port of a recursive locking fix
ACPICA: utprint/oslibcfs: cleanup - no functional change
ACPICA: Executer: Fix trivial issues in acpi_get_serial_access_bytes()
ACPICA: OSL: Update acpidump to reduce source code differences
ACPICA: acpidump: Reduce freopen() invocations to improve portability
ACPICA: acpidump: Replace file IOs with new APIs to improve portability
ACPICA: acpidump: Remove exit() from generic layer to improve portability
ACPICA: acpidump: Add memory/string OSL usage to improve portability
ACPICA: Common: Enhance acpi_getopt() to improve portability
ACPICA: Common: Enhance cm_get_file_size() to improve portability
ACPICA: Application: Enhance ACPI_USAGE_xxx/ACPI_OPTION with acpi_os_printf() to improve portability
ACPICA: Utilities: Introduce acpi_log_error() to improve portability
ACPICA: Utilities: Add formatted printing APIs
ACPICA: OSL: Add portable file IO to improve portability
ACPICA: OSL: Clean up acpi_os_printf()/acpi_os_vprintf() stubs
...
The original patch is from Ben Hutchings's contribution to debian
kernel. Got Ben's permission to remove the code of efi-pstore.c and
send to linux-efi:
https://github.com/BlankOn/linux-debian/blob/master/debian/patches/features/all/efi-autoload-efivars.patch
efivars is generally useful to have on EFI systems, and in some cases
it may be impossible to load it after a kernel upgrade in order to
complete a boot loader update. At the same time we don't want to waste
memory on non-EFI systems by making them built-in.
Instead, give them module aliases as if they are platform drivers, and
register a corresponding platform device whenever EFI runtime services
are available. This should trigger udev to load them.
Signed-off-by: Lee, Chun-Yi <jlee@suse.com>
Cc: Ben Hutchings <ben@decadent.org.uk>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Introduce EFI_PARAVIRT flag. If it is set then kernel runs
on EFI platform but it has not direct control on EFI stuff
like EFI runtime, tables, structures, etc. If not this means
that Linux Kernel has direct access to EFI infrastructure
and everything runs as usual.
This functionality is used in Xen dom0 because hypervisor
has full control on EFI stuff and all calls from dom0 to
EFI must be requested via special hypercall which in turn
executes relevant EFI code in behalf of dom0.
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Use early_mem*() instead of early_io*() because all mapped EFI regions
are memory (usually RAM but they could also be ROM, EPROM, EEPROM, flash,
etc.) not I/O regions. Additionally, I/O family calls do not work correctly
under Xen in our case. early_ioremap() skips the PFN to MFN conversion
when building the PTE. Using it for memory will attempt to map the wrong
machine frame. However, all artificial EFI structures created under Xen
live in dom0 memory and should be mapped/unmapped using early_mem*() family
calls which map domain memory.
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
It appears that the BayTrail-T class of hardware requires EFI in order
to powerdown and reboot and no other reliable method exists.
This quirk is generally applicable to all hardware that has the ACPI
Hardware Reduced bit set, since usually ACPI would be the preferred
method.
Cc: Len Brown <len.brown@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Not only can EfiResetSystem() be used to reboot, it can also be used to
power down machines.
By and large, this functionality doesn't work very well across the range
of EFI machines in the wild, so it should definitely only be used as a
last resort. In an ideal world, this wouldn't be needed at all.
Unfortunately, we're starting to see machines where EFI is the *only*
reliable way to power down, and nothing else, not PCI, not ACPI, works.
efi_poweroff_required() should be implemented on a per-architecture
basis, since exactly when we should be using EFI runtime services is a
platform-specific decision. There's no analogue for reboot because each
architecture handles reboot very differently - the x86 code in
particular is pretty complex.
Patches to enable this for specific classes of hardware will be
submitted separately.
Tested-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Implement efi_reboot(), which is really just a wrapper around the
EfiResetSystem() EFI runtime service, but it does at least allow us to
funnel all callers through a single location.
It also simplifies the callsites since users no longer need to check to
see whether EFI_RUNTIME_SERVICES are enabled.
Cc: Tony Luck <tony.luck@intel.com>
Tested-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
This patch changes both x86 and arm64 efistub implementations
from #including shared .c files under drivers/firmware/efi to
building shared code as a static library.
The x86 code uses a stub built into the boot executable which
uncompresses the kernel at boot time. In this case, the library is
linked into the decompressor.
In the arm64 case, the stub is part of the kernel proper so the library
is linked into the kernel proper as well.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Currently, fdt_find_uefi_params() reports an error if no EFI parameters
are found in the DT. This is however a valid case for non-UEFI kernel
booting. This patch checks changes the error reporting to a
pr_info("UEFI not found") when no EFI parameters are found in the DT.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Leif Lindholm <leif.lindholm@linaro.org>
Tested-by: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
In order to move from the #include "../../../xxxxx.c" anti-pattern used
by both the x86 and arm64 versions of the stub to a static library
linked into either the kernel proper (arm64) or a separate boot
executable (x86), there is some prepatory work required.
This patch does the following:
- move forward declarations of functions shared between the arch
specific and the generic parts of the stub to include/linux/efi.h
- move forward declarations of functions shared between various .c files
of the generic stub code to a new local header file called "efistub.h"
- add #includes to all .c files which were formerly relying on the
#includor to include the correct header files
- remove all static modifiers from functions which will need to be
externally visible once we move to a static library
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
In order for other archs (such as arm64) to be able to reuse the virtual
mode function call wrappers, move them to drivers/firmware/efi/runtime-wrappers.c.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
The shared efistub code for ARM and arm64 contains a local copy of
linux_banner, allowing it to be referenced from separate executables
such as the ARM decompressor. However, this introduces a dependency on
generated header files, causing unnecessary rebuilds of the stub itself
and, in case of arm64, vmlinux which contains it.
On arm64, the copy is not actually needed since we can reference the
original symbol directly, and as it turns out, there may be better ways
to deal with this for ARM as well, so let's remove it from the shared
code. If it still needs to be reintroduced for ARM later, it should live
under arch/arm anyway and not in shared code.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
The shared efistub code for ARM and arm64 contains a local copy of
linux_banner, allowing it to be referenced from separate executables
such as the ARM decompressor. However, this introduces a dependency on
generated header files, causing unnecessary rebuilds of the stub itself
and, in case of arm64, vmlinux which contains it.
On arm64, the copy is not actually needed since we can reference the
original symbol directly, and as it turns out, there may be better ways
to deal with this for ARM as well, so let's remove it from the shared
code. If it still needs to be reintroduced for ARM later, it should live
under arch/arm anyway and not in shared code.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
In generic_id the long int timestamp is multiplied by 100000 and needs
an explicit cast to u64.
Without that the id in the resulting pstore filename is wrong and
userspace may have problems parsing it, but more importantly files in
pstore can never be deleted and may fill the EFI flash (brick device?).
This happens because when generic pstore code wants to delete a file,
it passes the id to the EFI backend which reinterpretes it and a wrong
variable name is attempted to be deleted. There's no error message but
after remounting pstore, deleted files would reappear.
Signed-off-by: Andrew Zaborowski <andrew.zaborowski@intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Add trace interface to elaborate all H/W error related information.
Signed-off-by: Chen, Gong <gong.chen@linux.intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Tony Luck <tony.luck@intel.com>