Patch series "zsmalloc/zram: drop zram's max_zpage_size", v3.
ZRAM's max_zpage_size is a bad thing. It forces zsmalloc to store
normal objects as huge ones, which results in bigger zsmalloc memory
usage. Drop it and use actual zsmalloc huge-class value when decide if
the object is huge or not.
This patch (of 2):
Not every object can be share its zspage with other objects, e.g. when
the object is as big as zspage or nearly as big a zspage. For such
objects zsmalloc has a so called huge class - every object which belongs
to huge class consumes the entire zspage (which consists of a physical
page). On x86_64, PAGE_SHIFT 12 box, the first non-huge class size is
3264, so starting down from size 3264, objects can share page(-s) and
thus minimize memory wastage.
ZRAM, however, has its own statically defined watermark for huge
objects, namely "3 * PAGE_SIZE / 4 = 3072", and forcibly stores every
object larger than this watermark (3072) as a PAGE_SIZE object, in other
words, to a huge class, while zsmalloc can keep some of those objects in
non-huge classes. This results in increased memory consumption.
zsmalloc knows better if the object is huge or not. Introduce
zs_huge_class_size() function which tells if the given object can be
stored in one of non-huge classes or not. This will let us to drop
ZRAM's huge object watermark and fully rely on zsmalloc when we decide
if the object is huge.
[sergey.senozhatsky.work@gmail.com: add pool param to zs_huge_class_size()]
Link: http://lkml.kernel.org/r/20180314081833.1096-2-sergey.senozhatsky@gmail.com
Link: http://lkml.kernel.org/r/20180306070639.7389-2-sergey.senozhatsky@gmail.com
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Thanks to commit 4b3ef9daa4 ("mm/swap: split swap cache into 64MB
trunks"), after swapoff the address_space associated with the swap
device will be freed. So page_mapping() users which may touch the
address_space need some kind of mechanism to prevent the address_space
from being freed during accessing.
The dcache flushing functions (flush_dcache_page(), etc) in architecture
specific code may access the address_space of swap device for anonymous
pages in swap cache via page_mapping() function. But in some cases
there are no mechanisms to prevent the swap device from being swapoff,
for example,
CPU1 CPU2
__get_user_pages() swapoff()
flush_dcache_page()
mapping = page_mapping()
... exit_swap_address_space()
... kvfree(spaces)
mapping_mapped(mapping)
The address space may be accessed after being freed.
But from cachetlb.txt and Russell King, flush_dcache_page() only care
about file cache pages, for anonymous pages, flush_anon_page() should be
used. The implementation of flush_dcache_page() in all architectures
follows this too. They will check whether page_mapping() is NULL and
whether mapping_mapped() is true to determine whether to flush the
dcache immediately. And they will use interval tree (mapping->i_mmap)
to find all user space mappings. While mapping_mapped() and
mapping->i_mmap isn't used by anonymous pages in swap cache at all.
So, to fix the race between swapoff and flush dcache, __page_mapping()
is add to return the address_space for file cache pages and NULL
otherwise. All page_mapping() invoking in flush dcache functions are
replaced with page_mapping_file().
[akpm@linux-foundation.org: simplify page_mapping_file(), per Mike]
Link: http://lkml.kernel.org/r/20180305083634.15174-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Chen Liqin <liqin.linux@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Zankel <chris@zankel.net>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When device-dax is operating in huge-page mode we want it to behave like
hugetlbfs and report the MMU page mapping size that is being enforced by
the vma.
Similar to commit 31383c6865 "mm, hugetlbfs: introduce ->split() to
vm_operations_struct" it would be messy to teach vma_mmu_pagesize()
about device-dax page mapping sizes in the same (hstate) way that
hugetlbfs communicates this attribute. Instead, these patches introduce
a new ->pagesize() vm operation.
Link: http://lkml.kernel.org/r/151996254734.27922.15813097401404359642.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Jane Chu <jane.chu@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm, smaps: MMUPageSize for device-dax", v3.
Similar to commit 31383c6865 ("mm, hugetlbfs: introduce ->split() to
vm_operations_struct") here is another occasion where we want
special-case hugetlbfs/hstate enabling to also apply to device-dax.
This prompts the question what other hstate conversions we might do
beyond ->split() and ->pagesize(), but this appears to be the last of
the usages of hstate_vma() in generic/non-hugetlbfs specific code paths.
This patch (of 3):
The current powerpc definition of vma_mmu_pagesize() open codes looking
up the page size via hstate. It is identical to the generic
vma_kernel_pagesize() implementation.
Now, vma_kernel_pagesize() is growing support for determining the page
size of Device-DAX vmas in addition to the existing Hugetlbfs page size
determination.
Ideally, if the powerpc vma_mmu_pagesize() used vma_kernel_pagesize() it
would automatically benefit from any new vma-type support that is added
to vma_kernel_pagesize(). However, the powerpc vma_mmu_pagesize() is
prevented from calling vma_kernel_pagesize() due to a circular header
dependency that requires vma_mmu_pagesize() to be defined before
including <linux/hugetlb.h>.
Break this circular dependency by defining the default vma_mmu_pagesize()
as a __weak symbol to be overridden by the powerpc version.
Link: http://lkml.kernel.org/r/151996254179.27922.2213728278535578744.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Jane Chu <jane.chu@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a page is freed back to the global pool, its buddy will be checked
to see if it's possible to do a merge. This requires accessing buddy's
page structure and that access could take a long time if it's cache
cold.
This patch adds a prefetch to the to-be-freed page's buddy outside of
zone->lock in hope of accessing buddy's page structure later under
zone->lock will be faster. Since we *always* do buddy merging and check
an order-0 page's buddy to try to merge it when it goes into the main
allocator, the cacheline will always come in, i.e. the prefetched data
will never be unused.
Normally, the number of prefetch will be pcp->batch(default=31 and has
an upper limit of (PAGE_SHIFT * 8)=96 on x86_64) but in the case of
pcp's pages get all drained, it will be pcp->count which has an upper
limit of pcp->high. pcp->high, although has a default value of 186
(pcp->batch=31 * 6), can be changed by user through
/proc/sys/vm/percpu_pagelist_fraction and there is no software upper
limit so could be large, like several thousand. For this reason, only
the first pcp->batch number of page's buddy structure is prefetched to
avoid excessive prefetching.
In the meantime, there are two concerns:
1. the prefetch could potentially evict existing cachelines, especially
for L1D cache since it is not huge
2. there is some additional instruction overhead, namely calculating
buddy pfn twice
For 1, it's hard to say, this microbenchmark though shows good result
but the actual benefit of this patch will be workload/CPU dependant;
For 2, since the calculation is a XOR on two local variables, it's
expected in many cases that cycles spent will be offset by reduced
memory latency later. This is especially true for NUMA machines where
multiple CPUs are contending on zone->lock and the most time consuming
part under zone->lock is the wait of 'struct page' cacheline of the
to-be-freed pages and their buddies.
Test with will-it-scale/page_fault1 full load:
kernel Broadwell(2S) Skylake(2S) Broadwell(4S) Skylake(4S)
v4.16-rc2+ 9034215 7971818 13667135 15677465
patch2/3 9536374 +5.6% 8314710 +4.3% 14070408 +3.0% 16675866 +6.4%
this patch 10180856 +6.8% 8506369 +2.3% 14756865 +4.9% 17325324 +3.9%
Note: this patch's performance improvement percent is against patch2/3.
(Changelog stolen from Dave Hansen and Mel Gorman's comments at
http://lkml.kernel.org/r/148a42d8-8306-2f2f-7f7c-86bc118f8ccd@intel.com)
[aaron.lu@intel.com: use helper function, avoid disordering pages]
Link: http://lkml.kernel.org/r/20180301062845.26038-4-aaron.lu@intel.com
Link: http://lkml.kernel.org/r/20180320113146.GB24737@intel.com
[aaron.lu@intel.com: v4]
Link: http://lkml.kernel.org/r/20180301062845.26038-4-aaron.lu@intel.com
Link: http://lkml.kernel.org/r/20180309082431.GB30868@intel.com
Link: http://lkml.kernel.org/r/20180301062845.26038-4-aaron.lu@intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Suggested-by: Ying Huang <ying.huang@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Kemi Wang <kemi.wang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When freeing a batch of pages from Per-CPU-Pages(PCP) back to buddy, the
zone->lock is held and then pages are chosen from PCP's migratetype
list. While there is actually no need to do this 'choose part' under
lock since it's PCP pages, the only CPU that can touch them is us and
irq is also disabled.
Moving this part outside could reduce lock held time and improve
performance. Test with will-it-scale/page_fault1 full load:
kernel Broadwell(2S) Skylake(2S) Broadwell(4S) Skylake(4S)
v4.16-rc2+ 9034215 7971818 13667135 15677465
this patch 9536374 +5.6% 8314710 +4.3% 14070408 +3.0% 16675866 +6.4%
What the test does is: starts $nr_cpu processes and each will repeatedly
do the following for 5 minutes:
- mmap 128M anonymouse space
- write access to that space
- munmap.
The score is the aggregated iteration.
https://github.com/antonblanchard/will-it-scale/blob/master/tests/page_fault1.c
Link: http://lkml.kernel.org/r/20180301062845.26038-3-aaron.lu@intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Kemi Wang <kemi.wang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Matthew Wilcox found that all callers of free_pcppages_bulk() currently
update pcp->count immediately after so it's natural to do it inside
free_pcppages_bulk().
No functionality or performance change is expected from this patch.
Link: http://lkml.kernel.org/r/20180301062845.26038-2-aaron.lu@intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kemi Wang <kemi.wang@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's possible for free pages to become stranded on per-cpu pagesets
(pcps) that, if drained, could be merged with buddy pages on the zone's
free area to form large order pages, including up to MAX_ORDER.
Consider a verbose example using the tools/vm/page-types tool at the
beginning of a ZONE_NORMAL ('B' indicates a buddy page and 'S' indicates
a slab page). Pages on pcps do not have any page flags set.
109954 1 _______S________________________________________________________
109955 2 __________B_____________________________________________________
109957 1 ________________________________________________________________
109958 1 __________B_____________________________________________________
109959 7 ________________________________________________________________
109960 1 __________B_____________________________________________________
109961 9 ________________________________________________________________
10996a 1 __________B_____________________________________________________
10996b 3 ________________________________________________________________
10996e 1 __________B_____________________________________________________
10996f 1 ________________________________________________________________
...
109f8c 1 __________B_____________________________________________________
109f8d 2 ________________________________________________________________
109f8f 2 __________B_____________________________________________________
109f91 f ________________________________________________________________
109fa0 1 __________B_____________________________________________________
109fa1 7 ________________________________________________________________
109fa8 1 __________B_____________________________________________________
109fa9 1 ________________________________________________________________
109faa 1 __________B_____________________________________________________
109fab 1 _______S________________________________________________________
The compaction migration scanner is attempting to defragment this memory
since it is at the beginning of the zone. It has done so quite well,
all movable pages have been migrated. From pfn [0x109955, 0x109fab),
there are only buddy pages and pages without flags set.
These pages may be stranded on pcps that could otherwise allow this
memory to be coalesced if freed back to the zone free area. It is
possible that some of these pages may not be on pcps and that something
has called alloc_pages() and used the memory directly, but we rely on
the absence of __GFP_MOVABLE in these cases to allocate from
MIGATE_UNMOVABLE pageblocks to try to keep these MIGRATE_MOVABLE
pageblocks as free as possible.
These buddy and pcp pages, spanning 1,621 pages, could be coalesced and
allow for three transparent hugepages to be dynamically allocated.
Running the numbers for all such spans on the system, it was found that
there were over 400 such spans of only buddy pages and pages without
flags set at the time this /proc/kpageflags sample was collected.
Without this support, there were _no_ order-9 or order-10 pages free.
When kcompactd fails to defragment memory such that a cc.order page can
be allocated, drain all pcps for the zone back to the buddy allocator so
this stranding cannot occur. Compaction for that order will
subsequently be deferred, which acts as a ratelimit on this drain.
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1803010340100.88270@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
should_failslab() is a convenient function to hook into for directed
error injection into kmalloc(). However, it is only available if a
config flag is set.
The following BCC script, for example, fails kmalloc() calls after a
btrfs umount:
from bcc import BPF
prog = r"""
BPF_HASH(flag);
#include <linux/mm.h>
int kprobe__btrfs_close_devices(void *ctx) {
u64 key = 1;
flag.update(&key, &key);
return 0;
}
int kprobe__should_failslab(struct pt_regs *ctx) {
u64 key = 1;
u64 *res;
res = flag.lookup(&key);
if (res != 0) {
bpf_override_return(ctx, -ENOMEM);
}
return 0;
}
"""
b = BPF(text=prog)
while 1:
b.kprobe_poll()
This patch refactors the should_failslab implementation so that the
function is always available for error injection, independent of flags.
This change would be similar in nature to commit f5490d3ec921 ("block:
Add should_fail_bio() for bpf error injection").
Link: http://lkml.kernel.org/r/20180222020320.6944-1-hmclauchlan@fb.com
Signed-off-by: Howard McLauchlan <hmclauchlan@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Alexei Starovoitov <ast@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The early_param() is only called during kernel initialization, So Linux
marks the function of it with __init macro to save memory.
But it forgot to mark the early_page_poison_param(). So, Make it __init
as well.
Link: http://lkml.kernel.org/r/20180117034757.27024-1-douly.fnst@cn.fujitsu.com
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The early_param() is only called during kernel initialization, So Linux
marks the functions of it with __init macro to save memory.
But it forgot to mark the early_page_owner_param(). So, Make it __init
as well.
Link: http://lkml.kernel.org/r/20180117034736.26963-1-douly.fnst@cn.fujitsu.com
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The early_param() is only called during kernel initialization, So Linux
marks the functions of it with __init macro to save memory.
But it forgot to mark the kmemleak_boot_config(). So, Make it __init as
well.
Link: http://lkml.kernel.org/r/20180117034720.26897-1-douly.fnst@cn.fujitsu.com
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch makes do_swap_page() not need to be aware of two different
swap readahead algorithms. Just unify cluster-based and vma-based
readahead function call.
Link: http://lkml.kernel.org/r/1509520520-32367-3-git-send-email-minchan@kernel.org
Link: http://lkml.kernel.org/r/20180220085249.151400-3-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When I see recent change of swap readahead, I am very unhappy about
current code structure which diverges two swap readahead algorithm in
do_swap_page. This patch is to clean it up.
Main motivation is that fault handler doesn't need to be aware of
readahead algorithms but just should call swapin_readahead.
As first step, this patch cleans up a little bit but not perfect (I just
separate for review easier) so next patch will make the goal complete.
[minchan@kernel.org: do not check readahead flag with THP anon]
Link: http://lkml.kernel.org/r/874lm83zho.fsf@yhuang-dev.intel.com
Link: http://lkml.kernel.org/r/20180227232611.169883-1-minchan@kernel.org
Link: http://lkml.kernel.org/r/1509520520-32367-2-git-send-email-minchan@kernel.org
Link: http://lkml.kernel.org/r/20180220085249.151400-2-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since we no longer use return value of shrink_slab() for normal reclaim,
the comment is no longer true. If some do_shrink_slab() call takes
unexpectedly long (root cause of stall is currently unknown) when
register_shrinker()/unregister_shrinker() is pending, trying to drop
caches via /proc/sys/vm/drop_caches could become infinite cond_resched()
loop if many mem_cgroup are defined. For safety, let's not pretend
forward progress.
Link: http://lkml.kernel.org/r/201802202229.GGF26507.LVFtMSOOHFJOQF@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently if z3fold couldn't find an unbuddied page it would first try
to pull a page off the stale list. The problem with this approach is
that we can't 100% guarantee that the page is not processed by the
workqueue thread at the same time unless we run cancel_work_sync() on
it, which we can't do if we're in an atomic context. So let's just
limit stale list usage to non-atomic contexts only.
Link: http://lkml.kernel.org/r/47ab51e7-e9c1-d30e-ab17-f734dbc3abce@gmail.com
Signed-off-by: Vitaly Vul <vitaly.vul@sony.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: <Oleksiy.Avramchenko@sony.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
THP split makes non-atomic change of tail page flags. This is almost ok
because tail pages are locked and isolated but this breaks recent
changes in page locking: non-atomic operation could clear bit
PG_waiters.
As a result concurrent sequence get_page_unless_zero() -> lock_page()
might block forever. Especially if this page was truncated later.
Fix is trivial: clone flags before unfreezing page reference counter.
This race exists since commit 6290602709 ("mm: add PageWaiters
indicating tasks are waiting for a page bit") while unsave unfreeze
itself was added in commit 8df651c705 ("thp: cleanup
split_huge_page()").
clear_compound_head() also must be called before unfreezing page
reference because after successful get_page_unless_zero() might follow
put_page() which needs correct compound_head().
And replace page_ref_inc()/page_ref_add() with page_ref_unfreeze() which
is made especially for that and has semantic of smp_store_release().
Link: http://lkml.kernel.org/r/151844393341.210639.13162088407980624477.stgit@buzz
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When page_mapping() is called and the mapping is dereferenced in
page_evicatable() through shrink_active_list(), it is possible for the
inode to be truncated and the embedded address space to be freed at the
same time. This may lead to the following race.
CPU1 CPU2
truncate(inode) shrink_active_list()
... page_evictable(page)
truncate_inode_page(mapping, page);
delete_from_page_cache(page)
spin_lock_irqsave(&mapping->tree_lock, flags);
__delete_from_page_cache(page, NULL)
page_cache_tree_delete(..)
... mapping = page_mapping(page);
page->mapping = NULL;
...
spin_unlock_irqrestore(&mapping->tree_lock, flags);
page_cache_free_page(mapping, page)
put_page(page)
if (put_page_testzero(page)) -> false
- inode now has no pages and can be freed including embedded address_space
mapping_unevictable(mapping)
test_bit(AS_UNEVICTABLE, &mapping->flags);
- we've dereferenced mapping which is potentially already free.
Similar race exists between swap cache freeing and page_evicatable()
too.
The address_space in inode and swap cache will be freed after a RCU
grace period. So the races are fixed via enclosing the page_mapping()
and address_space usage in rcu_read_lock/unlock(). Some comments are
added in code to make it clear what is protected by the RCU read lock.
Link: http://lkml.kernel.org/r/20180212081227.1940-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mirrored_kernelcore can be in __meminitdata, so move it there.
At the same time, fixup section specifiers to be after the name of the
variable per checkpatch.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1802121623280.179479@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Both kernelcore= and movablecore= can be used to define the amount of
ZONE_NORMAL and ZONE_MOVABLE on a system, respectively. This requires
the system memory capacity to be known when specifying the command line,
however.
This introduces the ability to define both kernelcore= and movablecore=
as a percentage of total system memory. This is convenient for systems
software that wants to define the amount of ZONE_MOVABLE, for example,
as a proportion of a system's memory rather than a hardcoded byte value.
To define the percentage, the final character of the parameter should be
a '%'.
mhocko: "why is anyone using these options nowadays?"
rientjes:
:
: Fragmentation of non-__GFP_MOVABLE pages due to low on memory
: situations can pollute most pageblocks on the system, as much as 1GB of
: slab being fragmented over 128GB of memory, for example. When the
: amount of kernel memory is well bounded for certain systems, it is
: better to aggressively reclaim from existing MIGRATE_UNMOVABLE
: pageblocks rather than eagerly fallback to others.
:
: We have additional patches that help with this fragmentation if you're
: interested, specifically kcompactd compaction of MIGRATE_UNMOVABLE
: pageblocks triggered by fallback of non-__GFP_MOVABLE allocations and
: draining of pcp lists back to the zone free area to prevent stranding.
[rientjes@google.com: updates]
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1802131700160.71590@chino.kir.corp.google.com
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1802121622470.179479@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently the following BUG was reported:
Injecting memory failure for pfn 0x3c0000 at process virtual address 0x7fe300000000
Memory failure: 0x3c0000: recovery action for huge page: Recovered
BUG: unable to handle kernel paging request at ffff8dfcc0003000
IP: gup_pgd_range+0x1f0/0xc20
PGD 17ae72067 P4D 17ae72067 PUD 0
Oops: 0000 [#1] SMP PTI
...
CPU: 3 PID: 5467 Comm: hugetlb_1gb Not tainted 4.15.0-rc8-mm1-abc+ #3
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.9.3-1.fc25 04/01/2014
You can easily reproduce this by calling madvise(MADV_HWPOISON) twice on
a 1GB hugepage. This happens because get_user_pages_fast() is not aware
of a migration entry on pud that was created in the 1st madvise() event.
I think that conversion to pud-aligned migration entry is working, but
other MM code walking over page table isn't prepared for it. We need
some time and effort to make all this work properly, so this patch
avoids the reported bug by just disabling error handling for 1GB
hugepage.
[n-horiguchi@ah.jp.nec.com: v2]
Link: http://lkml.kernel.org/r/1517284444-18149-1-git-send-email-n-horiguchi@ah.jp.nec.com
Link: http://lkml.kernel.org/r/1517207283-15769-1-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Punit Agrawal <punit.agrawal@arm.com>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During memory hotplugging we traverse struct pages three times:
1. memset(0) in sparse_add_one_section()
2. loop in __add_section() to set do: set_page_node(page, nid); and
SetPageReserved(page);
3. loop in memmap_init_zone() to call __init_single_pfn()
This patch removes the first two loops, and leaves only loop 3. All
struct pages are initialized in one place, the same as it is done during
boot.
The benefits:
- We improve memory hotplug performance because we are not evicting the
cache several times and also reduce loop branching overhead.
- Remove condition from hotpath in __init_single_pfn(), that was added
in order to fix the problem that was reported by Bharata in the above
email thread, thus also improve performance during normal boot.
- Make memory hotplug more similar to the boot memory initialization
path because we zero and initialize struct pages only in one
function.
- Simplifies memory hotplug struct page initialization code, and thus
enables future improvements, such as multi-threading the
initialization of struct pages in order to improve hotplug
performance even further on larger machines.
[pasha.tatashin@oracle.com: v5]
Link: http://lkml.kernel.org/r/20180228030308.1116-7-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20180215165920.8570-7-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During memory hotplugging the probe routine will leave struct pages
uninitialized, the same as it is currently done during boot. Therefore,
we do not want to access the inside of struct pages before
__init_single_page() is called during onlining.
Because during hotplug we know that pages in one memory block belong to
the same numa node, we can skip the checking. We should keep checking
for the boot case.
[pasha.tatashin@oracle.com: s/register_new_memory()/hotplug_memory_register()]
Link: http://lkml.kernel.org/r/20180228030308.1116-6-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20180215165920.8570-6-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During boot we poison struct page memory in order to ensure that no one
is accessing this memory until the struct pages are initialized in
__init_single_page().
This patch adds more scrutiny to this checking by making sure that flags
do not equal the poison pattern when they are accessed. The pattern is
all ones.
Since node id is also stored in struct page, and may be accessed quite
early, we add this enforcement into page_to_nid() function as well.
Note, this is applicable only when NODE_NOT_IN_PAGE_FLAGS=n
[pasha.tatashin@oracle.com: v4]
Link: http://lkml.kernel.org/r/20180215165920.8570-4-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20180213193159.14606-4-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "optimize memory hotplug", v3.
This patchset:
- Improves hotplug performance by eliminating a number of struct page
traverses during memory hotplug.
- Fixes some issues with hotplugging, where boundaries were not
properly checked. And on x86 block size was not properly aligned with
end of memory
- Also, potentially improves boot performance by eliminating condition
from __init_single_page().
- Adds robustness by verifying that that struct pages are correctly
poisoned when flags are accessed.
The following experiments were performed on Xeon(R) CPU E7-8895 v3 @
2.60GHz with 1T RAM:
booting in qemu with 960G of memory, time to initialize struct pages:
no-kvm:
TRY1 TRY2
BEFORE: 39.433668 39.39705
AFTER: 36.903781 36.989329
with-kvm:
BEFORE: 10.977447 11.103164
AFTER: 10.929072 10.751885
Hotplug 896G memory:
no-kvm:
TRY1 TRY2
BEFORE: 848.740000 846.910000
AFTER: 783.070000 786.560000
with-kvm:
TRY1 TRY2
BEFORE: 34.410000 33.57
AFTER: 29.810000 29.580000
This patch (of 6):
Start qemu with the following arguments:
-m 64G,slots=2,maxmem=66G -object memory-backend-ram,id=mem1,size=2G
Which: boots machine with 64G, and adds a device mem1 with 2G which can
be hotplugged later.
Also make sure that config has the following turned on:
CONFIG_MEMORY_HOTPLUG
CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
CONFIG_ACPI_HOTPLUG_MEMORY
Using the qemu monitor hotplug the memory (make sure config has (qemu)
device_add pc-dimm,id=dimm1,memdev=mem1
The operation will fail with the following trace:
WARNING: CPU: 0 PID: 91 at drivers/base/memory.c:205
pages_correctly_reserved+0xe6/0x110
Modules linked in:
CPU: 0 PID: 91 Comm: systemd-udevd Not tainted 4.16.0-rc1_pt_master #29
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
BIOS rel-1.11.0-0-g63451fca13-prebuilt.qemu-project.org 04/01/2014
RIP: 0010:pages_correctly_reserved+0xe6/0x110
Call Trace:
memory_subsys_online+0x44/0xa0
device_online+0x51/0x80
store_mem_state+0x5e/0xe0
kernfs_fop_write+0xfa/0x170
__vfs_write+0x2e/0x150
vfs_write+0xa8/0x1a0
SyS_write+0x4d/0xb0
do_syscall_64+0x5d/0x110
entry_SYSCALL_64_after_hwframe+0x21/0x86
---[ end trace 6203bc4f1a5d30e8 ]---
The problem is detected in: drivers/base/memory.c
static bool pages_correctly_reserved(unsigned long start_pfn)
205 if (WARN_ON_ONCE(!pfn_valid(pfn)))
This function loops through every section in the newly added memory
block and verifies that the first pfn is valid, meaning section exists,
has mapping (struct page array), and is online.
The block size on x86 is usually 128M, but when machine is booted with
more than 64G of memory, the block size is changed to 2G: $ cat
/sys/devices/system/memory/block_size_bytes 80000000
or
$ dmesg | grep "block size"
[ 0.086469] x86/mm: Memory block size: 2048MB
During memory hotplug, and hotremove we verify that the range is section
size aligned, but we actually must verify that it is block size aligned,
because that is the proper unit for hotplug operations. See:
Documentation/memory-hotplug.txt
So, when the start_pfn of newly added memory is not block size aligned,
we can get a memory block that has only part of it with properly
populated sections.
In our case the start_pfn starts from the last_pfn (end of physical
memory).
$ dmesg | grep last_pfn
[ 0.000000] e820: last_pfn = 0x1040000 max_arch_pfn = 0x400000000
0x1040000 == 65G, and so is not 2G aligned!
The fix is to enforce that memory that is hotplugged and hotremoved is
block size aligned.
With this fix, running the above sequence yield to the following result:
(qemu) device_add pc-dimm,id=dimm1,memdev=mem1
Block size [0x80000000] unaligned hotplug range: start 0x1040000000,
size 0x80000000
acpi PNP0C80:00: add_memory failed
acpi PNP0C80:00: acpi_memory_enable_device() error
acpi PNP0C80:00: Enumeration failure
Link: http://lkml.kernel.org/r/20180213193159.14606-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For PTE-mapped THP, the compound THP has not been split to normal 4K
pages yet, the whole THP is considered referenced if any one of sub page
is referenced.
When walking PTE-mapped THP by pvmw, all relevant PTEs will be checked
to retrieve referenced bit. But, the current code just returns the
result of the last PTE. If the last PTE has not referenced, the
referenced flag will be cleared.
Just set referenced when ptep{pmdp}_clear_young_notify() returns true.
Link: http://lkml.kernel.org/r/1518212451-87134-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Reported-by: Gang Deng <gavin.dg@linux.alibaba.com>
Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Deferred page initialization allows the boot cpu to initialize a small
subset of the system's pages early in boot, with other cpus doing the
rest later on.
It is, however, problematic to know how many pages the kernel needs
during boot. Different modules and kernel parameters may change the
requirement, so the boot cpu either initializes too many pages or runs
out of memory.
To fix that, initialize early pages on demand. This ensures the kernel
does the minimum amount of work to initialize pages during boot and
leaves the rest to be divided in the multithreaded initialization path
(deferred_init_memmap).
The on-demand code is permanently disabled using static branching once
deferred pages are initialized. After the static branch is changed to
false, the overhead is up-to two branch-always instructions if the zone
watermark check fails or if rmqueue fails.
Sergey Senozhatsky noticed that while deferred pages currently make
sense only on NUMA machines (we start one thread per latency node),
CONFIG_NUMA is not a requirement for CONFIG_DEFERRED_STRUCT_PAGE_INIT,
so that is also must be addressed in the patch.
[akpm@linux-foundation.org: fix typo in comment, make deferred_pages static]
[pasha.tatashin@oracle.com: fix min() type mismatch warning]
Link: http://lkml.kernel.org/r/20180212164543.26592-1-pasha.tatashin@oracle.com
[pasha.tatashin@oracle.com: use zone_to_nid() in deferred_grow_zone()]
Link: http://lkml.kernel.org/r/20180214163343.21234-2-pasha.tatashin@oracle.com
[pasha.tatashin@oracle.com: might_sleep warning]
Link: http://lkml.kernel.org/r/20180306192022.28289-1-pasha.tatashin@oracle.com
[akpm@linux-foundation.org: s/spin_lock/spin_lock_irq/ in page_alloc_init_late()]
[pasha.tatashin@oracle.com: v5]
Link: http://lkml.kernel.org/r/20180309220807.24961-3-pasha.tatashin@oracle.com
[akpm@linux-foundation.org: tweak comments]
[pasha.tatashin@oracle.com: v6]
Link: http://lkml.kernel.org/r/20180313182355.17669-3-pasha.tatashin@oracle.com
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20180209192216.20509-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Steven Sistare <steven.sistare@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Gioh Kim <gi-oh.kim@profitbricks.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Miles Chen <miles.chen@mediatek.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vlastimil Babka reported about a window issue during which when deferred
pages are initialized, and the current version of on-demand
initialization is finished, allocations may fail. While this is highly
unlikely scenario, since this kind of allocation request must be large,
and must come from interrupt handler, we still want to cover it.
We solve this by initializing deferred pages with interrupts disabled,
and holding node_size_lock spin lock while pages in the node are being
initialized. The on-demand deferred page initialization that comes
later will use the same lock, and thus synchronize with
deferred_init_memmap().
It is unlikely for threads that initialize deferred pages to be
interrupted. They run soon after smp_init(), but before modules are
initialized, and long before user space programs. This is why there is
no adverse effect of having these threads running with interrupts
disabled.
[pasha.tatashin@oracle.com: v6]
Link: http://lkml.kernel.org/r/20180313182355.17669-2-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20180309220807.24961-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Gioh Kim <gi-oh.kim@profitbricks.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Miles Chen <miles.chen@mediatek.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For mm/swap_slots.c, use the traditional Linux method of conditional
compilation and linking instead of always compiling it by using #ifdef
CONFIG_SWAP and #endif for the entire source file (excluding header
files).
Link: http://lkml.kernel.org/r/c2a47015-0b5a-d0d9-8bc7-9984c049df20@infradead.org
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_contig_range() initiates compaction and eventual migration for the
purpose of either CMA or HugeTLB allocations. At present, the reason
code remains the same MR_CMA for either of these cases. Let's make it
MR_CONTIG_RANGE which will appropriately reflect the reason code in both
these cases.
Link: http://lkml.kernel.org/r/20180202091518.18798-1-khandual@linux.vnet.ibm.com
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The documentation for ignore_rlimit_data says that it will print a
warning at first misuse. Yet it doesn't seem to do that.
Fix the code to print the warning even when we allow the process to
continue.
Link: http://lkml.kernel.org/r/1517935505-9321-1-git-send-email-dwmw@amazon.co.uk
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Acked-by: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
stable_node_dup() is local to the source and does not need to be in
global scope, so make it static.
Cleans up sparse warning:
mm/ksm.c:1321:13: warning: symbol 'stable_node_dup' was not declared. Should it be static?
Link: http://lkml.kernel.org/r/20180206221005.12642-1-colin.king@canonical.com
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kasan quarantine is designed to delay freeing slab objects to catch
use-after-free. The quarantine can be large (several percent of machine
memory size). When kmem_caches are deleted related objects are flushed
from the quarantine but this requires scanning the entire quarantine
which can be very slow. We have seen the kernel busily working on this
while holding slab_mutex and badly affecting cache_reaper, slabinfo
readers and memcg kmem cache creations.
It can easily reproduced by following script:
yes . | head -1000000 | xargs stat > /dev/null
for i in `seq 1 10`; do
seq 500 | (cd /cg/memory && xargs mkdir)
seq 500 | xargs -I{} sh -c 'echo $BASHPID > \
/cg/memory/{}/tasks && exec stat .' > /dev/null
seq 500 | (cd /cg/memory && xargs rmdir)
done
The busy stack:
kasan_cache_shutdown
shutdown_cache
memcg_destroy_kmem_caches
mem_cgroup_css_free
css_free_rwork_fn
process_one_work
worker_thread
kthread
ret_from_fork
This patch is based on the observation that if the kmem_cache to be
destroyed is empty then there should not be any objects of this cache in
the quarantine.
Without the patch the script got stuck for couple of hours. With the
patch the script completed within a second.
Link: http://lkml.kernel.org/r/20180327230603.54721-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit db265eca77 ("mm/sl[aou]b: Move duping of slab name to
slab_common.c"), the kernel always duplicates the slab cache name when
creating a slab cache, so the test if the slab name is accessible is
useless.
Link: http://lkml.kernel.org/r/alpine.LRH.2.02.1803231133310.22626@file01.intranet.prod.int.rdu2.redhat.com
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I have noticed on debug kernel with SLAB, the size of some non-root
slabs were larger than their corresponding root slabs.
e.g. for radix_tree_node:
$cat /proc/slabinfo | grep radix
name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> ...
radix_tree_node 15052 15075 4096 1 1 ...
$cat /cgroup/memory/temp/memory.kmem.slabinfo | grep radix
name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> ...
radix_tree_node 1581 158 4120 1 2 ...
However for SLUB in debug kernel, the sizes were same. On further
inspection it is found that SLUB always use kmem_cache.object_size to
measure the kmem_cache.size while SLAB use the given kmem_cache.size.
In the debug kernel the slab's size can be larger than its object_size.
Thus in the creation of non-root slab, the SLAB uses the root's size as
base to calculate the non-root slab's size and thus non-root slab's size
can be larger than the root slab's size. For SLUB, the non-root slab's
size is measured based on the root's object_size and thus the size will
remain same for root and non-root slab.
This patch makes slab's object_size the default base to measure the
slab's size.
Link: http://lkml.kernel.org/r/20180313165428.58699-1-shakeelb@google.com
Fixes: 794b1248be ("memcg, slab: separate memcg vs root cache creation paths")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SLAB doesn't support 4GB+ of objects per slab, therefore randomization
doesn't need size_t.
Link: http://lkml.kernel.org/r/20180305200730.15812-25-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Function returns size of the object without red zone which can't be
negative.
Link: http://lkml.kernel.org/r/20180305200730.15812-24-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
struct kmem_cache_order_objects is for mixing order and number of
objects, and orders aren't big enough to warrant 64-bit width.
Propagate unsignedness down so that everything fits.
!!! Patch assumes that "PAGE_SIZE << order" doesn't overflow. !!!
Link: http://lkml.kernel.org/r/20180305200730.15812-23-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
slab_index() returns index of an object within a slab which is at most
u15 (or u16?).
Iterators additionally guarantee that "p >= addr".
Link: http://lkml.kernel.org/r/20180305200730.15812-22-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If kmem case sizes are 32-bit, then usecopy region should be too.
Link: http://lkml.kernel.org/r/20180305200730.15812-21-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If SLAB doesn't support 4GB+ kmem caches (it never did), KASAN should
not do it as well.
Link: http://lkml.kernel.org/r/20180305200730.15812-20-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that all sizes are properly typed, propagate "unsigned int" down the
callgraph.
Link: http://lkml.kernel.org/r/20180305200730.15812-19-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Linux doesn't support negative length objects (including meta data).
Link: http://lkml.kernel.org/r/20180305200730.15812-18-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
/*
* cpu_partial determined the maximum number of objects
* kept in the per cpu partial lists of a processor.
*/
Can't be negative.
Link: http://lkml.kernel.org/r/20180305200730.15812-15-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
->inuse is "the number of bytes in actual use by the object",
can't be negative.
Link: http://lkml.kernel.org/r/20180305200730.15812-14-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
->reserved is either 0 or sizeof(struct rcu_head), can't be negative.
Link: http://lkml.kernel.org/r/20180305200730.15812-12-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>