drm/i915: Reorder await_execution before await_request

Reorder the code so that we can reuse the await_execution from a special
case in await_request in the next patch.

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200526090753.11329-1-chris@chris-wilson.co.uk
This commit is contained in:
Chris Wilson 2020-05-26 10:07:52 +01:00
parent 22da5d846d
commit ffb0c600c2

View File

@ -1058,148 +1058,6 @@ await_fence:
I915_FENCE_GFP);
}
static int
i915_request_await_request(struct i915_request *to, struct i915_request *from)
{
int ret;
GEM_BUG_ON(to == from);
GEM_BUG_ON(to->timeline == from->timeline);
if (i915_request_completed(from)) {
i915_sw_fence_set_error_once(&to->submit, from->fence.error);
return 0;
}
if (to->engine->schedule) {
ret = i915_sched_node_add_dependency(&to->sched,
&from->sched,
I915_DEPENDENCY_EXTERNAL);
if (ret < 0)
return ret;
}
if (to->engine == from->engine)
ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
&from->submit,
I915_FENCE_GFP);
else
ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
if (ret < 0)
return ret;
return 0;
}
static void mark_external(struct i915_request *rq)
{
/*
* The downside of using semaphores is that we lose metadata passing
* along the signaling chain. This is particularly nasty when we
* need to pass along a fatal error such as EFAULT or EDEADLK. For
* fatal errors we want to scrub the request before it is executed,
* which means that we cannot preload the request onto HW and have
* it wait upon a semaphore.
*/
rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
}
static int
__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
{
mark_external(rq);
return i915_sw_fence_await_dma_fence(&rq->submit, fence,
i915_fence_context_timeout(rq->i915,
fence->context),
I915_FENCE_GFP);
}
static int
i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
{
struct dma_fence *iter;
int err = 0;
if (!to_dma_fence_chain(fence))
return __i915_request_await_external(rq, fence);
dma_fence_chain_for_each(iter, fence) {
struct dma_fence_chain *chain = to_dma_fence_chain(iter);
if (!dma_fence_is_i915(chain->fence)) {
err = __i915_request_await_external(rq, iter);
break;
}
err = i915_request_await_dma_fence(rq, chain->fence);
if (err < 0)
break;
}
dma_fence_put(iter);
return err;
}
int
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
{
struct dma_fence **child = &fence;
unsigned int nchild = 1;
int ret;
/*
* Note that if the fence-array was created in signal-on-any mode,
* we should *not* decompose it into its individual fences. However,
* we don't currently store which mode the fence-array is operating
* in. Fortunately, the only user of signal-on-any is private to
* amdgpu and we should not see any incoming fence-array from
* sync-file being in signal-on-any mode.
*/
if (dma_fence_is_array(fence)) {
struct dma_fence_array *array = to_dma_fence_array(fence);
child = array->fences;
nchild = array->num_fences;
GEM_BUG_ON(!nchild);
}
do {
fence = *child++;
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
i915_sw_fence_set_error_once(&rq->submit, fence->error);
continue;
}
/*
* Requests on the same timeline are explicitly ordered, along
* with their dependencies, by i915_request_add() which ensures
* that requests are submitted in-order through each ring.
*/
if (fence->context == rq->fence.context)
continue;
/* Squash repeated waits to the same timelines */
if (fence->context &&
intel_timeline_sync_is_later(i915_request_timeline(rq),
fence))
continue;
if (dma_fence_is_i915(fence))
ret = i915_request_await_request(rq, to_request(fence));
else
ret = i915_request_await_external(rq, fence);
if (ret < 0)
return ret;
/* Record the latest fence used against each timeline */
if (fence->context)
intel_timeline_sync_set(i915_request_timeline(rq),
fence);
} while (--nchild);
return 0;
}
static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
struct dma_fence *fence)
{
@ -1287,6 +1145,55 @@ __i915_request_await_execution(struct i915_request *to,
&from->fence);
}
static void mark_external(struct i915_request *rq)
{
/*
* The downside of using semaphores is that we lose metadata passing
* along the signaling chain. This is particularly nasty when we
* need to pass along a fatal error such as EFAULT or EDEADLK. For
* fatal errors we want to scrub the request before it is executed,
* which means that we cannot preload the request onto HW and have
* it wait upon a semaphore.
*/
rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
}
static int
__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
{
mark_external(rq);
return i915_sw_fence_await_dma_fence(&rq->submit, fence,
i915_fence_context_timeout(rq->i915,
fence->context),
I915_FENCE_GFP);
}
static int
i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
{
struct dma_fence *iter;
int err = 0;
if (!to_dma_fence_chain(fence))
return __i915_request_await_external(rq, fence);
dma_fence_chain_for_each(iter, fence) {
struct dma_fence_chain *chain = to_dma_fence_chain(iter);
if (!dma_fence_is_i915(chain->fence)) {
err = __i915_request_await_external(rq, iter);
break;
}
err = i915_request_await_dma_fence(rq, chain->fence);
if (err < 0)
break;
}
dma_fence_put(iter);
return err;
}
int
i915_request_await_execution(struct i915_request *rq,
struct dma_fence *fence,
@ -1335,6 +1242,99 @@ i915_request_await_execution(struct i915_request *rq,
return 0;
}
static int
i915_request_await_request(struct i915_request *to, struct i915_request *from)
{
int ret;
GEM_BUG_ON(to == from);
GEM_BUG_ON(to->timeline == from->timeline);
if (i915_request_completed(from)) {
i915_sw_fence_set_error_once(&to->submit, from->fence.error);
return 0;
}
if (to->engine->schedule) {
ret = i915_sched_node_add_dependency(&to->sched,
&from->sched,
I915_DEPENDENCY_EXTERNAL);
if (ret < 0)
return ret;
}
if (to->engine == READ_ONCE(from->engine))
ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
&from->submit,
I915_FENCE_GFP);
else
ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
if (ret < 0)
return ret;
return 0;
}
int
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
{
struct dma_fence **child = &fence;
unsigned int nchild = 1;
int ret;
/*
* Note that if the fence-array was created in signal-on-any mode,
* we should *not* decompose it into its individual fences. However,
* we don't currently store which mode the fence-array is operating
* in. Fortunately, the only user of signal-on-any is private to
* amdgpu and we should not see any incoming fence-array from
* sync-file being in signal-on-any mode.
*/
if (dma_fence_is_array(fence)) {
struct dma_fence_array *array = to_dma_fence_array(fence);
child = array->fences;
nchild = array->num_fences;
GEM_BUG_ON(!nchild);
}
do {
fence = *child++;
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
i915_sw_fence_set_error_once(&rq->submit, fence->error);
continue;
}
/*
* Requests on the same timeline are explicitly ordered, along
* with their dependencies, by i915_request_add() which ensures
* that requests are submitted in-order through each ring.
*/
if (fence->context == rq->fence.context)
continue;
/* Squash repeated waits to the same timelines */
if (fence->context &&
intel_timeline_sync_is_later(i915_request_timeline(rq),
fence))
continue;
if (dma_fence_is_i915(fence))
ret = i915_request_await_request(rq, to_request(fence));
else
ret = i915_request_await_external(rq, fence);
if (ret < 0)
return ret;
/* Record the latest fence used against each timeline */
if (fence->context)
intel_timeline_sync_set(i915_request_timeline(rq),
fence);
} while (--nchild);
return 0;
}
/**
* i915_request_await_object - set this request to (async) wait upon a bo
* @to: request we are wishing to use