forked from Minki/linux
AT24 updates for 4.16 merge window
-----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEFp3rbAvDxGAT0sefEacuoBRx13IFAlpM+BAACgkQEacuoBRx 13KHtxAAj8uQ/ZEMz5vPQd4kQ3pn2a5Ts/yrAc8PPfk8SrBvMVk7KWNTRmbQgF2d EcL0Xs8AtiOYdSd1KmEQrkHtjJsJxRW27IsDGHJuoEc3aBrmAStgGvUUFROncZWU fHUm2Hy6Vw46Bx7HzxelmN5vjFHIZFdnx0sa6EfLL8Pui4VUVga7u9c8ezGL71MC TnXUCl6roWsrQhxoEWwX+HnzT0OI/Q+eQdvycWVyAOJDNga0F7+5KFhP6G1IOzsR QaUoowydRlSpot6dCRHeZ8+0aGtLXcZsMmQrg735ngdVT7ROZtY6dpXEpyn/KQHS ysFtaxJ8PPiC6PY0sXmztWBgZMLTph555Uqp3PSIlpuP5qFMqiTi8BoCv+UvXwA1 QAyPd7QUrefLrhFb21v3RlDNdalMAU8NGKh8nEkaP664HJjw4TvRlWOcyxsmcsOI 7szGsF/hsqQeaVrVsHQbF+sEy16u98VPIGA1k+KCtY0334vsMKOtfndXnS2OeR5l tJncNkfYD/0PeG479Wq4T42NOe6w90JmDKzWnLuDcY/zCJ7/AjJPp95AwyK/HPDc F5GcwC1WmcbcYkuKCG9c2nMxidpH8QZ5sei1TWey6lM4lAAHnQrXhohQw4zJcjst Q4ZRnXWGizSWOSTVQHVlmdUcPs/DlKPyDlcoTSEOD6JDhvl6AEY= =C2BD -----END PGP SIGNATURE----- Merge tag 'at24-4.16-updates-for-wolfram' of git://git.kernel.org/pub/scm/linux/kernel/git/brgl/linux into i2c/for-4.16 "AT24 updates for 4.16 merge window The driver has been converted to using regmap instead of raw i2c and smbus calls which shrank the code significantly. Device tree binding document has been cleaned up. Device tree support in the driver has been improved and we now support all at24 models as well as two new DT properties (no-read-rollover and wp-gpios). We no longer user unreadable magic values for driver data as the way it was implemented caused problems for some EEPROM models - we switched to regular structs. Aside from that, there's a bunch of coding style fixes and minor improvements all over the place."
This commit is contained in:
commit
fddfa22a44
@ -109,6 +109,7 @@ parameter is applicable::
|
||||
IPV6 IPv6 support is enabled.
|
||||
ISAPNP ISA PnP code is enabled.
|
||||
ISDN Appropriate ISDN support is enabled.
|
||||
ISOL CPU Isolation is enabled.
|
||||
JOY Appropriate joystick support is enabled.
|
||||
KGDB Kernel debugger support is enabled.
|
||||
KVM Kernel Virtual Machine support is enabled.
|
||||
|
@ -328,11 +328,15 @@
|
||||
not play well with APC CPU idle - disable it if you have
|
||||
APC and your system crashes randomly.
|
||||
|
||||
apic= [APIC,X86-32] Advanced Programmable Interrupt Controller
|
||||
apic= [APIC,X86] Advanced Programmable Interrupt Controller
|
||||
Change the output verbosity whilst booting
|
||||
Format: { quiet (default) | verbose | debug }
|
||||
Change the amount of debugging information output
|
||||
when initialising the APIC and IO-APIC components.
|
||||
For X86-32, this can also be used to specify an APIC
|
||||
driver name.
|
||||
Format: apic=driver_name
|
||||
Examples: apic=bigsmp
|
||||
|
||||
apic_extnmi= [APIC,X86] External NMI delivery setting
|
||||
Format: { bsp (default) | all | none }
|
||||
@ -1737,7 +1741,7 @@
|
||||
isapnp= [ISAPNP]
|
||||
Format: <RDP>,<reset>,<pci_scan>,<verbosity>
|
||||
|
||||
isolcpus= [KNL,SMP] Isolate a given set of CPUs from disturbance.
|
||||
isolcpus= [KNL,SMP,ISOL] Isolate a given set of CPUs from disturbance.
|
||||
[Deprecated - use cpusets instead]
|
||||
Format: [flag-list,]<cpu-list>
|
||||
|
||||
@ -2662,7 +2666,7 @@
|
||||
Valid arguments: on, off
|
||||
Default: on
|
||||
|
||||
nohz_full= [KNL,BOOT]
|
||||
nohz_full= [KNL,BOOT,SMP,ISOL]
|
||||
The argument is a cpu list, as described above.
|
||||
In kernels built with CONFIG_NO_HZ_FULL=y, set
|
||||
the specified list of CPUs whose tick will be stopped
|
||||
@ -2708,6 +2712,8 @@
|
||||
steal time is computed, but won't influence scheduler
|
||||
behaviour
|
||||
|
||||
nopti [X86-64] Disable kernel page table isolation
|
||||
|
||||
nolapic [X86-32,APIC] Do not enable or use the local APIC.
|
||||
|
||||
nolapic_timer [X86-32,APIC] Do not use the local APIC timer.
|
||||
@ -3282,6 +3288,12 @@
|
||||
pt. [PARIDE]
|
||||
See Documentation/blockdev/paride.txt.
|
||||
|
||||
pti= [X86_64]
|
||||
Control user/kernel address space isolation:
|
||||
on - enable
|
||||
off - disable
|
||||
auto - default setting
|
||||
|
||||
pty.legacy_count=
|
||||
[KNL] Number of legacy pty's. Overwrites compiled-in
|
||||
default number.
|
||||
|
@ -230,7 +230,7 @@ If supported by your machine this will be exposed by the WMI bus with
|
||||
a sysfs attribute called "force_power".
|
||||
|
||||
For example the intel-wmi-thunderbolt driver exposes this attribute in:
|
||||
/sys/devices/platform/PNP0C14:00/wmi_bus/wmi_bus-PNP0C14:00/86CCFD48-205E-4A77-9C48-2021CBEDE341/force_power
|
||||
/sys/bus/wmi/devices/86CCFD48-205E-4A77-9C48-2021CBEDE341/force_power
|
||||
|
||||
To force the power to on, write 1 to this attribute file.
|
||||
To disable force power, write 0 to this attribute file.
|
||||
|
@ -75,3 +75,4 @@ stable kernels.
|
||||
| Qualcomm Tech. | Falkor v1 | E1003 | QCOM_FALKOR_ERRATUM_1003 |
|
||||
| Qualcomm Tech. | Falkor v1 | E1009 | QCOM_FALKOR_ERRATUM_1009 |
|
||||
| Qualcomm Tech. | QDF2400 ITS | E0065 | QCOM_QDF2400_ERRATUM_0065 |
|
||||
| Qualcomm Tech. | Falkor v{1,2} | E1041 | QCOM_FALKOR_ERRATUM_1041 |
|
||||
|
@ -898,6 +898,13 @@ controller implements weight and absolute bandwidth limit models for
|
||||
normal scheduling policy and absolute bandwidth allocation model for
|
||||
realtime scheduling policy.
|
||||
|
||||
WARNING: cgroup2 doesn't yet support control of realtime processes and
|
||||
the cpu controller can only be enabled when all RT processes are in
|
||||
the root cgroup. Be aware that system management software may already
|
||||
have placed RT processes into nonroot cgroups during the system boot
|
||||
process, and these processes may need to be moved to the root cgroup
|
||||
before the cpu controller can be enabled.
|
||||
|
||||
|
||||
CPU Interface Files
|
||||
~~~~~~~~~~~~~~~~~~~
|
||||
|
@ -225,9 +225,9 @@ interrupts.
|
||||
|
||||
The following control flow is implemented (simplified excerpt)::
|
||||
|
||||
:c:func:`desc->irq_data.chip->irq_mask_ack`;
|
||||
desc->irq_data.chip->irq_mask_ack();
|
||||
handle_irq_event(desc->action);
|
||||
:c:func:`desc->irq_data.chip->irq_unmask`;
|
||||
desc->irq_data.chip->irq_unmask();
|
||||
|
||||
|
||||
Default Fast EOI IRQ flow handler
|
||||
@ -239,7 +239,7 @@ which only need an EOI at the end of the handler.
|
||||
The following control flow is implemented (simplified excerpt)::
|
||||
|
||||
handle_irq_event(desc->action);
|
||||
:c:func:`desc->irq_data.chip->irq_eoi`;
|
||||
desc->irq_data.chip->irq_eoi();
|
||||
|
||||
|
||||
Default Edge IRQ flow handler
|
||||
@ -251,15 +251,15 @@ interrupts.
|
||||
The following control flow is implemented (simplified excerpt)::
|
||||
|
||||
if (desc->status & running) {
|
||||
:c:func:`desc->irq_data.chip->irq_mask_ack`;
|
||||
desc->irq_data.chip->irq_mask_ack();
|
||||
desc->status |= pending | masked;
|
||||
return;
|
||||
}
|
||||
:c:func:`desc->irq_data.chip->irq_ack`;
|
||||
desc->irq_data.chip->irq_ack();
|
||||
desc->status |= running;
|
||||
do {
|
||||
if (desc->status & masked)
|
||||
:c:func:`desc->irq_data.chip->irq_unmask`;
|
||||
desc->irq_data.chip->irq_unmask();
|
||||
desc->status &= ~pending;
|
||||
handle_irq_event(desc->action);
|
||||
} while (status & pending);
|
||||
@ -293,10 +293,10 @@ simplified version without locking.
|
||||
The following control flow is implemented (simplified excerpt)::
|
||||
|
||||
if (desc->irq_data.chip->irq_ack)
|
||||
:c:func:`desc->irq_data.chip->irq_ack`;
|
||||
desc->irq_data.chip->irq_ack();
|
||||
handle_irq_event(desc->action);
|
||||
if (desc->irq_data.chip->irq_eoi)
|
||||
:c:func:`desc->irq_data.chip->irq_eoi`;
|
||||
desc->irq_data.chip->irq_eoi();
|
||||
|
||||
|
||||
EOI Edge IRQ flow handler
|
||||
|
@ -15,7 +15,7 @@ Required properties:
|
||||
|
||||
Example:
|
||||
|
||||
ccn@0x2000000000 {
|
||||
ccn@2000000000 {
|
||||
compatible = "arm,ccn-504";
|
||||
reg = <0x20 0x00000000 0 0x1000000>;
|
||||
interrupts = <0 181 4>;
|
||||
|
@ -49,7 +49,7 @@ An interrupt consumer on an SoC using crossbar will use:
|
||||
interrupts = <GIC_SPI request_number interrupt_level>
|
||||
|
||||
Example:
|
||||
device_x@0x4a023000 {
|
||||
device_x@4a023000 {
|
||||
/* Crossbar 8 used */
|
||||
interrupts = <GIC_SPI 8 IRQ_TYPE_LEVEL_HIGH>;
|
||||
...
|
||||
|
@ -8,7 +8,7 @@ Required properties:
|
||||
- interrupts : Should contain MC General interrupt.
|
||||
|
||||
Example:
|
||||
memory-controller@0x7000f000 {
|
||||
memory-controller@7000f000 {
|
||||
compatible = "nvidia,tegra20-mc";
|
||||
reg = <0x7000f000 0x024
|
||||
0x7000f03c 0x3c4>;
|
||||
|
@ -17,7 +17,7 @@ Optional properties:
|
||||
- clock-output-names : From common clock binding.
|
||||
|
||||
Example:
|
||||
clock@0xff000000 {
|
||||
clock@ff000000 {
|
||||
compatible = "adi,axi-clkgen";
|
||||
#clock-cells = <0>;
|
||||
reg = <0xff000000 0x1000>;
|
||||
|
@ -23,7 +23,7 @@ Example:
|
||||
clocks = <&clk_osc>;
|
||||
};
|
||||
|
||||
aux: aux@0x7e215004 {
|
||||
aux: aux@7e215004 {
|
||||
compatible = "brcm,bcm2835-aux";
|
||||
#clock-cells = <1>;
|
||||
reg = <0x7e215000 0x8>;
|
||||
|
@ -24,7 +24,7 @@ tree sources.
|
||||
|
||||
Example 1: An example of a clock controller node is listed below.
|
||||
|
||||
clock: clock-controller@0x10030000 {
|
||||
clock: clock-controller@10030000 {
|
||||
compatible = "samsung,exynos4210-clock";
|
||||
reg = <0x10030000 0x20000>;
|
||||
#clock-cells = <1>;
|
||||
|
@ -22,7 +22,7 @@ tree sources.
|
||||
|
||||
Example 1: An example of a clock controller node is listed below.
|
||||
|
||||
clock: clock-controller@0x10010000 {
|
||||
clock: clock-controller@10010000 {
|
||||
compatible = "samsung,exynos5250-clock";
|
||||
reg = <0x10010000 0x30000>;
|
||||
#clock-cells = <1>;
|
||||
|
@ -30,7 +30,7 @@ Example 1: An example of a clock controller node is listed below.
|
||||
#clock-cells = <0>;
|
||||
};
|
||||
|
||||
clock: clock-controller@0x10010000 {
|
||||
clock: clock-controller@10010000 {
|
||||
compatible = "samsung,exynos5410-clock";
|
||||
reg = <0x10010000 0x30000>;
|
||||
#clock-cells = <1>;
|
||||
|
@ -23,7 +23,7 @@ tree sources.
|
||||
|
||||
Example 1: An example of a clock controller node is listed below.
|
||||
|
||||
clock: clock-controller@0x10010000 {
|
||||
clock: clock-controller@10010000 {
|
||||
compatible = "samsung,exynos5420-clock";
|
||||
reg = <0x10010000 0x30000>;
|
||||
#clock-cells = <1>;
|
||||
|
@ -21,7 +21,7 @@ tree sources.
|
||||
|
||||
Example: An example of a clock controller node is listed below.
|
||||
|
||||
clock: clock-controller@0x10010000 {
|
||||
clock: clock-controller@10010000 {
|
||||
compatible = "samsung,exynos5440-clock";
|
||||
reg = <0x160000 0x10000>;
|
||||
#clock-cells = <1>;
|
||||
|
@ -14,7 +14,7 @@ Required properties:
|
||||
|
||||
Example:
|
||||
|
||||
pllctrl: pll-controller@0x02310000 {
|
||||
pllctrl: pll-controller@02310000 {
|
||||
compatible = "ti,keystone-pllctrl", "syscon";
|
||||
reg = <0x02310000 0x200>;
|
||||
};
|
||||
|
@ -20,13 +20,13 @@ ID in its "clocks" phandle cell. See include/dt-bindings/clock/zx296702-clock.h
|
||||
for the full list of zx296702 clock IDs.
|
||||
|
||||
|
||||
topclk: topcrm@0x09800000 {
|
||||
topclk: topcrm@09800000 {
|
||||
compatible = "zte,zx296702-topcrm-clk";
|
||||
reg = <0x09800000 0x1000>;
|
||||
#clock-cells = <1>;
|
||||
};
|
||||
|
||||
uart0: serial@0x09405000 {
|
||||
uart0: serial@09405000 {
|
||||
compatible = "zte,zx296702-uart";
|
||||
reg = <0x09405000 0x1000>;
|
||||
interrupts = <GIC_SPI 37 IRQ_TYPE_LEVEL_HIGH>;
|
||||
|
@ -456,7 +456,7 @@ System ON/OFF key driver
|
||||
Definition: this is phandle to the register map node.
|
||||
|
||||
EXAMPLE:
|
||||
snvs-pwrkey@0x020cc000 {
|
||||
snvs-pwrkey@020cc000 {
|
||||
compatible = "fsl,sec-v4.0-pwrkey";
|
||||
regmap = <&snvs>;
|
||||
interrupts = <0 4 0x4>
|
||||
@ -545,7 +545,7 @@ FULL EXAMPLE
|
||||
interrupts = <93 2>;
|
||||
};
|
||||
|
||||
snvs-pwrkey@0x020cc000 {
|
||||
snvs-pwrkey@020cc000 {
|
||||
compatible = "fsl,sec-v4.0-pwrkey";
|
||||
regmap = <&sec_mon>;
|
||||
interrupts = <0 4 0x4>;
|
||||
|
@ -9,7 +9,7 @@ Required properties:
|
||||
- clock-names : the name of clock used by the DFI, must be "pclk_ddr_mon";
|
||||
|
||||
Example:
|
||||
dfi: dfi@0xff630000 {
|
||||
dfi: dfi@ff630000 {
|
||||
compatible = "rockchip,rk3399-dfi";
|
||||
reg = <0x00 0xff630000 0x00 0x4000>;
|
||||
rockchip,pmu = <&pmugrf>;
|
||||
|
@ -27,7 +27,7 @@ Optional properties:
|
||||
|
||||
Example:
|
||||
|
||||
fb0: fb@0x00500000 {
|
||||
fb0: fb@00500000 {
|
||||
compatible = "atmel,at91sam9g45-lcdc";
|
||||
reg = <0x00500000 0x1000>;
|
||||
interrupts = <23 3 0>;
|
||||
@ -41,7 +41,7 @@ Example:
|
||||
|
||||
Example for fixed framebuffer memory:
|
||||
|
||||
fb0: fb@0x00500000 {
|
||||
fb0: fb@00500000 {
|
||||
compatible = "atmel,at91sam9263-lcdc";
|
||||
reg = <0x00700000 0x1000 0x70000000 0x200000>;
|
||||
[...]
|
||||
|
@ -73,7 +73,7 @@ Hypervisor OS configuration:
|
||||
max-read-transactions = <31>;
|
||||
channel-reset-timeout-cycles = <0x500>;
|
||||
|
||||
hidma_24: dma-controller@0x5c050000 {
|
||||
hidma_24: dma-controller@5c050000 {
|
||||
compatible = "qcom,hidma-1.0";
|
||||
reg = <0 0x5c050000 0x0 0x1000>,
|
||||
<0 0x5c0b0000 0x0 0x1000>;
|
||||
@ -85,7 +85,7 @@ Hypervisor OS configuration:
|
||||
|
||||
Guest OS configuration:
|
||||
|
||||
hidma_24: dma-controller@0x5c050000 {
|
||||
hidma_24: dma-controller@5c050000 {
|
||||
compatible = "qcom,hidma-1.0";
|
||||
reg = <0 0x5c050000 0x0 0x1000>,
|
||||
<0 0x5c0b0000 0x0 0x1000>;
|
||||
|
@ -13,7 +13,7 @@ Required properties:
|
||||
Example:
|
||||
|
||||
Controller:
|
||||
dma: dma-controller@0x09c00000{
|
||||
dma: dma-controller@09c00000{
|
||||
compatible = "zte,zx296702-dma";
|
||||
reg = <0x09c00000 0x1000>;
|
||||
clocks = <&topclk ZX296702_DMA_ACLK>;
|
||||
|
78
Documentation/devicetree/bindings/eeprom/at24.txt
Normal file
78
Documentation/devicetree/bindings/eeprom/at24.txt
Normal file
@ -0,0 +1,78 @@
|
||||
EEPROMs (I2C)
|
||||
|
||||
Required properties:
|
||||
|
||||
- compatible: Must be a "<manufacturer>,<model>" pair. The following <model>
|
||||
values are supported (assuming "atmel" as manufacturer):
|
||||
|
||||
"atmel,24c00",
|
||||
"atmel,24c01",
|
||||
"atmel,24cs01",
|
||||
"atmel,24c02",
|
||||
"atmel,24cs02",
|
||||
"atmel,24mac402",
|
||||
"atmel,24mac602",
|
||||
"atmel,spd",
|
||||
"atmel,24c04",
|
||||
"atmel,24cs04",
|
||||
"atmel,24c08",
|
||||
"atmel,24cs08",
|
||||
"atmel,24c16",
|
||||
"atmel,24cs16",
|
||||
"atmel,24c32",
|
||||
"atmel,24cs32",
|
||||
"atmel,24c64",
|
||||
"atmel,24cs64",
|
||||
"atmel,24c128",
|
||||
"atmel,24c256",
|
||||
"atmel,24c512",
|
||||
"atmel,24c1024",
|
||||
|
||||
If <manufacturer> is not "atmel", then a fallback must be used
|
||||
with the same <model> and "atmel" as manufacturer.
|
||||
|
||||
Example:
|
||||
compatible = "microchip,24c128", "atmel,24c128";
|
||||
|
||||
Supported manufacturers are:
|
||||
|
||||
"catalyst",
|
||||
"microchip",
|
||||
"ramtron",
|
||||
"renesas",
|
||||
"nxp",
|
||||
"st",
|
||||
|
||||
Some vendors use different model names for chips which are just
|
||||
variants of the above. Known such exceptions are listed below:
|
||||
|
||||
"renesas,r1ex24002" - the fallback is "atmel,24c02"
|
||||
|
||||
- reg: The I2C address of the EEPROM.
|
||||
|
||||
Optional properties:
|
||||
|
||||
- pagesize: The length of the pagesize for writing. Please consult the
|
||||
manual of your device, that value varies a lot. A wrong value
|
||||
may result in data loss! If not specified, a safety value of
|
||||
'1' is used which will be very slow.
|
||||
|
||||
- read-only: This parameterless property disables writes to the eeprom.
|
||||
|
||||
- size: Total eeprom size in bytes.
|
||||
|
||||
- no-read-rollover: This parameterless property indicates that the
|
||||
multi-address eeprom does not automatically roll over
|
||||
reads to the next slave address. Please consult the
|
||||
manual of your device.
|
||||
|
||||
- wp-gpios: GPIO to which the write-protect pin of the chip is connected.
|
||||
|
||||
Example:
|
||||
|
||||
eeprom@52 {
|
||||
compatible = "atmel,24c32";
|
||||
reg = <0x52>;
|
||||
pagesize = <32>;
|
||||
wp-gpios = <&gpio1 3 0>;
|
||||
};
|
@ -1,7 +1,12 @@
|
||||
EEPROMs (SPI) compatible with Atmel at25.
|
||||
|
||||
Required properties:
|
||||
- compatible : "atmel,at25".
|
||||
- compatible : Should be "<vendor>,<type>", and generic value "atmel,at25".
|
||||
Example "<vendor>,<type>" values:
|
||||
"microchip,25lc040"
|
||||
"st,m95m02"
|
||||
"st,m95256"
|
||||
|
||||
- reg : chip select number
|
||||
- spi-max-frequency : max spi frequency to use
|
||||
- pagesize : size of the eeprom page
|
||||
@ -13,7 +18,7 @@ Optional properties:
|
||||
- spi-cpol : SPI inverse clock polarity, as per spi-bus bindings.
|
||||
- read-only : this parameter-less property disables writes to the eeprom
|
||||
|
||||
Obsolete legacy properties are can be used in place of "size", "pagesize",
|
||||
Obsolete legacy properties can be used in place of "size", "pagesize",
|
||||
"address-width", and "read-only":
|
||||
- at25,byte-len : total eeprom size in bytes
|
||||
- at25,addr-mode : addr-mode flags, as defined in include/linux/spi/eeprom.h
|
||||
@ -22,8 +27,8 @@ Obsolete legacy properties are can be used in place of "size", "pagesize",
|
||||
Additional compatible properties are also allowed.
|
||||
|
||||
Example:
|
||||
at25@0 {
|
||||
compatible = "atmel,at25", "st,m95256";
|
||||
eeprom@0 {
|
||||
compatible = "st,m95256", "atmel,at25";
|
||||
reg = <0>
|
||||
spi-max-frequency = <5000000>;
|
||||
spi-cpha;
|
||||
|
@ -1,47 +0,0 @@
|
||||
EEPROMs (I2C)
|
||||
|
||||
Required properties:
|
||||
|
||||
- compatible : should be "<manufacturer>,<type>", like these:
|
||||
|
||||
"atmel,24c00", "atmel,24c01", "atmel,24c02", "atmel,24c04",
|
||||
"atmel,24c08", "atmel,24c16", "atmel,24c32", "atmel,24c64",
|
||||
"atmel,24c128", "atmel,24c256", "atmel,24c512", "atmel,24c1024"
|
||||
|
||||
"catalyst,24c32"
|
||||
|
||||
"microchip,24c128"
|
||||
|
||||
"ramtron,24c64"
|
||||
|
||||
"renesas,r1ex24002"
|
||||
|
||||
The following manufacturers values have been deprecated:
|
||||
"at", "at24"
|
||||
|
||||
If there is no specific driver for <manufacturer>, a generic
|
||||
device with <type> and manufacturer "atmel" should be used.
|
||||
Possible types are:
|
||||
"24c00", "24c01", "24c02", "24c04", "24c08", "24c16", "24c32", "24c64",
|
||||
"24c128", "24c256", "24c512", "24c1024", "spd"
|
||||
|
||||
- reg : the I2C address of the EEPROM
|
||||
|
||||
Optional properties:
|
||||
|
||||
- pagesize : the length of the pagesize for writing. Please consult the
|
||||
manual of your device, that value varies a lot. A wrong value
|
||||
may result in data loss! If not specified, a safety value of
|
||||
'1' is used which will be very slow.
|
||||
|
||||
- read-only: this parameterless property disables writes to the eeprom
|
||||
|
||||
- size: total eeprom size in bytes
|
||||
|
||||
Example:
|
||||
|
||||
eeprom@52 {
|
||||
compatible = "atmel,24c32";
|
||||
reg = <0x52>;
|
||||
pagesize = <32>;
|
||||
};
|
@ -30,7 +30,7 @@ Optional properties:
|
||||
|
||||
Example:
|
||||
|
||||
gpio_altr: gpio@0xff200000 {
|
||||
gpio_altr: gpio@ff200000 {
|
||||
compatible = "altr,pio-1.0";
|
||||
reg = <0xff200000 0x10>;
|
||||
interrupts = <0 45 4>;
|
||||
|
@ -27,7 +27,7 @@ Required properties:
|
||||
ti,tca6424
|
||||
ti,tca9539
|
||||
ti,tca9554
|
||||
onsemi,pca9654
|
||||
onnn,pca9654
|
||||
exar,xra1202
|
||||
|
||||
Optional properties:
|
||||
|
@ -18,7 +18,7 @@ Optional properties:
|
||||
Example
|
||||
|
||||
/ {
|
||||
i2c4: i2c4@0x10054000 {
|
||||
i2c4: i2c4@10054000 {
|
||||
compatible = "ingenic,jz4780-i2c";
|
||||
reg = <0x10054000 0x1000>;
|
||||
|
||||
|
@ -10,7 +10,7 @@ Required properties:
|
||||
|
||||
Example:
|
||||
|
||||
hp03@0x77 {
|
||||
hp03@77 {
|
||||
compatible = "hoperf,hp03";
|
||||
reg = <0x77>;
|
||||
xclr-gpio = <&portc 0 0x0>;
|
||||
|
@ -15,7 +15,7 @@ Optional properties:
|
||||
Example:
|
||||
|
||||
i2c@80110000 {
|
||||
bu21013_tp@0x5c {
|
||||
bu21013_tp@5c {
|
||||
compatible = "rohm,bu21013_tp";
|
||||
reg = <0x5c>;
|
||||
touch-gpio = <&gpio2 20 0x4>;
|
||||
|
@ -155,7 +155,7 @@ Example:
|
||||
<0x0 0xe112f000 0 0x02000>,
|
||||
<0x0 0xe1140000 0 0x10000>,
|
||||
<0x0 0xe1160000 0 0x10000>;
|
||||
v2m0: v2m@0x8000 {
|
||||
v2m0: v2m@8000 {
|
||||
compatible = "arm,gic-v2m-frame";
|
||||
msi-controller;
|
||||
reg = <0x0 0x80000 0 0x1000>;
|
||||
@ -163,7 +163,7 @@ Example:
|
||||
|
||||
....
|
||||
|
||||
v2mN: v2m@0x9000 {
|
||||
v2mN: v2m@9000 {
|
||||
compatible = "arm,gic-v2m-frame";
|
||||
msi-controller;
|
||||
reg = <0x0 0x90000 0 0x1000>;
|
||||
|
@ -71,7 +71,7 @@ Example 2:
|
||||
* An interrupt generating device that is wired to a Meta external
|
||||
* trigger block.
|
||||
*/
|
||||
uart1: uart@0x02004c00 {
|
||||
uart1: uart@02004c00 {
|
||||
// Interrupt source '5' that is level-sensitive.
|
||||
// Note that there are only two cells as specified in the
|
||||
// interrupt parent's '#interrupt-cells' property.
|
||||
|
@ -51,7 +51,7 @@ Example 1:
|
||||
/*
|
||||
* TZ1090 PDC block
|
||||
*/
|
||||
pdc: pdc@0x02006000 {
|
||||
pdc: pdc@02006000 {
|
||||
// This is an interrupt controller node.
|
||||
interrupt-controller;
|
||||
|
||||
|
@ -39,7 +39,7 @@ Example:
|
||||
|
||||
The following is an example from the SPEAr320 SoC dtsi file.
|
||||
|
||||
shirq: interrupt-controller@0xb3000000 {
|
||||
shirq: interrupt-controller@b3000000 {
|
||||
compatible = "st,spear320-shirq";
|
||||
reg = <0xb3000000 0x1000>;
|
||||
interrupts = <28 29 30 1>;
|
||||
|
@ -14,7 +14,7 @@ Optional properties:
|
||||
depends on the interrupt controller parent.
|
||||
|
||||
Example:
|
||||
mbox_tx: mailbox@0x100 {
|
||||
mbox_tx: mailbox@100 {
|
||||
compatible = "altr,mailbox-1.0";
|
||||
reg = <0x100 0x8>;
|
||||
interrupt-parent = < &gic_0 >;
|
||||
@ -22,7 +22,7 @@ Example:
|
||||
#mbox-cells = <1>;
|
||||
};
|
||||
|
||||
mbox_rx: mailbox@0x200 {
|
||||
mbox_rx: mailbox@200 {
|
||||
compatible = "altr,mailbox-1.0";
|
||||
reg = <0x200 0x8>;
|
||||
interrupt-parent = < &gic_0 >;
|
||||
@ -40,7 +40,7 @@ support only one channel).The equivalent "mbox-names" property value can be
|
||||
used to give a name to the communication channel to be used by the client user.
|
||||
|
||||
Example:
|
||||
mclient0: mclient0@0x400 {
|
||||
mclient0: mclient0@400 {
|
||||
compatible = "client-1.0";
|
||||
reg = <0x400 0x10>;
|
||||
mbox-names = "mbox-tx", "mbox-rx";
|
||||
|
@ -15,7 +15,7 @@ Optional properties:
|
||||
- brcm,use-bcm-hdr: present if a BCM header precedes each frame.
|
||||
|
||||
Example:
|
||||
pdc0: iproc-pdc0@0x612c0000 {
|
||||
pdc0: iproc-pdc0@612c0000 {
|
||||
compatible = "brcm,iproc-pdc-mbox";
|
||||
reg = <0 0x612c0000 0 0x445>; /* PDC FS0 regs */
|
||||
interrupts = <GIC_SPI 187 IRQ_TYPE_LEVEL_HIGH>;
|
||||
|
@ -17,7 +17,7 @@ Optional properties:
|
||||
|
||||
Example:
|
||||
|
||||
gsc_0: gsc@0x13e00000 {
|
||||
gsc_0: gsc@13e00000 {
|
||||
compatible = "samsung,exynos5250-gsc";
|
||||
reg = <0x13e00000 0x1000>;
|
||||
interrupts = <0 85 0>;
|
||||
|
@ -68,7 +68,7 @@ vcodec_dec: vcodec@16000000 {
|
||||
"vdec_bus_clk_src";
|
||||
};
|
||||
|
||||
vcodec_enc: vcodec@0x18002000 {
|
||||
vcodec_enc: vcodec@18002000 {
|
||||
compatible = "mediatek,mt8173-vcodec-enc";
|
||||
reg = <0 0x18002000 0 0x1000>, /*VENC_SYS*/
|
||||
<0 0x19002000 0 0x1000>; /*VENC_LT_SYS*/
|
||||
|
@ -44,7 +44,7 @@ Device node example
|
||||
vin0 = &vin0;
|
||||
};
|
||||
|
||||
vin0: vin@0xe6ef0000 {
|
||||
vin0: vin@e6ef0000 {
|
||||
compatible = "renesas,vin-r8a7790", "renesas,rcar-gen2-vin";
|
||||
clocks = <&mstp8_clks R8A7790_CLK_VIN0>;
|
||||
reg = <0 0xe6ef0000 0 0x1000>;
|
||||
|
@ -138,7 +138,7 @@ Example:
|
||||
};
|
||||
|
||||
/* MIPI CSI-2 bus IF sensor */
|
||||
s5c73m3: sensor@0x1a {
|
||||
s5c73m3: sensor@1a {
|
||||
compatible = "samsung,s5c73m3";
|
||||
reg = <0x1a>;
|
||||
vddio-supply = <...>;
|
||||
|
@ -8,7 +8,7 @@ Bindings, specific for the sh_mobile_ceu_camera.c driver:
|
||||
|
||||
Example:
|
||||
|
||||
ceu0: ceu@0xfe910000 {
|
||||
ceu0: ceu@fe910000 {
|
||||
compatible = "renesas,sh-mobile-ceu";
|
||||
reg = <0xfe910000 0xa0>;
|
||||
interrupt-parent = <&intcs>;
|
||||
|
@ -154,7 +154,7 @@ imx074 is linked to ceu0 through the MIPI CSI-2 receiver (csi2). ceu0 has a
|
||||
'port' node which may indicate that at any time only one of the following data
|
||||
pipelines can be active: ov772x -> ceu0 or imx074 -> csi2 -> ceu0.
|
||||
|
||||
ceu0: ceu@0xfe910000 {
|
||||
ceu0: ceu@fe910000 {
|
||||
compatible = "renesas,sh-mobile-ceu";
|
||||
reg = <0xfe910000 0xa0>;
|
||||
interrupts = <0x880>;
|
||||
@ -193,9 +193,9 @@ pipelines can be active: ov772x -> ceu0 or imx074 -> csi2 -> ceu0.
|
||||
};
|
||||
};
|
||||
|
||||
i2c0: i2c@0xfff20000 {
|
||||
i2c0: i2c@fff20000 {
|
||||
...
|
||||
ov772x_1: camera@0x21 {
|
||||
ov772x_1: camera@21 {
|
||||
compatible = "ovti,ov772x";
|
||||
reg = <0x21>;
|
||||
vddio-supply = <®ulator1>;
|
||||
@ -219,7 +219,7 @@ pipelines can be active: ov772x -> ceu0 or imx074 -> csi2 -> ceu0.
|
||||
};
|
||||
};
|
||||
|
||||
imx074: camera@0x1a {
|
||||
imx074: camera@1a {
|
||||
compatible = "sony,imx074";
|
||||
reg = <0x1a>;
|
||||
vddio-supply = <®ulator1>;
|
||||
@ -239,7 +239,7 @@ pipelines can be active: ov772x -> ceu0 or imx074 -> csi2 -> ceu0.
|
||||
};
|
||||
};
|
||||
|
||||
csi2: csi2@0xffc90000 {
|
||||
csi2: csi2@ffc90000 {
|
||||
compatible = "renesas,sh-mobile-csi2";
|
||||
reg = <0xffc90000 0x1000>;
|
||||
interrupts = <0x17a0>;
|
||||
|
@ -46,7 +46,7 @@ Optional properties:
|
||||
|
||||
Example:
|
||||
|
||||
emif1: emif@0x4c000000 {
|
||||
emif1: emif@4c000000 {
|
||||
compatible = "ti,emif-4d";
|
||||
ti,hwmods = "emif2";
|
||||
phy-type = <1>;
|
||||
|
@ -13,7 +13,7 @@ Required properties:
|
||||
|
||||
Example:
|
||||
|
||||
devctrl: device-state-control@0x02620000 {
|
||||
devctrl: device-state-control@02620000 {
|
||||
compatible = "ti,keystone-devctrl", "syscon";
|
||||
reg = <0x02620000 0x1000>;
|
||||
};
|
||||
|
@ -9,7 +9,7 @@ Required properties:
|
||||
- reg : Location and size of bounce buffer
|
||||
|
||||
Example:
|
||||
smc@0x3404c000 {
|
||||
smc@3404c000 {
|
||||
compatible = "brcm,bcm11351-smc", "brcm,kona-smc";
|
||||
reg = <0x3404c000 0x400>; //1 KiB in SRAM
|
||||
};
|
||||
|
@ -12,7 +12,7 @@ Refer to clocks/clock-bindings.txt for generic clock consumer properties.
|
||||
|
||||
Example:
|
||||
|
||||
sdio2: sdio@0x3f1a0000 {
|
||||
sdio2: sdio@3f1a0000 {
|
||||
compatible = "brcm,kona-sdhci";
|
||||
reg = <0x3f1a0000 0x10000>;
|
||||
clocks = <&sdio3_clk>;
|
||||
|
@ -24,7 +24,7 @@ Optional properties:
|
||||
|
||||
Example:
|
||||
|
||||
sdhci0: sdhci@0x18041000 {
|
||||
sdhci0: sdhci@18041000 {
|
||||
compatible = "brcm,sdhci-iproc-cygnus";
|
||||
reg = <0x18041000 0x100>;
|
||||
interrupts = <GIC_SPI 108 IRQ_TYPE_LEVEL_HIGH>;
|
||||
|
@ -55,7 +55,7 @@ Examples:
|
||||
|
||||
[hwmod populated DMA resources]
|
||||
|
||||
mmc1: mmc@0x4809c000 {
|
||||
mmc1: mmc@4809c000 {
|
||||
compatible = "ti,omap4-hsmmc";
|
||||
reg = <0x4809c000 0x400>;
|
||||
ti,hwmods = "mmc1";
|
||||
@ -67,7 +67,7 @@ Examples:
|
||||
|
||||
[generic DMA request binding]
|
||||
|
||||
mmc1: mmc@0x4809c000 {
|
||||
mmc1: mmc@4809c000 {
|
||||
compatible = "ti,omap4-hsmmc";
|
||||
reg = <0x4809c000 0x400>;
|
||||
ti,hwmods = "mmc1";
|
||||
|
@ -82,15 +82,15 @@ gpmc: gpmc@6e000000 {
|
||||
label = "bootloader-nor";
|
||||
reg = <0 0x40000>;
|
||||
};
|
||||
partition@0x40000 {
|
||||
partition@40000 {
|
||||
label = "params-nor";
|
||||
reg = <0x40000 0x40000>;
|
||||
};
|
||||
partition@0x80000 {
|
||||
partition@80000 {
|
||||
label = "kernel-nor";
|
||||
reg = <0x80000 0x200000>;
|
||||
};
|
||||
partition@0x280000 {
|
||||
partition@280000 {
|
||||
label = "filesystem-nor";
|
||||
reg = <0x240000 0x7d80000>;
|
||||
};
|
||||
|
@ -13,7 +13,6 @@ Required properties:
|
||||
at25df321a
|
||||
at25df641
|
||||
at26df081a
|
||||
en25s64
|
||||
mr25h128
|
||||
mr25h256
|
||||
mr25h10
|
||||
@ -33,7 +32,6 @@ Required properties:
|
||||
s25fl008k
|
||||
s25fl064k
|
||||
sst25vf040b
|
||||
sst25wf040b
|
||||
m25p40
|
||||
m25p80
|
||||
m25p16
|
||||
|
@ -131,7 +131,7 @@ Example:
|
||||
read-only;
|
||||
reg = <0x00000000 0x00400000>;
|
||||
};
|
||||
android@0x00400000 {
|
||||
android@00400000 {
|
||||
label = "android";
|
||||
reg = <0x00400000 0x12c00000>;
|
||||
};
|
||||
|
@ -52,7 +52,7 @@ Optional properties:
|
||||
|
||||
Example:
|
||||
|
||||
tse_sub_0_eth_tse_0: ethernet@0x1,00000000 {
|
||||
tse_sub_0_eth_tse_0: ethernet@1,00000000 {
|
||||
compatible = "altr,tse-msgdma-1.0";
|
||||
reg = <0x00000001 0x00000000 0x00000400>,
|
||||
<0x00000001 0x00000460 0x00000020>,
|
||||
@ -90,7 +90,7 @@ Example:
|
||||
};
|
||||
};
|
||||
|
||||
tse_sub_1_eth_tse_0: ethernet@0x1,00001000 {
|
||||
tse_sub_1_eth_tse_0: ethernet@1,00001000 {
|
||||
compatible = "altr,tse-msgdma-1.0";
|
||||
reg = <0x00000001 0x00001000 0x00000400>,
|
||||
<0x00000001 0x00001460 0x00000020>,
|
||||
|
@ -18,7 +18,7 @@ Example :
|
||||
This example shows these optional properties, plus other properties
|
||||
required for the TI Davinci MDIO driver.
|
||||
|
||||
davinci_mdio: ethernet@0x5c030000 {
|
||||
davinci_mdio: ethernet@5c030000 {
|
||||
compatible = "ti,davinci_mdio";
|
||||
reg = <0x5c030000 0x1000>;
|
||||
#address-cells = <1>;
|
||||
|
@ -28,7 +28,7 @@ Required properties:
|
||||
|
||||
Example:
|
||||
|
||||
gmii_to_sgmii_converter: phy@0x100000240 {
|
||||
gmii_to_sgmii_converter: phy@100000240 {
|
||||
compatible = "altr,gmii-to-sgmii-2.0";
|
||||
reg = <0x00000001 0x00000240 0x00000008>,
|
||||
<0x00000001 0x00000200 0x00000040>;
|
||||
|
@ -36,7 +36,7 @@ Optional properties:
|
||||
|
||||
Example:
|
||||
|
||||
cpu@0x0 {
|
||||
cpu@0 {
|
||||
device_type = "cpu";
|
||||
compatible = "altr,nios2-1.0";
|
||||
reg = <0>;
|
||||
|
@ -25,7 +25,7 @@ Optional properties:
|
||||
- bus-range: PCI bus numbers covered
|
||||
|
||||
Example
|
||||
pcie_0: pcie@0xc00000000 {
|
||||
pcie_0: pcie@c00000000 {
|
||||
compatible = "altr,pcie-root-port-1.0";
|
||||
reg = <0xc0000000 0x20000000>,
|
||||
<0xff220000 0x00004000>;
|
||||
|
@ -52,7 +52,7 @@ Additional required properties for imx7d-pcie:
|
||||
|
||||
Example:
|
||||
|
||||
pcie@0x01000000 {
|
||||
pcie@01000000 {
|
||||
compatible = "fsl,imx6q-pcie", "snps,dw-pcie";
|
||||
reg = <0x01ffc000 0x04000>,
|
||||
<0x01f00000 0x80000>;
|
||||
|
@ -21,7 +21,7 @@ Optional properties:
|
||||
- dma-coherent: Present if DMA operations are coherent.
|
||||
|
||||
Hip05 Example (note that Hip06 is the same except compatible):
|
||||
pcie@0xb0080000 {
|
||||
pcie@b0080000 {
|
||||
compatible = "hisilicon,hip05-pcie", "snps,dw-pcie";
|
||||
reg = <0 0xb0080000 0 0x10000>, <0x220 0x00000000 0 0x2000>;
|
||||
reg-names = "rc_dbi", "config";
|
||||
|
@ -45,7 +45,7 @@ Optional properties:
|
||||
- usb3_vbus-supply : regulator phandle for controller usb3 vbus
|
||||
|
||||
Example:
|
||||
usbphy: phy@0x01c13400 {
|
||||
usbphy: phy@01c13400 {
|
||||
#phy-cells = <1>;
|
||||
compatible = "allwinner,sun4i-a10-usb-phy";
|
||||
/* phy base regs, phy1 pmu reg, phy2 pmu reg */
|
||||
|
@ -25,7 +25,7 @@ Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
|
||||
|
||||
For example:
|
||||
|
||||
pinmux: pinmux@0x0301d0c8 {
|
||||
pinmux: pinmux@0301d0c8 {
|
||||
compatible = "brcm,cygnus-pinmux";
|
||||
reg = <0x0301d0c8 0x1b0>;
|
||||
|
||||
|
@ -96,14 +96,14 @@ For example, pinctrl might have subnodes like the following:
|
||||
|
||||
For a specific board, if it wants to use sd1,
|
||||
it can add the following to its board-specific .dts file.
|
||||
sd1: sd@0x12340000 {
|
||||
sd1: sd@12340000 {
|
||||
pinctrl-names = "default";
|
||||
pinctrl-0 = <&sd1_pmx0>;
|
||||
}
|
||||
|
||||
or
|
||||
|
||||
sd1: sd@0x12340000 {
|
||||
sd1: sd@12340000 {
|
||||
pinctrl-names = "default";
|
||||
pinctrl-0 = <&sd1_pmx1>;
|
||||
}
|
||||
|
@ -41,7 +41,7 @@ For example, pinctrl might have subnodes like the following:
|
||||
|
||||
For a specific board, if it wants to use uart2 without hardware flow control,
|
||||
it can add the following to its board-specific .dts file.
|
||||
uart2: uart@0xb0070000 {
|
||||
uart2: uart@b0070000 {
|
||||
pinctrl-names = "default";
|
||||
pinctrl-0 = <&uart2_noflow_pins_a>;
|
||||
}
|
||||
|
@ -136,7 +136,7 @@ Example for rk3188:
|
||||
#size-cells = <1>;
|
||||
ranges;
|
||||
|
||||
gpio0: gpio0@0x2000a000 {
|
||||
gpio0: gpio0@2000a000 {
|
||||
compatible = "rockchip,rk3188-gpio-bank0";
|
||||
reg = <0x2000a000 0x100>;
|
||||
interrupts = <GIC_SPI 54 IRQ_TYPE_LEVEL_HIGH>;
|
||||
@ -149,7 +149,7 @@ Example for rk3188:
|
||||
#interrupt-cells = <2>;
|
||||
};
|
||||
|
||||
gpio1: gpio1@0x2003c000 {
|
||||
gpio1: gpio1@2003c000 {
|
||||
compatible = "rockchip,gpio-bank";
|
||||
reg = <0x2003c000 0x100>;
|
||||
interrupts = <GIC_SPI 55 IRQ_TYPE_LEVEL_HIGH>;
|
||||
|
@ -107,7 +107,7 @@ regulators (twl_reg1 and twl_reg2),
|
||||
...
|
||||
};
|
||||
|
||||
mmc: mmc@0x0 {
|
||||
mmc: mmc@0 {
|
||||
...
|
||||
...
|
||||
vmmc-supply = <&twl_reg1>;
|
||||
|
@ -12,7 +12,7 @@ Optional properties:
|
||||
|
||||
Example:
|
||||
|
||||
uart@0x4000c400 {
|
||||
uart@4000c400 {
|
||||
compatible = "energymicro,efm32-uart";
|
||||
reg = <0x4000c400 0x400>;
|
||||
interrupts = <15>;
|
||||
|
@ -14,7 +14,7 @@ Required properties:
|
||||
|
||||
|
||||
Example:
|
||||
ps20: ps2@0x01c2a000 {
|
||||
ps20: ps2@01c2a000 {
|
||||
compatible = "allwinner,sun4i-a10-ps2";
|
||||
reg = <0x01c2a000 0x400>;
|
||||
interrupts = <0 62 4>;
|
||||
|
@ -220,7 +220,7 @@ qmss: qmss@2a40000 {
|
||||
#address-cells = <1>;
|
||||
#size-cells = <1>;
|
||||
ranges;
|
||||
pdsp0@0x2a10000 {
|
||||
pdsp0@2a10000 {
|
||||
reg = <0x2a10000 0x1000>,
|
||||
<0x2a0f000 0x100>,
|
||||
<0x2a0c000 0x3c8>,
|
||||
|
@ -21,7 +21,7 @@ please check:
|
||||
|
||||
Example:
|
||||
|
||||
i2s: i2s@0x77600000 {
|
||||
i2s: i2s@77600000 {
|
||||
compatible = "adi,axi-i2s-1.00.a";
|
||||
reg = <0x77600000 0x1000>;
|
||||
clocks = <&clk 15>, <&audio_clock>;
|
||||
|
@ -20,7 +20,7 @@ please check:
|
||||
|
||||
Example:
|
||||
|
||||
spdif: spdif@0x77400000 {
|
||||
spdif: spdif@77400000 {
|
||||
compatible = "adi,axi-spdif-tx-1.00.a";
|
||||
reg = <0x77600000 0x1000>;
|
||||
clocks = <&clk 15>, <&audio_clock>;
|
||||
|
@ -20,7 +20,7 @@ Optional properties:
|
||||
Example:
|
||||
|
||||
&i2c {
|
||||
ak4613: ak4613@0x10 {
|
||||
ak4613: ak4613@10 {
|
||||
compatible = "asahi-kasei,ak4613";
|
||||
reg = <0x10>;
|
||||
};
|
||||
|
@ -17,7 +17,7 @@ Optional properties:
|
||||
Example 1:
|
||||
|
||||
&i2c {
|
||||
ak4648: ak4648@0x12 {
|
||||
ak4648: ak4648@12 {
|
||||
compatible = "asahi-kasei,ak4642";
|
||||
reg = <0x12>;
|
||||
};
|
||||
|
@ -73,7 +73,7 @@ Example:
|
||||
compatible = "dlg,da7218";
|
||||
reg = <0x1a>;
|
||||
interrupt-parent = <&gpio6>;
|
||||
interrupts = <11 IRQ_TYPE_LEVEL_HIGH>;
|
||||
interrupts = <11 IRQ_TYPE_LEVEL_LOW>;
|
||||
wakeup-source;
|
||||
|
||||
VDD-supply = <®_audio>;
|
||||
|
@ -77,7 +77,7 @@ Example:
|
||||
reg = <0x1a>;
|
||||
|
||||
interrupt-parent = <&gpio6>;
|
||||
interrupts = <11 IRQ_TYPE_LEVEL_HIGH>;
|
||||
interrupts = <11 IRQ_TYPE_LEVEL_LOW>;
|
||||
|
||||
VDD-supply = <®_audio>;
|
||||
VDDMIC-supply = <®_audio>;
|
||||
|
@ -10,7 +10,7 @@ Required properties:
|
||||
Example:
|
||||
|
||||
&i2c {
|
||||
max98371: max98371@0x31 {
|
||||
max98371: max98371@31 {
|
||||
compatible = "maxim,max98371";
|
||||
reg = <0x31>;
|
||||
};
|
||||
|
@ -10,7 +10,7 @@ Required properties:
|
||||
Example:
|
||||
|
||||
&i2c {
|
||||
max9867: max9867@0x18 {
|
||||
max9867: max9867@18 {
|
||||
compatible = "maxim,max9867";
|
||||
reg = <0x18>;
|
||||
};
|
||||
|
@ -20,7 +20,7 @@ Required properties:
|
||||
|
||||
Example:
|
||||
|
||||
sh_fsi2: sh_fsi2@0xec230000 {
|
||||
sh_fsi2: sh_fsi2@ec230000 {
|
||||
compatible = "renesas,sh_fsi2";
|
||||
reg = <0xec230000 0x400>;
|
||||
interrupts = <0 146 0x4>;
|
||||
|
@ -33,7 +33,7 @@ Required properties on RK3288:
|
||||
|
||||
Example for the rk3188 SPDIF controller:
|
||||
|
||||
spdif: spdif@0x1011e000 {
|
||||
spdif: spdif@1011e000 {
|
||||
compatible = "rockchip,rk3188-spdif", "rockchip,rk3066-spdif";
|
||||
reg = <0x1011e000 0x2000>;
|
||||
interrupts = <GIC_SPI 32 IRQ_TYPE_LEVEL_HIGH>;
|
||||
|
@ -51,7 +51,7 @@ Optional properties:
|
||||
|
||||
Example:
|
||||
|
||||
sti_uni_player1: sti-uni-player@0x8D81000 {
|
||||
sti_uni_player1: sti-uni-player@8D81000 {
|
||||
compatible = "st,stih407-uni-player-hdmi";
|
||||
#sound-dai-cells = <0>;
|
||||
st,syscfg = <&syscfg_core>;
|
||||
@ -63,7 +63,7 @@ Example:
|
||||
st,tdm-mode = <1>;
|
||||
};
|
||||
|
||||
sti_uni_player2: sti-uni-player@0x8D82000 {
|
||||
sti_uni_player2: sti-uni-player@8D82000 {
|
||||
compatible = "st,stih407-uni-player-pcm-out";
|
||||
#sound-dai-cells = <0>;
|
||||
st,syscfg = <&syscfg_core>;
|
||||
@ -74,7 +74,7 @@ Example:
|
||||
dma-names = "tx";
|
||||
};
|
||||
|
||||
sti_uni_player3: sti-uni-player@0x8D85000 {
|
||||
sti_uni_player3: sti-uni-player@8D85000 {
|
||||
compatible = "st,stih407-uni-player-spdif";
|
||||
#sound-dai-cells = <0>;
|
||||
st,syscfg = <&syscfg_core>;
|
||||
@ -85,7 +85,7 @@ Example:
|
||||
dma-names = "tx";
|
||||
};
|
||||
|
||||
sti_uni_reader1: sti-uni-reader@0x8D84000 {
|
||||
sti_uni_reader1: sti-uni-reader@8D84000 {
|
||||
compatible = "st,stih407-uni-reader-hdmi";
|
||||
#sound-dai-cells = <0>;
|
||||
st,syscfg = <&syscfg_core>;
|
||||
|
@ -19,7 +19,7 @@ Recommended properties :
|
||||
|
||||
Example:
|
||||
|
||||
spi1: spi@0x4000c400 { /* USART1 */
|
||||
spi1: spi@4000c400 { /* USART1 */
|
||||
#address-cells = <1>;
|
||||
#size-cells = <0>;
|
||||
compatible = "energymicro,efm32-spi";
|
||||
|
@ -12,24 +12,30 @@ Required properties:
|
||||
- "fsl,imx53-ecspi" for SPI compatible with the one integrated on i.MX53 and later Soc
|
||||
- reg : Offset and length of the register set for the device
|
||||
- interrupts : Should contain CSPI/eCSPI interrupt
|
||||
- cs-gpios : Specifies the gpio pins to be used for chipselects.
|
||||
- clocks : Clock specifiers for both ipg and per clocks.
|
||||
- clock-names : Clock names should include both "ipg" and "per"
|
||||
See the clock consumer binding,
|
||||
Documentation/devicetree/bindings/clock/clock-bindings.txt
|
||||
- dmas: DMA specifiers for tx and rx dma. See the DMA client binding,
|
||||
Documentation/devicetree/bindings/dma/dma.txt
|
||||
- dma-names: DMA request names should include "tx" and "rx" if present.
|
||||
|
||||
Obsolete properties:
|
||||
- fsl,spi-num-chipselects : Contains the number of the chipselect
|
||||
Recommended properties:
|
||||
- cs-gpios : GPIOs to use as chip selects, see spi-bus.txt. While the native chip
|
||||
select lines can be used, they appear to always generate a pulse between each
|
||||
word of a transfer. Most use cases will require GPIO based chip selects to
|
||||
generate a valid transaction.
|
||||
|
||||
Optional properties:
|
||||
- num-cs : Number of total chip selects, see spi-bus.txt.
|
||||
- dmas: DMA specifiers for tx and rx dma. See the DMA client binding,
|
||||
Documentation/devicetree/bindings/dma/dma.txt.
|
||||
- dma-names: DMA request names, if present, should include "tx" and "rx".
|
||||
- fsl,spi-rdy-drctl: Integer, representing the value of DRCTL, the register
|
||||
controlling the SPI_READY handling. Note that to enable the DRCTL consideration,
|
||||
the SPI_READY mode-flag needs to be set too.
|
||||
Valid values are: 0 (disabled), 1 (edge-triggered burst) and 2 (level-triggered burst).
|
||||
|
||||
Obsolete properties:
|
||||
- fsl,spi-num-chipselects : Contains the number of the chipselect
|
||||
|
||||
Example:
|
||||
|
||||
ecspi@70010000 {
|
||||
|
@ -239,7 +239,7 @@ cpus {
|
||||
* A simple fan controller which supports 10 speeds of operation
|
||||
* (represented as 0-9).
|
||||
*/
|
||||
fan0: fan@0x48 {
|
||||
fan0: fan@48 {
|
||||
...
|
||||
cooling-min-level = <0>;
|
||||
cooling-max-level = <9>;
|
||||
@ -252,7 +252,7 @@ ocp {
|
||||
/*
|
||||
* A simple IC with a single bandgap temperature sensor.
|
||||
*/
|
||||
bandgap0: bandgap@0x0000ED00 {
|
||||
bandgap0: bandgap@0000ED00 {
|
||||
...
|
||||
#thermal-sensor-cells = <0>;
|
||||
};
|
||||
@ -330,7 +330,7 @@ ocp {
|
||||
/*
|
||||
* A simple IC with several bandgap temperature sensors.
|
||||
*/
|
||||
bandgap0: bandgap@0x0000ED00 {
|
||||
bandgap0: bandgap@0000ED00 {
|
||||
...
|
||||
#thermal-sensor-cells = <1>;
|
||||
};
|
||||
@ -447,7 +447,7 @@ one thermal zone.
|
||||
/*
|
||||
* A simple IC with a single temperature sensor.
|
||||
*/
|
||||
adc: sensor@0x49 {
|
||||
adc: sensor@49 {
|
||||
...
|
||||
#thermal-sensor-cells = <0>;
|
||||
};
|
||||
@ -458,7 +458,7 @@ ocp {
|
||||
/*
|
||||
* A simple IC with a single bandgap temperature sensor.
|
||||
*/
|
||||
bandgap0: bandgap@0x0000ED00 {
|
||||
bandgap0: bandgap@0000ED00 {
|
||||
...
|
||||
#thermal-sensor-cells = <0>;
|
||||
};
|
||||
@ -516,7 +516,7 @@ with many sensors and many cooling devices.
|
||||
/*
|
||||
* An IC with several temperature sensor.
|
||||
*/
|
||||
adc_dummy: sensor@0x50 {
|
||||
adc_dummy: sensor@50 {
|
||||
...
|
||||
#thermal-sensor-cells = <1>; /* sensor internal ID */
|
||||
};
|
||||
|
@ -32,7 +32,7 @@ Optional properties:
|
||||
|
||||
Example:
|
||||
|
||||
ufsphy1: ufsphy@0xfc597000 {
|
||||
ufsphy1: ufsphy@fc597000 {
|
||||
compatible = "qcom,ufs-phy-qmp-20nm";
|
||||
reg = <0xfc597000 0x800>;
|
||||
reg-names = "phy_mem";
|
||||
@ -53,7 +53,7 @@ Example:
|
||||
<&clock_gcc clk_gcc_ufs_rx_cfg_clk>;
|
||||
};
|
||||
|
||||
ufshc@0xfc598000 {
|
||||
ufshc@fc598000 {
|
||||
...
|
||||
phys = <&ufsphy1>;
|
||||
phy-names = "ufsphy";
|
||||
|
@ -46,7 +46,7 @@ Note: If above properties are not defined it can be assumed that the supply
|
||||
regulators or clocks are always on.
|
||||
|
||||
Example:
|
||||
ufshc@0xfc598000 {
|
||||
ufshc@fc598000 {
|
||||
compatible = "jedec,ufs-1.1";
|
||||
reg = <0xfc598000 0x800>;
|
||||
interrupts = <0 28 0>;
|
||||
|
@ -95,6 +95,7 @@ usb: usb@47400000 {
|
||||
reg = <0x47401300 0x100>;
|
||||
reg-names = "phy";
|
||||
ti,ctrl_mod = <&ctrl_mod>;
|
||||
#phy-cells = <0>;
|
||||
};
|
||||
|
||||
usb0: usb@47401000 {
|
||||
@ -141,6 +142,7 @@ usb: usb@47400000 {
|
||||
reg = <0x47401b00 0x100>;
|
||||
reg-names = "phy";
|
||||
ti,ctrl_mod = <&ctrl_mod>;
|
||||
#phy-cells = <0>;
|
||||
};
|
||||
|
||||
usb1: usb@47401800 {
|
||||
|
@ -22,7 +22,7 @@ See: Documentation/devicetree/bindings/reset/reset.txt
|
||||
|
||||
Example:
|
||||
|
||||
ehci1: usb@0xfe203e00 {
|
||||
ehci1: usb@fe203e00 {
|
||||
compatible = "st,st-ehci-300x";
|
||||
reg = <0xfe203e00 0x100>;
|
||||
interrupts = <GIC_SPI 148 IRQ_TYPE_NONE>;
|
||||
|
@ -20,7 +20,7 @@ See: Documentation/devicetree/bindings/reset/reset.txt
|
||||
|
||||
Example:
|
||||
|
||||
ohci0: usb@0xfe1ffc00 {
|
||||
ohci0: usb@fe1ffc00 {
|
||||
compatible = "st,st-ohci-300x";
|
||||
reg = <0xfe1ffc00 0x100>;
|
||||
interrupts = <GIC_SPI 149 IRQ_TYPE_NONE>;
|
||||
|
@ -6,7 +6,7 @@ reg: Register address and length for watchdog registers
|
||||
|
||||
Example:
|
||||
|
||||
watchdog: jz4740-watchdog@0x10002000 {
|
||||
watchdog: jz4740-watchdog@10002000 {
|
||||
compatible = "ingenic,jz4740-watchdog";
|
||||
reg = <0x10002000 0x100>;
|
||||
};
|
||||
|
@ -185,7 +185,7 @@ The details of these operations are:
|
||||
void dma_async_issue_pending(struct dma_chan *chan);
|
||||
|
||||
Further APIs:
|
||||
------------
|
||||
-------------
|
||||
|
||||
1. Terminate APIs
|
||||
|
||||
|
@ -25,9 +25,6 @@ PCI Support Library
|
||||
.. kernel-doc:: drivers/pci/irq.c
|
||||
:export:
|
||||
|
||||
.. kernel-doc:: drivers/pci/htirq.c
|
||||
:export:
|
||||
|
||||
.. kernel-doc:: drivers/pci/probe.c
|
||||
:export:
|
||||
|
||||
|
@ -156,6 +156,40 @@ handle it in two different ways:
|
||||
root of the overlay. Finally the directory is moved to the new
|
||||
location.
|
||||
|
||||
There are several ways to tune the "redirect_dir" feature.
|
||||
|
||||
Kernel config options:
|
||||
|
||||
- OVERLAY_FS_REDIRECT_DIR:
|
||||
If this is enabled, then redirect_dir is turned on by default.
|
||||
- OVERLAY_FS_REDIRECT_ALWAYS_FOLLOW:
|
||||
If this is enabled, then redirects are always followed by default. Enabling
|
||||
this results in a less secure configuration. Enable this option only when
|
||||
worried about backward compatibility with kernels that have the redirect_dir
|
||||
feature and follow redirects even if turned off.
|
||||
|
||||
Module options (can also be changed through /sys/module/overlay/parameters/*):
|
||||
|
||||
- "redirect_dir=BOOL":
|
||||
See OVERLAY_FS_REDIRECT_DIR kernel config option above.
|
||||
- "redirect_always_follow=BOOL":
|
||||
See OVERLAY_FS_REDIRECT_ALWAYS_FOLLOW kernel config option above.
|
||||
- "redirect_max=NUM":
|
||||
The maximum number of bytes in an absolute redirect (default is 256).
|
||||
|
||||
Mount options:
|
||||
|
||||
- "redirect_dir=on":
|
||||
Redirects are enabled.
|
||||
- "redirect_dir=follow":
|
||||
Redirects are not created, but followed.
|
||||
- "redirect_dir=off":
|
||||
Redirects are not created and only followed if "redirect_always_follow"
|
||||
feature is enabled in the kernel/module config.
|
||||
- "redirect_dir=nofollow":
|
||||
Redirects are not created and not followed (equivalent to "redirect_dir=off"
|
||||
if "redirect_always_follow" feature is not enabled).
|
||||
|
||||
Non-directories
|
||||
---------------
|
||||
|
||||
|
@ -1,874 +0,0 @@
|
||||
Crossrelease
|
||||
============
|
||||
|
||||
Started by Byungchul Park <byungchul.park@lge.com>
|
||||
|
||||
Contents:
|
||||
|
||||
(*) Background
|
||||
|
||||
- What causes deadlock
|
||||
- How lockdep works
|
||||
|
||||
(*) Limitation
|
||||
|
||||
- Limit lockdep
|
||||
- Pros from the limitation
|
||||
- Cons from the limitation
|
||||
- Relax the limitation
|
||||
|
||||
(*) Crossrelease
|
||||
|
||||
- Introduce crossrelease
|
||||
- Introduce commit
|
||||
|
||||
(*) Implementation
|
||||
|
||||
- Data structures
|
||||
- How crossrelease works
|
||||
|
||||
(*) Optimizations
|
||||
|
||||
- Avoid duplication
|
||||
- Lockless for hot paths
|
||||
|
||||
(*) APPENDIX A: What lockdep does to work aggresively
|
||||
|
||||
(*) APPENDIX B: How to avoid adding false dependencies
|
||||
|
||||
|
||||
==========
|
||||
Background
|
||||
==========
|
||||
|
||||
What causes deadlock
|
||||
--------------------
|
||||
|
||||
A deadlock occurs when a context is waiting for an event to happen,
|
||||
which is impossible because another (or the) context who can trigger the
|
||||
event is also waiting for another (or the) event to happen, which is
|
||||
also impossible due to the same reason.
|
||||
|
||||
For example:
|
||||
|
||||
A context going to trigger event C is waiting for event A to happen.
|
||||
A context going to trigger event A is waiting for event B to happen.
|
||||
A context going to trigger event B is waiting for event C to happen.
|
||||
|
||||
A deadlock occurs when these three wait operations run at the same time,
|
||||
because event C cannot be triggered if event A does not happen, which in
|
||||
turn cannot be triggered if event B does not happen, which in turn
|
||||
cannot be triggered if event C does not happen. After all, no event can
|
||||
be triggered since any of them never meets its condition to wake up.
|
||||
|
||||
A dependency might exist between two waiters and a deadlock might happen
|
||||
due to an incorrect releationship between dependencies. Thus, we must
|
||||
define what a dependency is first. A dependency exists between them if:
|
||||
|
||||
1. There are two waiters waiting for each event at a given time.
|
||||
2. The only way to wake up each waiter is to trigger its event.
|
||||
3. Whether one can be woken up depends on whether the other can.
|
||||
|
||||
Each wait in the example creates its dependency like:
|
||||
|
||||
Event C depends on event A.
|
||||
Event A depends on event B.
|
||||
Event B depends on event C.
|
||||
|
||||
NOTE: Precisely speaking, a dependency is one between whether a
|
||||
waiter for an event can be woken up and whether another waiter for
|
||||
another event can be woken up. However from now on, we will describe
|
||||
a dependency as if it's one between an event and another event for
|
||||
simplicity.
|
||||
|
||||
And they form circular dependencies like:
|
||||
|
||||
-> C -> A -> B -
|
||||
/ \
|
||||
\ /
|
||||
----------------
|
||||
|
||||
where 'A -> B' means that event A depends on event B.
|
||||
|
||||
Such circular dependencies lead to a deadlock since no waiter can meet
|
||||
its condition to wake up as described.
|
||||
|
||||
CONCLUSION
|
||||
|
||||
Circular dependencies cause a deadlock.
|
||||
|
||||
|
||||
How lockdep works
|
||||
-----------------
|
||||
|
||||
Lockdep tries to detect a deadlock by checking dependencies created by
|
||||
lock operations, acquire and release. Waiting for a lock corresponds to
|
||||
waiting for an event, and releasing a lock corresponds to triggering an
|
||||
event in the previous section.
|
||||
|
||||
In short, lockdep does:
|
||||
|
||||
1. Detect a new dependency.
|
||||
2. Add the dependency into a global graph.
|
||||
3. Check if that makes dependencies circular.
|
||||
4. Report a deadlock or its possibility if so.
|
||||
|
||||
For example, consider a graph built by lockdep that looks like:
|
||||
|
||||
A -> B -
|
||||
\
|
||||
-> E
|
||||
/
|
||||
C -> D -
|
||||
|
||||
where A, B,..., E are different lock classes.
|
||||
|
||||
Lockdep will add a dependency into the graph on detection of a new
|
||||
dependency. For example, it will add a dependency 'E -> C' when a new
|
||||
dependency between lock E and lock C is detected. Then the graph will be:
|
||||
|
||||
A -> B -
|
||||
\
|
||||
-> E -
|
||||
/ \
|
||||
-> C -> D - \
|
||||
/ /
|
||||
\ /
|
||||
------------------
|
||||
|
||||
where A, B,..., E are different lock classes.
|
||||
|
||||
This graph contains a subgraph which demonstrates circular dependencies:
|
||||
|
||||
-> E -
|
||||
/ \
|
||||
-> C -> D - \
|
||||
/ /
|
||||
\ /
|
||||
------------------
|
||||
|
||||
where C, D and E are different lock classes.
|
||||
|
||||
This is the condition under which a deadlock might occur. Lockdep
|
||||
reports it on detection after adding a new dependency. This is the way
|
||||
how lockdep works.
|
||||
|
||||
CONCLUSION
|
||||
|
||||
Lockdep detects a deadlock or its possibility by checking if circular
|
||||
dependencies were created after adding each new dependency.
|
||||
|
||||
|
||||
==========
|
||||
Limitation
|
||||
==========
|
||||
|
||||
Limit lockdep
|
||||
-------------
|
||||
|
||||
Limiting lockdep to work on only typical locks e.g. spin locks and
|
||||
mutexes, which are released within the acquire context, the
|
||||
implementation becomes simple but its capacity for detection becomes
|
||||
limited. Let's check pros and cons in next section.
|
||||
|
||||
|
||||
Pros from the limitation
|
||||
------------------------
|
||||
|
||||
Given the limitation, when acquiring a lock, locks in a held_locks
|
||||
cannot be released if the context cannot acquire it so has to wait to
|
||||
acquire it, which means all waiters for the locks in the held_locks are
|
||||
stuck. It's an exact case to create dependencies between each lock in
|
||||
the held_locks and the lock to acquire.
|
||||
|
||||
For example:
|
||||
|
||||
CONTEXT X
|
||||
---------
|
||||
acquire A
|
||||
acquire B /* Add a dependency 'A -> B' */
|
||||
release B
|
||||
release A
|
||||
|
||||
where A and B are different lock classes.
|
||||
|
||||
When acquiring lock A, the held_locks of CONTEXT X is empty thus no
|
||||
dependency is added. But when acquiring lock B, lockdep detects and adds
|
||||
a new dependency 'A -> B' between lock A in the held_locks and lock B.
|
||||
They can be simply added whenever acquiring each lock.
|
||||
|
||||
And data required by lockdep exists in a local structure, held_locks
|
||||
embedded in task_struct. Forcing to access the data within the context,
|
||||
lockdep can avoid racy problems without explicit locks while handling
|
||||
the local data.
|
||||
|
||||
Lastly, lockdep only needs to keep locks currently being held, to build
|
||||
a dependency graph. However, relaxing the limitation, it needs to keep
|
||||
even locks already released, because a decision whether they created
|
||||
dependencies might be long-deferred.
|
||||
|
||||
To sum up, we can expect several advantages from the limitation:
|
||||
|
||||
1. Lockdep can easily identify a dependency when acquiring a lock.
|
||||
2. Races are avoidable while accessing local locks in a held_locks.
|
||||
3. Lockdep only needs to keep locks currently being held.
|
||||
|
||||
CONCLUSION
|
||||
|
||||
Given the limitation, the implementation becomes simple and efficient.
|
||||
|
||||
|
||||
Cons from the limitation
|
||||
------------------------
|
||||
|
||||
Given the limitation, lockdep is applicable only to typical locks. For
|
||||
example, page locks for page access or completions for synchronization
|
||||
cannot work with lockdep.
|
||||
|
||||
Can we detect deadlocks below, under the limitation?
|
||||
|
||||
Example 1:
|
||||
|
||||
CONTEXT X CONTEXT Y CONTEXT Z
|
||||
--------- --------- ----------
|
||||
mutex_lock A
|
||||
lock_page B
|
||||
lock_page B
|
||||
mutex_lock A /* DEADLOCK */
|
||||
unlock_page B held by X
|
||||
unlock_page B
|
||||
mutex_unlock A
|
||||
mutex_unlock A
|
||||
|
||||
where A and B are different lock classes.
|
||||
|
||||
No, we cannot.
|
||||
|
||||
Example 2:
|
||||
|
||||
CONTEXT X CONTEXT Y
|
||||
--------- ---------
|
||||
mutex_lock A
|
||||
mutex_lock A
|
||||
wait_for_complete B /* DEADLOCK */
|
||||
complete B
|
||||
mutex_unlock A
|
||||
mutex_unlock A
|
||||
|
||||
where A is a lock class and B is a completion variable.
|
||||
|
||||
No, we cannot.
|
||||
|
||||
CONCLUSION
|
||||
|
||||
Given the limitation, lockdep cannot detect a deadlock or its
|
||||
possibility caused by page locks or completions.
|
||||
|
||||
|
||||
Relax the limitation
|
||||
--------------------
|
||||
|
||||
Under the limitation, things to create dependencies are limited to
|
||||
typical locks. However, synchronization primitives like page locks and
|
||||
completions, which are allowed to be released in any context, also
|
||||
create dependencies and can cause a deadlock. So lockdep should track
|
||||
these locks to do a better job. We have to relax the limitation for
|
||||
these locks to work with lockdep.
|
||||
|
||||
Detecting dependencies is very important for lockdep to work because
|
||||
adding a dependency means adding an opportunity to check whether it
|
||||
causes a deadlock. The more lockdep adds dependencies, the more it
|
||||
thoroughly works. Thus Lockdep has to do its best to detect and add as
|
||||
many true dependencies into a graph as possible.
|
||||
|
||||
For example, considering only typical locks, lockdep builds a graph like:
|
||||
|
||||
A -> B -
|
||||
\
|
||||
-> E
|
||||
/
|
||||
C -> D -
|
||||
|
||||
where A, B,..., E are different lock classes.
|
||||
|
||||
On the other hand, under the relaxation, additional dependencies might
|
||||
be created and added. Assuming additional 'FX -> C' and 'E -> GX' are
|
||||
added thanks to the relaxation, the graph will be:
|
||||
|
||||
A -> B -
|
||||
\
|
||||
-> E -> GX
|
||||
/
|
||||
FX -> C -> D -
|
||||
|
||||
where A, B,..., E, FX and GX are different lock classes, and a suffix
|
||||
'X' is added on non-typical locks.
|
||||
|
||||
The latter graph gives us more chances to check circular dependencies
|
||||
than the former. However, it might suffer performance degradation since
|
||||
relaxing the limitation, with which design and implementation of lockdep
|
||||
can be efficient, might introduce inefficiency inevitably. So lockdep
|
||||
should provide two options, strong detection and efficient detection.
|
||||
|
||||
Choosing efficient detection:
|
||||
|
||||
Lockdep works with only locks restricted to be released within the
|
||||
acquire context. However, lockdep works efficiently.
|
||||
|
||||
Choosing strong detection:
|
||||
|
||||
Lockdep works with all synchronization primitives. However, lockdep
|
||||
suffers performance degradation.
|
||||
|
||||
CONCLUSION
|
||||
|
||||
Relaxing the limitation, lockdep can add additional dependencies giving
|
||||
additional opportunities to check circular dependencies.
|
||||
|
||||
|
||||
============
|
||||
Crossrelease
|
||||
============
|
||||
|
||||
Introduce crossrelease
|
||||
----------------------
|
||||
|
||||
In order to allow lockdep to handle additional dependencies by what
|
||||
might be released in any context, namely 'crosslock', we have to be able
|
||||
to identify those created by crosslocks. The proposed 'crossrelease'
|
||||
feature provoides a way to do that.
|
||||
|
||||
Crossrelease feature has to do:
|
||||
|
||||
1. Identify dependencies created by crosslocks.
|
||||
2. Add the dependencies into a dependency graph.
|
||||
|
||||
That's all. Once a meaningful dependency is added into graph, then
|
||||
lockdep would work with the graph as it did. The most important thing
|
||||
crossrelease feature has to do is to correctly identify and add true
|
||||
dependencies into the global graph.
|
||||
|
||||
A dependency e.g. 'A -> B' can be identified only in the A's release
|
||||
context because a decision required to identify the dependency can be
|
||||
made only in the release context. That is to decide whether A can be
|
||||
released so that a waiter for A can be woken up. It cannot be made in
|
||||
other than the A's release context.
|
||||
|
||||
It's no matter for typical locks because each acquire context is same as
|
||||
its release context, thus lockdep can decide whether a lock can be
|
||||
released in the acquire context. However for crosslocks, lockdep cannot
|
||||
make the decision in the acquire context but has to wait until the
|
||||
release context is identified.
|
||||
|
||||
Therefore, deadlocks by crosslocks cannot be detected just when it
|
||||
happens, because those cannot be identified until the crosslocks are
|
||||
released. However, deadlock possibilities can be detected and it's very
|
||||
worth. See 'APPENDIX A' section to check why.
|
||||
|
||||
CONCLUSION
|
||||
|
||||
Using crossrelease feature, lockdep can work with what might be released
|
||||
in any context, namely crosslock.
|
||||
|
||||
|
||||
Introduce commit
|
||||
----------------
|
||||
|
||||
Since crossrelease defers the work adding true dependencies of
|
||||
crosslocks until they are actually released, crossrelease has to queue
|
||||
all acquisitions which might create dependencies with the crosslocks.
|
||||
Then it identifies dependencies using the queued data in batches at a
|
||||
proper time. We call it 'commit'.
|
||||
|
||||
There are four types of dependencies:
|
||||
|
||||
1. TT type: 'typical lock A -> typical lock B'
|
||||
|
||||
Just when acquiring B, lockdep can see it's in the A's release
|
||||
context. So the dependency between A and B can be identified
|
||||
immediately. Commit is unnecessary.
|
||||
|
||||
2. TC type: 'typical lock A -> crosslock BX'
|
||||
|
||||
Just when acquiring BX, lockdep can see it's in the A's release
|
||||
context. So the dependency between A and BX can be identified
|
||||
immediately. Commit is unnecessary, too.
|
||||
|
||||
3. CT type: 'crosslock AX -> typical lock B'
|
||||
|
||||
When acquiring B, lockdep cannot identify the dependency because
|
||||
there's no way to know if it's in the AX's release context. It has
|
||||
to wait until the decision can be made. Commit is necessary.
|
||||
|
||||
4. CC type: 'crosslock AX -> crosslock BX'
|
||||
|
||||
When acquiring BX, lockdep cannot identify the dependency because
|
||||
there's no way to know if it's in the AX's release context. It has
|
||||
to wait until the decision can be made. Commit is necessary.
|
||||
But, handling CC type is not implemented yet. It's a future work.
|
||||
|
||||
Lockdep can work without commit for typical locks, but commit step is
|
||||
necessary once crosslocks are involved. Introducing commit, lockdep
|
||||
performs three steps. What lockdep does in each step is:
|
||||
|
||||
1. Acquisition: For typical locks, lockdep does what it originally did
|
||||
and queues the lock so that CT type dependencies can be checked using
|
||||
it at the commit step. For crosslocks, it saves data which will be
|
||||
used at the commit step and increases a reference count for it.
|
||||
|
||||
2. Commit: No action is reauired for typical locks. For crosslocks,
|
||||
lockdep adds CT type dependencies using the data saved at the
|
||||
acquisition step.
|
||||
|
||||
3. Release: No changes are required for typical locks. When a crosslock
|
||||
is released, it decreases a reference count for it.
|
||||
|
||||
CONCLUSION
|
||||
|
||||
Crossrelease introduces commit step to handle dependencies of crosslocks
|
||||
in batches at a proper time.
|
||||
|
||||
|
||||
==============
|
||||
Implementation
|
||||
==============
|
||||
|
||||
Data structures
|
||||
---------------
|
||||
|
||||
Crossrelease introduces two main data structures.
|
||||
|
||||
1. hist_lock
|
||||
|
||||
This is an array embedded in task_struct, for keeping lock history so
|
||||
that dependencies can be added using them at the commit step. Since
|
||||
it's local data, it can be accessed locklessly in the owner context.
|
||||
The array is filled at the acquisition step and consumed at the
|
||||
commit step. And it's managed in circular manner.
|
||||
|
||||
2. cross_lock
|
||||
|
||||
One per lockdep_map exists. This is for keeping data of crosslocks
|
||||
and used at the commit step.
|
||||
|
||||
|
||||
How crossrelease works
|
||||
----------------------
|
||||
|
||||
It's the key of how crossrelease works, to defer necessary works to an
|
||||
appropriate point in time and perform in at once at the commit step.
|
||||
Let's take a look with examples step by step, starting from how lockdep
|
||||
works without crossrelease for typical locks.
|
||||
|
||||
acquire A /* Push A onto held_locks */
|
||||
acquire B /* Push B onto held_locks and add 'A -> B' */
|
||||
acquire C /* Push C onto held_locks and add 'B -> C' */
|
||||
release C /* Pop C from held_locks */
|
||||
release B /* Pop B from held_locks */
|
||||
release A /* Pop A from held_locks */
|
||||
|
||||
where A, B and C are different lock classes.
|
||||
|
||||
NOTE: This document assumes that readers already understand how
|
||||
lockdep works without crossrelease thus omits details. But there's
|
||||
one thing to note. Lockdep pretends to pop a lock from held_locks
|
||||
when releasing it. But it's subtly different from the original pop
|
||||
operation because lockdep allows other than the top to be poped.
|
||||
|
||||
In this case, lockdep adds 'the top of held_locks -> the lock to acquire'
|
||||
dependency every time acquiring a lock.
|
||||
|
||||
After adding 'A -> B', a dependency graph will be:
|
||||
|
||||
A -> B
|
||||
|
||||
where A and B are different lock classes.
|
||||
|
||||
And after adding 'B -> C', the graph will be:
|
||||
|
||||
A -> B -> C
|
||||
|
||||
where A, B and C are different lock classes.
|
||||
|
||||
Let's performs commit step even for typical locks to add dependencies.
|
||||
Of course, commit step is not necessary for them, however, it would work
|
||||
well because this is a more general way.
|
||||
|
||||
acquire A
|
||||
/*
|
||||
* Queue A into hist_locks
|
||||
*
|
||||
* In hist_locks: A
|
||||
* In graph: Empty
|
||||
*/
|
||||
|
||||
acquire B
|
||||
/*
|
||||
* Queue B into hist_locks
|
||||
*
|
||||
* In hist_locks: A, B
|
||||
* In graph: Empty
|
||||
*/
|
||||
|
||||
acquire C
|
||||
/*
|
||||
* Queue C into hist_locks
|
||||
*
|
||||
* In hist_locks: A, B, C
|
||||
* In graph: Empty
|
||||
*/
|
||||
|
||||
commit C
|
||||
/*
|
||||
* Add 'C -> ?'
|
||||
* Answer the following to decide '?'
|
||||
* What has been queued since acquire C: Nothing
|
||||
*
|
||||
* In hist_locks: A, B, C
|
||||
* In graph: Empty
|
||||
*/
|
||||
|
||||
release C
|
||||
|
||||
commit B
|
||||
/*
|
||||
* Add 'B -> ?'
|
||||
* Answer the following to decide '?'
|
||||
* What has been queued since acquire B: C
|
||||
*
|
||||
* In hist_locks: A, B, C
|
||||
* In graph: 'B -> C'
|
||||
*/
|
||||
|
||||
release B
|
||||
|
||||
commit A
|
||||
/*
|
||||
* Add 'A -> ?'
|
||||
* Answer the following to decide '?'
|
||||
* What has been queued since acquire A: B, C
|
||||
*
|
||||
* In hist_locks: A, B, C
|
||||
* In graph: 'B -> C', 'A -> B', 'A -> C'
|
||||
*/
|
||||
|
||||
release A
|
||||
|
||||
where A, B and C are different lock classes.
|
||||
|
||||
In this case, dependencies are added at the commit step as described.
|
||||
|
||||
After commits for A, B and C, the graph will be:
|
||||
|
||||
A -> B -> C
|
||||
|
||||
where A, B and C are different lock classes.
|
||||
|
||||
NOTE: A dependency 'A -> C' is optimized out.
|
||||
|
||||
We can see the former graph built without commit step is same as the
|
||||
latter graph built using commit steps. Of course the former way leads to
|
||||
earlier finish for building the graph, which means we can detect a
|
||||
deadlock or its possibility sooner. So the former way would be prefered
|
||||
when possible. But we cannot avoid using the latter way for crosslocks.
|
||||
|
||||
Let's look at how commit steps work for crosslocks. In this case, the
|
||||
commit step is performed only on crosslock AX as real. And it assumes
|
||||
that the AX release context is different from the AX acquire context.
|
||||
|
||||
BX RELEASE CONTEXT BX ACQUIRE CONTEXT
|
||||
------------------ ------------------
|
||||
acquire A
|
||||
/*
|
||||
* Push A onto held_locks
|
||||
* Queue A into hist_locks
|
||||
*
|
||||
* In held_locks: A
|
||||
* In hist_locks: A
|
||||
* In graph: Empty
|
||||
*/
|
||||
|
||||
acquire BX
|
||||
/*
|
||||
* Add 'the top of held_locks -> BX'
|
||||
*
|
||||
* In held_locks: A
|
||||
* In hist_locks: A
|
||||
* In graph: 'A -> BX'
|
||||
*/
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
It must be guaranteed that the following operations are seen after
|
||||
acquiring BX globally. It can be done by things like barrier.
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
acquire C
|
||||
/*
|
||||
* Push C onto held_locks
|
||||
* Queue C into hist_locks
|
||||
*
|
||||
* In held_locks: C
|
||||
* In hist_locks: C
|
||||
* In graph: 'A -> BX'
|
||||
*/
|
||||
|
||||
release C
|
||||
/*
|
||||
* Pop C from held_locks
|
||||
*
|
||||
* In held_locks: Empty
|
||||
* In hist_locks: C
|
||||
* In graph: 'A -> BX'
|
||||
*/
|
||||
acquire D
|
||||
/*
|
||||
* Push D onto held_locks
|
||||
* Queue D into hist_locks
|
||||
* Add 'the top of held_locks -> D'
|
||||
*
|
||||
* In held_locks: A, D
|
||||
* In hist_locks: A, D
|
||||
* In graph: 'A -> BX', 'A -> D'
|
||||
*/
|
||||
acquire E
|
||||
/*
|
||||
* Push E onto held_locks
|
||||
* Queue E into hist_locks
|
||||
*
|
||||
* In held_locks: E
|
||||
* In hist_locks: C, E
|
||||
* In graph: 'A -> BX', 'A -> D'
|
||||
*/
|
||||
|
||||
release E
|
||||
/*
|
||||
* Pop E from held_locks
|
||||
*
|
||||
* In held_locks: Empty
|
||||
* In hist_locks: D, E
|
||||
* In graph: 'A -> BX', 'A -> D'
|
||||
*/
|
||||
release D
|
||||
/*
|
||||
* Pop D from held_locks
|
||||
*
|
||||
* In held_locks: A
|
||||
* In hist_locks: A, D
|
||||
* In graph: 'A -> BX', 'A -> D'
|
||||
*/
|
||||
commit BX
|
||||
/*
|
||||
* Add 'BX -> ?'
|
||||
* What has been queued since acquire BX: C, E
|
||||
*
|
||||
* In held_locks: Empty
|
||||
* In hist_locks: D, E
|
||||
* In graph: 'A -> BX', 'A -> D',
|
||||
* 'BX -> C', 'BX -> E'
|
||||
*/
|
||||
|
||||
release BX
|
||||
/*
|
||||
* In held_locks: Empty
|
||||
* In hist_locks: D, E
|
||||
* In graph: 'A -> BX', 'A -> D',
|
||||
* 'BX -> C', 'BX -> E'
|
||||
*/
|
||||
release A
|
||||
/*
|
||||
* Pop A from held_locks
|
||||
*
|
||||
* In held_locks: Empty
|
||||
* In hist_locks: A, D
|
||||
* In graph: 'A -> BX', 'A -> D',
|
||||
* 'BX -> C', 'BX -> E'
|
||||
*/
|
||||
|
||||
where A, BX, C,..., E are different lock classes, and a suffix 'X' is
|
||||
added on crosslocks.
|
||||
|
||||
Crossrelease considers all acquisitions after acqiuring BX are
|
||||
candidates which might create dependencies with BX. True dependencies
|
||||
will be determined when identifying the release context of BX. Meanwhile,
|
||||
all typical locks are queued so that they can be used at the commit step.
|
||||
And then two dependencies 'BX -> C' and 'BX -> E' are added at the
|
||||
commit step when identifying the release context.
|
||||
|
||||
The final graph will be, with crossrelease:
|
||||
|
||||
-> C
|
||||
/
|
||||
-> BX -
|
||||
/ \
|
||||
A - -> E
|
||||
\
|
||||
-> D
|
||||
|
||||
where A, BX, C,..., E are different lock classes, and a suffix 'X' is
|
||||
added on crosslocks.
|
||||
|
||||
However, the final graph will be, without crossrelease:
|
||||
|
||||
A -> D
|
||||
|
||||
where A and D are different lock classes.
|
||||
|
||||
The former graph has three more dependencies, 'A -> BX', 'BX -> C' and
|
||||
'BX -> E' giving additional opportunities to check if they cause
|
||||
deadlocks. This way lockdep can detect a deadlock or its possibility
|
||||
caused by crosslocks.
|
||||
|
||||
CONCLUSION
|
||||
|
||||
We checked how crossrelease works with several examples.
|
||||
|
||||
|
||||
=============
|
||||
Optimizations
|
||||
=============
|
||||
|
||||
Avoid duplication
|
||||
-----------------
|
||||
|
||||
Crossrelease feature uses a cache like what lockdep already uses for
|
||||
dependency chains, but this time it's for caching CT type dependencies.
|
||||
Once that dependency is cached, the same will never be added again.
|
||||
|
||||
|
||||
Lockless for hot paths
|
||||
----------------------
|
||||
|
||||
To keep all locks for later use at the commit step, crossrelease adopts
|
||||
a local array embedded in task_struct, which makes access to the data
|
||||
lockless by forcing it to happen only within the owner context. It's
|
||||
like how lockdep handles held_locks. Lockless implmentation is important
|
||||
since typical locks are very frequently acquired and released.
|
||||
|
||||
|
||||
=================================================
|
||||
APPENDIX A: What lockdep does to work aggresively
|
||||
=================================================
|
||||
|
||||
A deadlock actually occurs when all wait operations creating circular
|
||||
dependencies run at the same time. Even though they don't, a potential
|
||||
deadlock exists if the problematic dependencies exist. Thus it's
|
||||
meaningful to detect not only an actual deadlock but also its potential
|
||||
possibility. The latter is rather valuable. When a deadlock occurs
|
||||
actually, we can identify what happens in the system by some means or
|
||||
other even without lockdep. However, there's no way to detect possiblity
|
||||
without lockdep unless the whole code is parsed in head. It's terrible.
|
||||
Lockdep does the both, and crossrelease only focuses on the latter.
|
||||
|
||||
Whether or not a deadlock actually occurs depends on several factors.
|
||||
For example, what order contexts are switched in is a factor. Assuming
|
||||
circular dependencies exist, a deadlock would occur when contexts are
|
||||
switched so that all wait operations creating the dependencies run
|
||||
simultaneously. Thus to detect a deadlock possibility even in the case
|
||||
that it has not occured yet, lockdep should consider all possible
|
||||
combinations of dependencies, trying to:
|
||||
|
||||
1. Use a global dependency graph.
|
||||
|
||||
Lockdep combines all dependencies into one global graph and uses them,
|
||||
regardless of which context generates them or what order contexts are
|
||||
switched in. Aggregated dependencies are only considered so they are
|
||||
prone to be circular if a problem exists.
|
||||
|
||||
2. Check dependencies between classes instead of instances.
|
||||
|
||||
What actually causes a deadlock are instances of lock. However,
|
||||
lockdep checks dependencies between classes instead of instances.
|
||||
This way lockdep can detect a deadlock which has not happened but
|
||||
might happen in future by others but the same class.
|
||||
|
||||
3. Assume all acquisitions lead to waiting.
|
||||
|
||||
Although locks might be acquired without waiting which is essential
|
||||
to create dependencies, lockdep assumes all acquisitions lead to
|
||||
waiting since it might be true some time or another.
|
||||
|
||||
CONCLUSION
|
||||
|
||||
Lockdep detects not only an actual deadlock but also its possibility,
|
||||
and the latter is more valuable.
|
||||
|
||||
|
||||
==================================================
|
||||
APPENDIX B: How to avoid adding false dependencies
|
||||
==================================================
|
||||
|
||||
Remind what a dependency is. A dependency exists if:
|
||||
|
||||
1. There are two waiters waiting for each event at a given time.
|
||||
2. The only way to wake up each waiter is to trigger its event.
|
||||
3. Whether one can be woken up depends on whether the other can.
|
||||
|
||||
For example:
|
||||
|
||||
acquire A
|
||||
acquire B /* A dependency 'A -> B' exists */
|
||||
release B
|
||||
release A
|
||||
|
||||
where A and B are different lock classes.
|
||||
|
||||
A depedency 'A -> B' exists since:
|
||||
|
||||
1. A waiter for A and a waiter for B might exist when acquiring B.
|
||||
2. Only way to wake up each is to release what it waits for.
|
||||
3. Whether the waiter for A can be woken up depends on whether the
|
||||
other can. IOW, TASK X cannot release A if it fails to acquire B.
|
||||
|
||||
For another example:
|
||||
|
||||
TASK X TASK Y
|
||||
------ ------
|
||||
acquire AX
|
||||
acquire B /* A dependency 'AX -> B' exists */
|
||||
release B
|
||||
release AX held by Y
|
||||
|
||||
where AX and B are different lock classes, and a suffix 'X' is added
|
||||
on crosslocks.
|
||||
|
||||
Even in this case involving crosslocks, the same rule can be applied. A
|
||||
depedency 'AX -> B' exists since:
|
||||
|
||||
1. A waiter for AX and a waiter for B might exist when acquiring B.
|
||||
2. Only way to wake up each is to release what it waits for.
|
||||
3. Whether the waiter for AX can be woken up depends on whether the
|
||||
other can. IOW, TASK X cannot release AX if it fails to acquire B.
|
||||
|
||||
Let's take a look at more complicated example:
|
||||
|
||||
TASK X TASK Y
|
||||
------ ------
|
||||
acquire B
|
||||
release B
|
||||
fork Y
|
||||
acquire AX
|
||||
acquire C /* A dependency 'AX -> C' exists */
|
||||
release C
|
||||
release AX held by Y
|
||||
|
||||
where AX, B and C are different lock classes, and a suffix 'X' is
|
||||
added on crosslocks.
|
||||
|
||||
Does a dependency 'AX -> B' exist? Nope.
|
||||
|
||||
Two waiters are essential to create a dependency. However, waiters for
|
||||
AX and B to create 'AX -> B' cannot exist at the same time in this
|
||||
example. Thus the dependency 'AX -> B' cannot be created.
|
||||
|
||||
It would be ideal if the full set of true ones can be considered. But
|
||||
we can ensure nothing but what actually happened. Relying on what
|
||||
actually happens at runtime, we can anyway add only true ones, though
|
||||
they might be a subset of true ones. It's similar to how lockdep works
|
||||
for typical locks. There might be more true dependencies than what
|
||||
lockdep has detected in runtime. Lockdep has no choice but to rely on
|
||||
what actually happens. Crossrelease also relies on it.
|
||||
|
||||
CONCLUSION
|
||||
|
||||
Relying on what actually happens, lockdep can avoid adding false
|
||||
dependencies.
|
30
Documentation/media/dvb-drivers/frontends.rst
Normal file
30
Documentation/media/dvb-drivers/frontends.rst
Normal file
@ -0,0 +1,30 @@
|
||||
****************
|
||||
Frontend drivers
|
||||
****************
|
||||
|
||||
Frontend attach headers
|
||||
***********************
|
||||
|
||||
.. Keep it on alphabetic order
|
||||
|
||||
.. kernel-doc:: drivers/media/dvb-frontends/a8293.h
|
||||
.. kernel-doc:: drivers/media/dvb-frontends/af9013.h
|
||||
.. kernel-doc:: drivers/media/dvb-frontends/ascot2e.h
|
||||
.. kernel-doc:: drivers/media/dvb-frontends/cxd2820r.h
|
||||
.. kernel-doc:: drivers/media/dvb-frontends/drxk.h
|
||||
.. kernel-doc:: drivers/media/dvb-frontends/dvb-pll.h
|
||||
.. kernel-doc:: drivers/media/dvb-frontends/helene.h
|
||||
.. kernel-doc:: drivers/media/dvb-frontends/horus3a.h
|
||||
.. kernel-doc:: drivers/media/dvb-frontends/ix2505v.h
|
||||
.. kernel-doc:: drivers/media/dvb-frontends/m88ds3103.h
|
||||
.. kernel-doc:: drivers/media/dvb-frontends/mb86a20s.h
|
||||
.. kernel-doc:: drivers/media/dvb-frontends/mn88472.h
|
||||
.. kernel-doc:: drivers/media/dvb-frontends/rtl2830.h
|
||||
.. kernel-doc:: drivers/media/dvb-frontends/rtl2832.h
|
||||
.. kernel-doc:: drivers/media/dvb-frontends/rtl2832_sdr.h
|
||||
.. kernel-doc:: drivers/media/dvb-frontends/stb6000.h
|
||||
.. kernel-doc:: drivers/media/dvb-frontends/tda10071.h
|
||||
.. kernel-doc:: drivers/media/dvb-frontends/tda826x.h
|
||||
.. kernel-doc:: drivers/media/dvb-frontends/zd1301_demod.h
|
||||
.. kernel-doc:: drivers/media/dvb-frontends/zl10036.h
|
||||
|
@ -41,4 +41,5 @@ For more details see the file COPYING in the source distribution of Linux.
|
||||
technisat
|
||||
ttusb-dec
|
||||
udev
|
||||
frontends
|
||||
contributors
|
||||
|
@ -319,12 +319,12 @@ struct Scsi_Host:
|
||||
instance. If the reference count reaches 0 then the given instance
|
||||
is freed
|
||||
|
||||
The Scsi_device structure has had reference counting infrastructure added.
|
||||
This effectively spreads the ownership of struct Scsi_device instances
|
||||
The scsi_device structure has had reference counting infrastructure added.
|
||||
This effectively spreads the ownership of struct scsi_device instances
|
||||
across the various SCSI layers which use them. Previously such instances
|
||||
were exclusively owned by the mid level. See the access functions declared
|
||||
towards the end of include/scsi/scsi_device.h . If an LLD wants to keep
|
||||
a copy of a pointer to a Scsi_device instance it should use scsi_device_get()
|
||||
a copy of a pointer to a scsi_device instance it should use scsi_device_get()
|
||||
to bump its reference count. When it is finished with the pointer it can
|
||||
use scsi_device_put() to decrement its reference count (and potentially
|
||||
delete it).
|
||||
|
@ -2901,14 +2901,19 @@ userspace buffer and its length:
|
||||
|
||||
struct kvm_s390_irq_state {
|
||||
__u64 buf;
|
||||
__u32 flags;
|
||||
__u32 flags; /* will stay unused for compatibility reasons */
|
||||
__u32 len;
|
||||
__u32 reserved[4];
|
||||
__u32 reserved[4]; /* will stay unused for compatibility reasons */
|
||||
};
|
||||
|
||||
Userspace passes in the above struct and for each pending interrupt a
|
||||
struct kvm_s390_irq is copied to the provided buffer.
|
||||
|
||||
The structure contains a flags and a reserved field for future extensions. As
|
||||
the kernel never checked for flags == 0 and QEMU never pre-zeroed flags and
|
||||
reserved, these fields can not be used in the future without breaking
|
||||
compatibility.
|
||||
|
||||
If -ENOBUFS is returned the buffer provided was too small and userspace
|
||||
may retry with a bigger buffer.
|
||||
|
||||
@ -2932,10 +2937,14 @@ containing a struct kvm_s390_irq_state:
|
||||
|
||||
struct kvm_s390_irq_state {
|
||||
__u64 buf;
|
||||
__u32 flags; /* will stay unused for compatibility reasons */
|
||||
__u32 len;
|
||||
__u32 pad;
|
||||
__u32 reserved[4]; /* will stay unused for compatibility reasons */
|
||||
};
|
||||
|
||||
The restrictions for flags and reserved apply as well.
|
||||
(see KVM_S390_GET_IRQ_STATE)
|
||||
|
||||
The userspace memory referenced by buf contains a struct kvm_s390_irq
|
||||
for each interrupt to be injected into the guest.
|
||||
If one of the interrupts could not be injected for some reason the
|
||||
|
@ -98,5 +98,25 @@ request is made for a page in an old zpool, it is uncompressed using its
|
||||
original compressor. Once all pages are removed from an old zpool, the zpool
|
||||
and its compressor are freed.
|
||||
|
||||
Some of the pages in zswap are same-value filled pages (i.e. contents of the
|
||||
page have same value or repetitive pattern). These pages include zero-filled
|
||||
pages and they are handled differently. During store operation, a page is
|
||||
checked if it is a same-value filled page before compressing it. If true, the
|
||||
compressed length of the page is set to zero and the pattern or same-filled
|
||||
value is stored.
|
||||
|
||||
Same-value filled pages identification feature is enabled by default and can be
|
||||
disabled at boot time by setting the "same_filled_pages_enabled" attribute to 0,
|
||||
e.g. zswap.same_filled_pages_enabled=0. It can also be enabled and disabled at
|
||||
runtime using the sysfs "same_filled_pages_enabled" attribute, e.g.
|
||||
|
||||
echo 1 > /sys/module/zswap/parameters/same_filled_pages_enabled
|
||||
|
||||
When zswap same-filled page identification is disabled at runtime, it will stop
|
||||
checking for the same-value filled pages during store operation. However, the
|
||||
existing pages which are marked as same-value filled pages remain stored
|
||||
unchanged in zswap until they are either loaded or invalidated.
|
||||
|
||||
A debugfs interface is provided for various statistic about pool size, number
|
||||
of pages stored, and various counters for the reasons pages are rejected.
|
||||
of pages stored, same-value filled pages and various counters for the reasons
|
||||
pages are rejected.
|
||||
|
@ -1,6 +1,4 @@
|
||||
|
||||
<previous description obsolete, deleted>
|
||||
|
||||
Virtual memory map with 4 level page tables:
|
||||
|
||||
0000000000000000 - 00007fffffffffff (=47 bits) user space, different per mm
|
||||
@ -14,13 +12,16 @@ ffffea0000000000 - ffffeaffffffffff (=40 bits) virtual memory map (1TB)
|
||||
... unused hole ...
|
||||
ffffec0000000000 - fffffbffffffffff (=44 bits) kasan shadow memory (16TB)
|
||||
... unused hole ...
|
||||
fffffe0000000000 - fffffe7fffffffff (=39 bits) LDT remap for PTI
|
||||
fffffe8000000000 - fffffeffffffffff (=39 bits) cpu_entry_area mapping
|
||||
ffffff0000000000 - ffffff7fffffffff (=39 bits) %esp fixup stacks
|
||||
... unused hole ...
|
||||
ffffffef00000000 - fffffffeffffffff (=64 GB) EFI region mapping space
|
||||
... unused hole ...
|
||||
ffffffff80000000 - ffffffff9fffffff (=512 MB) kernel text mapping, from phys 0
|
||||
ffffffffa0000000 - ffffffffff5fffff (=1526 MB) module mapping space (variable)
|
||||
ffffffffff600000 - ffffffffffdfffff (=8 MB) vsyscalls
|
||||
ffffffffa0000000 - [fixmap start] (~1526 MB) module mapping space (variable)
|
||||
[fixmap start] - ffffffffff5fffff kernel-internal fixmap range
|
||||
ffffffffff600000 - ffffffffff600fff (=4 kB) legacy vsyscall ABI
|
||||
ffffffffffe00000 - ffffffffffffffff (=2 MB) unused hole
|
||||
|
||||
Virtual memory map with 5 level page tables:
|
||||
@ -29,26 +30,29 @@ Virtual memory map with 5 level page tables:
|
||||
hole caused by [56:63] sign extension
|
||||
ff00000000000000 - ff0fffffffffffff (=52 bits) guard hole, reserved for hypervisor
|
||||
ff10000000000000 - ff8fffffffffffff (=55 bits) direct mapping of all phys. memory
|
||||
ff90000000000000 - ff91ffffffffffff (=49 bits) hole
|
||||
ff92000000000000 - ffd1ffffffffffff (=54 bits) vmalloc/ioremap space
|
||||
ff90000000000000 - ff9fffffffffffff (=52 bits) LDT remap for PTI
|
||||
ffa0000000000000 - ffd1ffffffffffff (=54 bits) vmalloc/ioremap space (12800 TB)
|
||||
ffd2000000000000 - ffd3ffffffffffff (=49 bits) hole
|
||||
ffd4000000000000 - ffd5ffffffffffff (=49 bits) virtual memory map (512TB)
|
||||
... unused hole ...
|
||||
ffdf000000000000 - fffffc0000000000 (=53 bits) kasan shadow memory (8PB)
|
||||
... unused hole ...
|
||||
fffffe8000000000 - fffffeffffffffff (=39 bits) cpu_entry_area mapping
|
||||
ffffff0000000000 - ffffff7fffffffff (=39 bits) %esp fixup stacks
|
||||
... unused hole ...
|
||||
ffffffef00000000 - fffffffeffffffff (=64 GB) EFI region mapping space
|
||||
... unused hole ...
|
||||
ffffffff80000000 - ffffffff9fffffff (=512 MB) kernel text mapping, from phys 0
|
||||
ffffffffa0000000 - ffffffffff5fffff (=1526 MB) module mapping space
|
||||
ffffffffff600000 - ffffffffffdfffff (=8 MB) vsyscalls
|
||||
ffffffffa0000000 - [fixmap start] (~1526 MB) module mapping space
|
||||
[fixmap start] - ffffffffff5fffff kernel-internal fixmap range
|
||||
ffffffffff600000 - ffffffffff600fff (=4 kB) legacy vsyscall ABI
|
||||
ffffffffffe00000 - ffffffffffffffff (=2 MB) unused hole
|
||||
|
||||
Architecture defines a 64-bit virtual address. Implementations can support
|
||||
less. Currently supported are 48- and 57-bit virtual addresses. Bits 63
|
||||
through to the most-significant implemented bit are set to either all ones
|
||||
or all zero. This causes hole between user space and kernel addresses.
|
||||
through to the most-significant implemented bit are sign extended.
|
||||
This causes hole between user space and kernel addresses if you interpret them
|
||||
as unsigned.
|
||||
|
||||
The direct mapping covers all memory in the system up to the highest
|
||||
memory address (this means in some cases it can also include PCI memory
|
||||
@ -58,9 +62,6 @@ vmalloc space is lazily synchronized into the different PML4/PML5 pages of
|
||||
the processes using the page fault handler, with init_top_pgt as
|
||||
reference.
|
||||
|
||||
Current X86-64 implementations support up to 46 bits of address space (64 TB),
|
||||
which is our current limit. This expands into MBZ space in the page tables.
|
||||
|
||||
We map EFI runtime services in the 'efi_pgd' PGD in a 64Gb large virtual
|
||||
memory window (this size is arbitrary, it can be raised later if needed).
|
||||
The mappings are not part of any other kernel PGD and are only available
|
||||
@ -72,5 +73,3 @@ following fixmap section.
|
||||
Note that if CONFIG_RANDOMIZE_MEMORY is enabled, the direct mapping of all
|
||||
physical memory, vmalloc/ioremap space and virtual memory map are randomized.
|
||||
Their order is preserved but their base will be offset early at boot time.
|
||||
|
||||
-Andi Kleen, Jul 2004
|
||||
|
58
MAINTAINERS
58
MAINTAINERS
@ -554,13 +554,13 @@ S: Orphan
|
||||
F: Documentation/filesystems/affs.txt
|
||||
F: fs/affs/
|
||||
|
||||
AFS FILESYSTEM & AF_RXRPC SOCKET DOMAIN
|
||||
AFS FILESYSTEM
|
||||
M: David Howells <dhowells@redhat.com>
|
||||
L: linux-afs@lists.infradead.org
|
||||
S: Supported
|
||||
F: fs/afs/
|
||||
F: include/net/af_rxrpc.h
|
||||
F: net/rxrpc/af_rxrpc.c
|
||||
F: include/trace/events/afs.h
|
||||
F: Documentation/filesystems/afs.txt
|
||||
W: https://www.infradead.org/~dhowells/kafs/
|
||||
|
||||
AGPGART DRIVER
|
||||
@ -859,7 +859,8 @@ F: kernel/configs/android*
|
||||
ANDROID DRIVERS
|
||||
M: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
||||
M: Arve Hjønnevåg <arve@android.com>
|
||||
M: Riley Andrews <riandrews@android.com>
|
||||
M: Todd Kjos <tkjos@android.com>
|
||||
M: Martijn Coenen <maco@android.com>
|
||||
T: git git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging.git
|
||||
L: devel@driverdev.osuosl.org
|
||||
S: Supported
|
||||
@ -2046,7 +2047,7 @@ F: arch/arm/boot/dts/uniphier*
|
||||
F: arch/arm/include/asm/hardware/cache-uniphier.h
|
||||
F: arch/arm/mach-uniphier/
|
||||
F: arch/arm/mm/cache-uniphier.c
|
||||
F: arch/arm64/boot/dts/socionext/
|
||||
F: arch/arm64/boot/dts/socionext/uniphier*
|
||||
F: drivers/bus/uniphier-system-bus.c
|
||||
F: drivers/clk/uniphier/
|
||||
F: drivers/gpio/gpio-uniphier.c
|
||||
@ -2261,7 +2262,9 @@ F: include/linux/async_tx.h
|
||||
AT24 EEPROM DRIVER
|
||||
M: Bartosz Golaszewski <brgl@bgdev.pl>
|
||||
L: linux-i2c@vger.kernel.org
|
||||
T: git git://git.kernel.org/pub/scm/linux/kernel/git/brgl/linux.git
|
||||
S: Maintained
|
||||
F: Documentation/devicetree/bindings/eeprom/at24.txt
|
||||
F: drivers/misc/eeprom/at24.c
|
||||
F: include/linux/platform_data/at24.h
|
||||
|
||||
@ -2620,24 +2623,22 @@ F: fs/bfs/
|
||||
F: include/uapi/linux/bfs_fs.h
|
||||
|
||||
BLACKFIN ARCHITECTURE
|
||||
M: Steven Miao <realmz6@gmail.com>
|
||||
L: adi-buildroot-devel@lists.sourceforge.net (moderated for non-subscribers)
|
||||
T: git git://git.code.sf.net/p/adi-linux/code
|
||||
W: http://blackfin.uclinux.org
|
||||
S: Supported
|
||||
S: Orphan
|
||||
F: arch/blackfin/
|
||||
|
||||
BLACKFIN EMAC DRIVER
|
||||
L: adi-buildroot-devel@lists.sourceforge.net (moderated for non-subscribers)
|
||||
W: http://blackfin.uclinux.org
|
||||
S: Supported
|
||||
S: Orphan
|
||||
F: drivers/net/ethernet/adi/
|
||||
|
||||
BLACKFIN MEDIA DRIVER
|
||||
M: Scott Jiang <scott.jiang.linux@gmail.com>
|
||||
L: adi-buildroot-devel@lists.sourceforge.net (moderated for non-subscribers)
|
||||
W: http://blackfin.uclinux.org/
|
||||
S: Supported
|
||||
S: Orphan
|
||||
F: drivers/media/platform/blackfin/
|
||||
F: drivers/media/i2c/adv7183*
|
||||
F: drivers/media/i2c/vs6624*
|
||||
@ -2645,25 +2646,25 @@ F: drivers/media/i2c/vs6624*
|
||||
BLACKFIN RTC DRIVER
|
||||
L: adi-buildroot-devel@lists.sourceforge.net (moderated for non-subscribers)
|
||||
W: http://blackfin.uclinux.org
|
||||
S: Supported
|
||||
S: Orphan
|
||||
F: drivers/rtc/rtc-bfin.c
|
||||
|
||||
BLACKFIN SDH DRIVER
|
||||
L: adi-buildroot-devel@lists.sourceforge.net (moderated for non-subscribers)
|
||||
W: http://blackfin.uclinux.org
|
||||
S: Supported
|
||||
S: Orphan
|
||||
F: drivers/mmc/host/bfin_sdh.c
|
||||
|
||||
BLACKFIN SERIAL DRIVER
|
||||
L: adi-buildroot-devel@lists.sourceforge.net (moderated for non-subscribers)
|
||||
W: http://blackfin.uclinux.org
|
||||
S: Supported
|
||||
S: Orphan
|
||||
F: drivers/tty/serial/bfin_uart.c
|
||||
|
||||
BLACKFIN WATCHDOG DRIVER
|
||||
L: adi-buildroot-devel@lists.sourceforge.net (moderated for non-subscribers)
|
||||
W: http://blackfin.uclinux.org
|
||||
S: Supported
|
||||
S: Orphan
|
||||
F: drivers/watchdog/bfin_wdt.c
|
||||
|
||||
BLINKM RGB LED DRIVER
|
||||
@ -5430,7 +5431,7 @@ F: drivers/media/tuners/fc2580*
|
||||
|
||||
FCOE SUBSYSTEM (libfc, libfcoe, fcoe)
|
||||
M: Johannes Thumshirn <jth@kernel.org>
|
||||
L: fcoe-devel@open-fcoe.org
|
||||
L: linux-scsi@vger.kernel.org
|
||||
W: www.Open-FCoE.org
|
||||
S: Supported
|
||||
F: drivers/scsi/libfc/
|
||||
@ -7766,6 +7767,7 @@ F: security/keys/
|
||||
|
||||
KGDB / KDB /debug_core
|
||||
M: Jason Wessel <jason.wessel@windriver.com>
|
||||
M: Daniel Thompson <daniel.thompson@linaro.org>
|
||||
W: http://kgdb.wiki.kernel.org/
|
||||
L: kgdb-bugreport@lists.sourceforge.net
|
||||
T: git git://git.kernel.org/pub/scm/linux/kernel/git/jwessel/kgdb.git
|
||||
@ -11776,6 +11778,18 @@ T: git git://git.kernel.org/pub/scm/linux/kernel/git/jes/linux.git rtl8xxxu-deve
|
||||
S: Maintained
|
||||
F: drivers/net/wireless/realtek/rtl8xxxu/
|
||||
|
||||
RXRPC SOCKETS (AF_RXRPC)
|
||||
M: David Howells <dhowells@redhat.com>
|
||||
L: linux-afs@lists.infradead.org
|
||||
S: Supported
|
||||
F: net/rxrpc/
|
||||
F: include/keys/rxrpc-type.h
|
||||
F: include/net/af_rxrpc.h
|
||||
F: include/trace/events/rxrpc.h
|
||||
F: include/uapi/linux/rxrpc.h
|
||||
F: Documentation/networking/rxrpc.txt
|
||||
W: https://www.infradead.org/~dhowells/kafs/
|
||||
|
||||
S3 SAVAGE FRAMEBUFFER DRIVER
|
||||
M: Antonino Daplas <adaplas@gmail.com>
|
||||
L: linux-fbdev@vger.kernel.org
|
||||
@ -12629,6 +12643,14 @@ S: Maintained
|
||||
F: drivers/ssb/
|
||||
F: include/linux/ssb/
|
||||
|
||||
SONY IMX274 SENSOR DRIVER
|
||||
M: Leon Luo <leonl@leopardimaging.com>
|
||||
L: linux-media@vger.kernel.org
|
||||
T: git git://linuxtv.org/media_tree.git
|
||||
S: Maintained
|
||||
F: drivers/media/i2c/imx274.c
|
||||
F: Documentation/devicetree/bindings/media/i2c/imx274.txt
|
||||
|
||||
SONY MEMORYSTICK CARD SUPPORT
|
||||
M: Alex Dubov <oakad@yahoo.com>
|
||||
W: http://tifmxx.berlios.de/
|
||||
@ -13095,6 +13117,7 @@ F: drivers/dma/dw/
|
||||
|
||||
SYNOPSYS DESIGNWARE ENTERPRISE ETHERNET DRIVER
|
||||
M: Jie Deng <jiedeng@synopsys.com>
|
||||
M: Jose Abreu <Jose.Abreu@synopsys.com>
|
||||
L: netdev@vger.kernel.org
|
||||
S: Supported
|
||||
F: drivers/net/ethernet/synopsys/
|
||||
@ -13470,6 +13493,7 @@ M: Mika Westerberg <mika.westerberg@linux.intel.com>
|
||||
M: Yehezkel Bernat <yehezkel.bernat@intel.com>
|
||||
T: git git://git.kernel.org/pub/scm/linux/kernel/git/westeri/thunderbolt.git
|
||||
S: Maintained
|
||||
F: Documentation/admin-guide/thunderbolt.rst
|
||||
F: drivers/thunderbolt/
|
||||
F: include/linux/thunderbolt.h
|
||||
|
||||
@ -13647,10 +13671,8 @@ F: drivers/net/wireless/ti/
|
||||
F: include/linux/wl12xx.h
|
||||
|
||||
TILE ARCHITECTURE
|
||||
M: Chris Metcalf <cmetcalf@mellanox.com>
|
||||
W: http://www.mellanox.com/repository/solutions/tile-scm/
|
||||
T: git git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tile.git
|
||||
S: Supported
|
||||
S: Orphan
|
||||
F: arch/tile/
|
||||
F: drivers/char/tile-srom.c
|
||||
F: drivers/edac/tile_edac.c
|
||||
|
5
Makefile
5
Makefile
@ -2,7 +2,7 @@
|
||||
VERSION = 4
|
||||
PATCHLEVEL = 15
|
||||
SUBLEVEL = 0
|
||||
EXTRAVERSION = -rc2
|
||||
EXTRAVERSION = -rc6
|
||||
NAME = Fearless Coyote
|
||||
|
||||
# *DOCUMENTATION*
|
||||
@ -789,6 +789,9 @@ KBUILD_CFLAGS += $(call cc-disable-warning, pointer-sign)
|
||||
# disable invalid "can't wrap" optimizations for signed / pointers
|
||||
KBUILD_CFLAGS += $(call cc-option,-fno-strict-overflow)
|
||||
|
||||
# Make sure -fstack-check isn't enabled (like gentoo apparently did)
|
||||
KBUILD_CFLAGS += $(call cc-option,-fno-stack-check,)
|
||||
|
||||
# conserve stack if available
|
||||
KBUILD_CFLAGS += $(call cc-option,-fconserve-stack)
|
||||
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user