kcsan: Fix 0-sized checks

Instrumentation of arbitrary memory-copy functions, such as user-copies,
may be called with size of 0, which could lead to false positives.

To avoid this, add a comparison in check_access() for size==0, which
will be optimized out for constant sized instrumentation
(__tsan_{read,write}N), and therefore not affect the common-case
fast-path.

Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
Marco Elver 2020-02-05 11:14:19 +01:00 committed by Ingo Molnar
parent 8cfbb04fae
commit ed95f95c86
2 changed files with 17 additions and 0 deletions

View File

@ -455,6 +455,13 @@ static __always_inline void check_access(const volatile void *ptr, size_t size,
atomic_long_t *watchpoint;
long encoded_watchpoint;
/*
* Do nothing for 0 sized check; this comparison will be optimized out
* for constant sized instrumentation (__tsan_{read,write}N).
*/
if (unlikely(size == 0))
return;
/*
* Avoid user_access_save in fast-path: find_watchpoint is safe without
* user_access_save, as the address that ptr points to is only used to

View File

@ -92,6 +92,16 @@ static bool test_matching_access(void)
return false;
if (WARN_ON(matching_access(9, 1, 10, 1)))
return false;
/*
* An access of size 0 could match another access, as demonstrated here.
* Rather than add more comparisons to 'matching_access()', which would
* end up in the fast-path for *all* checks, check_access() simply
* returns for all accesses of size 0.
*/
if (WARN_ON(!matching_access(8, 8, 12, 0)))
return false;
return true;
}