sparc64: Support cbcond instructions in eBPF JIT.

cbcond combines a compare with a branch into a single instruction.

The limitations are:

1) Only newer chips support it

2) For immediate compares we are limited to 5-bit signed immediate
   values

3) The branch displacement is limited to 10-bit signed

4) We cannot use it for JSET

Also, cbcond (unlike all other sparc control transfers) lacks a delay
slot.

Currently we don't have a useful instruction we can push into the
delay slot of normal branches.  So using cbcond pretty much always
increases code density, and is therefore a win.

Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
David S. Miller 2017-04-24 15:56:21 -07:00
parent 0e43d1009d
commit e3a724edee

View File

@ -18,6 +18,16 @@ static inline bool is_simm13(unsigned int value)
return value + 0x1000 < 0x2000; return value + 0x1000 < 0x2000;
} }
static inline bool is_simm10(unsigned int value)
{
return value + 0x200 < 0x400;
}
static inline bool is_simm5(unsigned int value)
{
return value + 0x10 < 0x20;
}
static void bpf_flush_icache(void *start_, void *end_) static void bpf_flush_icache(void *start_, void *end_)
{ {
/* Cheetah's I-cache is fully coherent. */ /* Cheetah's I-cache is fully coherent. */
@ -39,6 +49,7 @@ static void bpf_flush_icache(void *start_, void *end_)
#define SEEN_MEM 4 /* use mem[] for temporary storage */ #define SEEN_MEM 4 /* use mem[] for temporary storage */
#define S13(X) ((X) & 0x1fff) #define S13(X) ((X) & 0x1fff)
#define S5(X) ((X) & 0x1f)
#define IMMED 0x00002000 #define IMMED 0x00002000
#define RD(X) ((X) << 25) #define RD(X) ((X) << 25)
#define RS1(X) ((X) << 14) #define RS1(X) ((X) << 14)
@ -46,7 +57,8 @@ static void bpf_flush_icache(void *start_, void *end_)
#define OP(X) ((X) << 30) #define OP(X) ((X) << 30)
#define OP2(X) ((X) << 22) #define OP2(X) ((X) << 22)
#define OP3(X) ((X) << 19) #define OP3(X) ((X) << 19)
#define COND(X) ((X) << 25) #define COND(X) (((X) & 0xf) << 25)
#define CBCOND(X) (((X) & 0x1f) << 25)
#define F1(X) OP(X) #define F1(X) OP(X)
#define F2(X, Y) (OP(X) | OP2(Y)) #define F2(X, Y) (OP(X) | OP2(Y))
#define F3(X, Y) (OP(X) | OP3(Y)) #define F3(X, Y) (OP(X) | OP3(Y))
@ -75,10 +87,39 @@ static void bpf_flush_icache(void *start_, void *end_)
#define WDISP22(X) (((X) >> 2) & 0x3fffff) #define WDISP22(X) (((X) >> 2) & 0x3fffff)
#define WDISP19(X) (((X) >> 2) & 0x7ffff) #define WDISP19(X) (((X) >> 2) & 0x7ffff)
/* The 10-bit branch displacement for CBCOND is split into two fields */
static u32 WDISP10(u32 off)
{
u32 ret = ((off >> 2) & 0xff) << 5;
ret |= ((off >> (2 + 8)) & 0x03) << 19;
return ret;
}
#define CBCONDE CBCOND(0x09)
#define CBCONDLE CBCOND(0x0a)
#define CBCONDL CBCOND(0x0b)
#define CBCONDLEU CBCOND(0x0c)
#define CBCONDCS CBCOND(0x0d)
#define CBCONDN CBCOND(0x0e)
#define CBCONDVS CBCOND(0x0f)
#define CBCONDNE CBCOND(0x19)
#define CBCONDG CBCOND(0x1a)
#define CBCONDGE CBCOND(0x1b)
#define CBCONDGU CBCOND(0x1c)
#define CBCONDCC CBCOND(0x1d)
#define CBCONDPOS CBCOND(0x1e)
#define CBCONDVC CBCOND(0x1f)
#define CBCONDGEU CBCONDCC
#define CBCONDLU CBCONDCS
#define ANNUL (1 << 29) #define ANNUL (1 << 29)
#define XCC (1 << 21) #define XCC (1 << 21)
#define BRANCH (F2(0, 1) | XCC) #define BRANCH (F2(0, 1) | XCC)
#define CBCOND_OP (F2(0, 3) | XCC)
#define BA (BRANCH | CONDA) #define BA (BRANCH | CONDA)
#define BG (BRANCH | CONDG) #define BG (BRANCH | CONDG)
@ -351,6 +392,22 @@ static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int
emit(br_opc | WDISP22(off << 2), ctx); emit(br_opc | WDISP22(off << 2), ctx);
} }
static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
const u8 dst, const u8 src, struct jit_ctx *ctx)
{
unsigned int off = to_idx - from_idx;
emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
}
static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
const u8 dst, s32 imm, struct jit_ctx *ctx)
{
unsigned int off = to_idx - from_idx;
emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
}
#define emit_read_y(REG, CTX) emit(RD_Y | RD(REG), CTX) #define emit_read_y(REG, CTX) emit(RD_Y | RD(REG), CTX)
#define emit_write_y(REG, CTX) emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX) #define emit_write_y(REG, CTX) emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)
@ -358,7 +415,7 @@ static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int
emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX) emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
#define emit_cmpi(R1, IMM, CTX) \ #define emit_cmpi(R1, IMM, CTX) \
emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX); emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
#define emit_btst(R1, R2, CTX) \ #define emit_btst(R1, R2, CTX) \
emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX) emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
@ -366,6 +423,117 @@ static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int
#define emit_btsti(R1, IMM, CTX) \ #define emit_btsti(R1, IMM, CTX) \
emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX) emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
const s32 imm, bool is_imm, int branch_dst,
struct jit_ctx *ctx)
{
bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
const u8 tmp = bpf2sparc[TMP_REG_1];
branch_dst = ctx->offset[branch_dst];
if (!is_simm10(branch_dst - ctx->idx) ||
BPF_OP(code) == BPF_JSET)
use_cbcond = false;
if (is_imm) {
bool fits = true;
if (use_cbcond) {
if (!is_simm5(imm))
fits = false;
} else if (!is_simm13(imm)) {
fits = false;
}
if (!fits) {
ctx->tmp_1_used = true;
emit_loadimm_sext(imm, tmp, ctx);
src = tmp;
is_imm = false;
}
}
if (!use_cbcond) {
u32 br_opcode;
if (BPF_OP(code) == BPF_JSET) {
if (is_imm)
emit_btsti(dst, imm, ctx);
else
emit_btst(dst, src, ctx);
} else {
if (is_imm)
emit_cmpi(dst, imm, ctx);
else
emit_cmp(dst, src, ctx);
}
switch (BPF_OP(code)) {
case BPF_JEQ:
br_opcode = BE;
break;
case BPF_JGT:
br_opcode = BGU;
break;
case BPF_JGE:
br_opcode = BGEU;
break;
case BPF_JSET:
case BPF_JNE:
br_opcode = BNE;
break;
case BPF_JSGT:
br_opcode = BG;
break;
case BPF_JSGE:
br_opcode = BGE;
break;
default:
/* Make sure we dont leak kernel information to the
* user.
*/
return -EFAULT;
}
emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
emit_nop(ctx);
} else {
u32 cbcond_opcode;
switch (BPF_OP(code)) {
case BPF_JEQ:
cbcond_opcode = CBCONDE;
break;
case BPF_JGT:
cbcond_opcode = CBCONDGU;
break;
case BPF_JGE:
cbcond_opcode = CBCONDGEU;
break;
case BPF_JNE:
cbcond_opcode = CBCONDNE;
break;
case BPF_JSGT:
cbcond_opcode = CBCONDG;
break;
case BPF_JSGE:
cbcond_opcode = CBCONDGE;
break;
default:
/* Make sure we dont leak kernel information to the
* user.
*/
return -EFAULT;
}
cbcond_opcode |= CBCOND_OP;
if (is_imm)
emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
dst, imm, ctx);
else
emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
dst, src, ctx);
}
return 0;
}
static void load_skb_regs(struct jit_ctx *ctx, u8 r_skb) static void load_skb_regs(struct jit_ctx *ctx, u8 r_skb)
{ {
const u8 r_headlen = bpf2sparc[SKB_HLEN_REG]; const u8 r_headlen = bpf2sparc[SKB_HLEN_REG];
@ -765,44 +933,15 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JNE | BPF_X: case BPF_JMP | BPF_JNE | BPF_X:
case BPF_JMP | BPF_JSGT | BPF_X: case BPF_JMP | BPF_JSGT | BPF_X:
case BPF_JMP | BPF_JSGE | BPF_X: { case BPF_JMP | BPF_JSGE | BPF_X:
u32 br_opcode; case BPF_JMP | BPF_JSET | BPF_X: {
int err;
emit_cmp(dst, src, ctx); err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
emit_cond_jmp: if (err)
switch (BPF_OP(code)) { return err;
case BPF_JEQ:
br_opcode = BE;
break;
case BPF_JGT:
br_opcode = BGU;
break;
case BPF_JGE:
br_opcode = BGEU;
break;
case BPF_JSET:
case BPF_JNE:
br_opcode = BNE;
break;
case BPF_JSGT:
br_opcode = BG;
break;
case BPF_JSGE:
br_opcode = BGE;
break;
default:
/* Make sure we dont leak kernel information to the
* user.
*/
return -EFAULT;
}
emit_branch(br_opcode, ctx->idx, ctx->offset[i + off], ctx);
emit_nop(ctx);
break; break;
} }
case BPF_JMP | BPF_JSET | BPF_X:
emit_btst(dst, src, ctx);
goto emit_cond_jmp;
/* IF (dst COND imm) JUMP off */ /* IF (dst COND imm) JUMP off */
case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGT | BPF_K:
@ -810,23 +949,14 @@ emit_cond_jmp:
case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP | BPF_JNE | BPF_K:
case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSGT | BPF_K:
case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSGE | BPF_K:
if (is_simm13(imm)) { case BPF_JMP | BPF_JSET | BPF_K: {
emit_cmpi(dst, imm, ctx); int err;
} else {
ctx->tmp_1_used = true; err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
emit_loadimm_sext(imm, bpf2sparc[TMP_REG_1], ctx); if (err)
emit_cmp(dst, bpf2sparc[TMP_REG_1], ctx); return err;
} break;
goto emit_cond_jmp; }
case BPF_JMP | BPF_JSET | BPF_K:
if (is_simm13(imm)) {
emit_btsti(dst, imm, ctx);
} else {
ctx->tmp_1_used = true;
emit_loadimm_sext(imm, bpf2sparc[TMP_REG_1], ctx);
emit_btst(dst, bpf2sparc[TMP_REG_1], ctx);
}
goto emit_cond_jmp;
/* function call */ /* function call */
case BPF_JMP | BPF_CALL: case BPF_JMP | BPF_CALL: