diff --git a/tools/lib/bpf/libbpf.c b/tools/lib/bpf/libbpf.c index 8fc62b6b1cd6..3abf2dd1b3b5 100644 --- a/tools/lib/bpf/libbpf.c +++ b/tools/lib/bpf/libbpf.c @@ -38,6 +38,7 @@ #include #include #include +#include #include #include #include @@ -47,6 +48,7 @@ #include "btf.h" #include "str_error.h" #include "libbpf_internal.h" +#include "hashmap.h" #ifndef EM_BPF #define EM_BPF 247 @@ -1015,23 +1017,21 @@ static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) return 0; } -static const struct btf_type *skip_mods_and_typedefs(const struct btf *btf, - __u32 id) +static const struct btf_type * +skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) { const struct btf_type *t = btf__type_by_id(btf, id); - while (true) { - switch (BTF_INFO_KIND(t->info)) { - case BTF_KIND_VOLATILE: - case BTF_KIND_CONST: - case BTF_KIND_RESTRICT: - case BTF_KIND_TYPEDEF: - t = btf__type_by_id(btf, t->type); - break; - default: - return t; - } + if (res_id) + *res_id = id; + + while (btf_is_mod(t) || btf_is_typedef(t)) { + if (res_id) + *res_id = t->type; + t = btf__type_by_id(btf, t->type); } + + return t; } /* @@ -1044,7 +1044,7 @@ static const struct btf_type *skip_mods_and_typedefs(const struct btf *btf, static bool get_map_field_int(const char *map_name, const struct btf *btf, const struct btf_type *def, const struct btf_member *m, __u32 *res) { - const struct btf_type *t = skip_mods_and_typedefs(btf, m->type); + const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); const char *name = btf__name_by_offset(btf, m->name_off); const struct btf_array *arr_info; const struct btf_type *arr_t; @@ -1110,7 +1110,7 @@ static int bpf_object__init_user_btf_map(struct bpf_object *obj, return -EOPNOTSUPP; } - def = skip_mods_and_typedefs(obj->btf, var->type); + def = skip_mods_and_typedefs(obj->btf, var->type, NULL); if (!btf_is_struct(def)) { pr_warning("map '%s': unexpected def kind %u.\n", map_name, btf_kind(var)); @@ -2290,6 +2290,844 @@ bpf_program_reloc_btf_ext(struct bpf_program *prog, struct bpf_object *obj, return 0; } +#define BPF_CORE_SPEC_MAX_LEN 64 + +/* represents BPF CO-RE field or array element accessor */ +struct bpf_core_accessor { + __u32 type_id; /* struct/union type or array element type */ + __u32 idx; /* field index or array index */ + const char *name; /* field name or NULL for array accessor */ +}; + +struct bpf_core_spec { + const struct btf *btf; + /* high-level spec: named fields and array indices only */ + struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; + /* high-level spec length */ + int len; + /* raw, low-level spec: 1-to-1 with accessor spec string */ + int raw_spec[BPF_CORE_SPEC_MAX_LEN]; + /* raw spec length */ + int raw_len; + /* field byte offset represented by spec */ + __u32 offset; +}; + +static bool str_is_empty(const char *s) +{ + return !s || !s[0]; +} + +/* + * Turn bpf_offset_reloc into a low- and high-level spec representation, + * validating correctness along the way, as well as calculating resulting + * field offset (in bytes), specified by accessor string. Low-level spec + * captures every single level of nestedness, including traversing anonymous + * struct/union members. High-level one only captures semantically meaningful + * "turning points": named fields and array indicies. + * E.g., for this case: + * + * struct sample { + * int __unimportant; + * struct { + * int __1; + * int __2; + * int a[7]; + * }; + * }; + * + * struct sample *s = ...; + * + * int x = &s->a[3]; // access string = '0:1:2:3' + * + * Low-level spec has 1:1 mapping with each element of access string (it's + * just a parsed access string representation): [0, 1, 2, 3]. + * + * High-level spec will capture only 3 points: + * - intial zero-index access by pointer (&s->... is the same as &s[0]...); + * - field 'a' access (corresponds to '2' in low-level spec); + * - array element #3 access (corresponds to '3' in low-level spec). + * + */ +static int bpf_core_spec_parse(const struct btf *btf, + __u32 type_id, + const char *spec_str, + struct bpf_core_spec *spec) +{ + int access_idx, parsed_len, i; + const struct btf_type *t; + const char *name; + __u32 id; + __s64 sz; + + if (str_is_empty(spec_str) || *spec_str == ':') + return -EINVAL; + + memset(spec, 0, sizeof(*spec)); + spec->btf = btf; + + /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ + while (*spec_str) { + if (*spec_str == ':') + ++spec_str; + if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) + return -EINVAL; + if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) + return -E2BIG; + spec_str += parsed_len; + spec->raw_spec[spec->raw_len++] = access_idx; + } + + if (spec->raw_len == 0) + return -EINVAL; + + /* first spec value is always reloc type array index */ + t = skip_mods_and_typedefs(btf, type_id, &id); + if (!t) + return -EINVAL; + + access_idx = spec->raw_spec[0]; + spec->spec[0].type_id = id; + spec->spec[0].idx = access_idx; + spec->len++; + + sz = btf__resolve_size(btf, id); + if (sz < 0) + return sz; + spec->offset = access_idx * sz; + + for (i = 1; i < spec->raw_len; i++) { + t = skip_mods_and_typedefs(btf, id, &id); + if (!t) + return -EINVAL; + + access_idx = spec->raw_spec[i]; + + if (btf_is_composite(t)) { + const struct btf_member *m; + __u32 offset; + + if (access_idx >= btf_vlen(t)) + return -EINVAL; + if (btf_member_bitfield_size(t, access_idx)) + return -EINVAL; + + offset = btf_member_bit_offset(t, access_idx); + if (offset % 8) + return -EINVAL; + spec->offset += offset / 8; + + m = btf_members(t) + access_idx; + if (m->name_off) { + name = btf__name_by_offset(btf, m->name_off); + if (str_is_empty(name)) + return -EINVAL; + + spec->spec[spec->len].type_id = id; + spec->spec[spec->len].idx = access_idx; + spec->spec[spec->len].name = name; + spec->len++; + } + + id = m->type; + } else if (btf_is_array(t)) { + const struct btf_array *a = btf_array(t); + + t = skip_mods_and_typedefs(btf, a->type, &id); + if (!t || access_idx >= a->nelems) + return -EINVAL; + + spec->spec[spec->len].type_id = id; + spec->spec[spec->len].idx = access_idx; + spec->len++; + + sz = btf__resolve_size(btf, id); + if (sz < 0) + return sz; + spec->offset += access_idx * sz; + } else { + pr_warning("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %d\n", + type_id, spec_str, i, id, btf_kind(t)); + return -EINVAL; + } + } + + return 0; +} + +static bool bpf_core_is_flavor_sep(const char *s) +{ + /* check X___Y name pattern, where X and Y are not underscores */ + return s[0] != '_' && /* X */ + s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ + s[4] != '_'; /* Y */ +} + +/* Given 'some_struct_name___with_flavor' return the length of a name prefix + * before last triple underscore. Struct name part after last triple + * underscore is ignored by BPF CO-RE relocation during relocation matching. + */ +static size_t bpf_core_essential_name_len(const char *name) +{ + size_t n = strlen(name); + int i; + + for (i = n - 5; i >= 0; i--) { + if (bpf_core_is_flavor_sep(name + i)) + return i + 1; + } + return n; +} + +/* dynamically sized list of type IDs */ +struct ids_vec { + __u32 *data; + int len; +}; + +static void bpf_core_free_cands(struct ids_vec *cand_ids) +{ + free(cand_ids->data); + free(cand_ids); +} + +static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf, + __u32 local_type_id, + const struct btf *targ_btf) +{ + size_t local_essent_len, targ_essent_len; + const char *local_name, *targ_name; + const struct btf_type *t; + struct ids_vec *cand_ids; + __u32 *new_ids; + int i, err, n; + + t = btf__type_by_id(local_btf, local_type_id); + if (!t) + return ERR_PTR(-EINVAL); + + local_name = btf__name_by_offset(local_btf, t->name_off); + if (str_is_empty(local_name)) + return ERR_PTR(-EINVAL); + local_essent_len = bpf_core_essential_name_len(local_name); + + cand_ids = calloc(1, sizeof(*cand_ids)); + if (!cand_ids) + return ERR_PTR(-ENOMEM); + + n = btf__get_nr_types(targ_btf); + for (i = 1; i <= n; i++) { + t = btf__type_by_id(targ_btf, i); + targ_name = btf__name_by_offset(targ_btf, t->name_off); + if (str_is_empty(targ_name)) + continue; + + targ_essent_len = bpf_core_essential_name_len(targ_name); + if (targ_essent_len != local_essent_len) + continue; + + if (strncmp(local_name, targ_name, local_essent_len) == 0) { + pr_debug("[%d] %s: found candidate [%d] %s\n", + local_type_id, local_name, i, targ_name); + new_ids = realloc(cand_ids->data, cand_ids->len + 1); + if (!new_ids) { + err = -ENOMEM; + goto err_out; + } + cand_ids->data = new_ids; + cand_ids->data[cand_ids->len++] = i; + } + } + return cand_ids; +err_out: + bpf_core_free_cands(cand_ids); + return ERR_PTR(err); +} + +/* Check two types for compatibility, skipping const/volatile/restrict and + * typedefs, to ensure we are relocating offset to the compatible entities: + * - any two STRUCTs/UNIONs are compatible and can be mixed; + * - any two FWDs are compatible; + * - any two PTRs are always compatible; + * - for ENUMs, check sizes, names are ignored; + * - for INT, size and bitness should match, signedness is ignored; + * - for ARRAY, dimensionality is ignored, element types are checked for + * compatibility recursively; + * - everything else shouldn't be ever a target of relocation. + * These rules are not set in stone and probably will be adjusted as we get + * more experience with using BPF CO-RE relocations. + */ +static int bpf_core_fields_are_compat(const struct btf *local_btf, + __u32 local_id, + const struct btf *targ_btf, + __u32 targ_id) +{ + const struct btf_type *local_type, *targ_type; + +recur: + local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); + targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); + if (!local_type || !targ_type) + return -EINVAL; + + if (btf_is_composite(local_type) && btf_is_composite(targ_type)) + return 1; + if (btf_kind(local_type) != btf_kind(targ_type)) + return 0; + + switch (btf_kind(local_type)) { + case BTF_KIND_FWD: + case BTF_KIND_PTR: + return 1; + case BTF_KIND_ENUM: + return local_type->size == targ_type->size; + case BTF_KIND_INT: + return btf_int_offset(local_type) == 0 && + btf_int_offset(targ_type) == 0 && + local_type->size == targ_type->size && + btf_int_bits(local_type) == btf_int_bits(targ_type); + case BTF_KIND_ARRAY: + local_id = btf_array(local_type)->type; + targ_id = btf_array(targ_type)->type; + goto recur; + default: + pr_warning("unexpected kind %d relocated, local [%d], target [%d]\n", + btf_kind(local_type), local_id, targ_id); + return 0; + } +} + +/* + * Given single high-level named field accessor in local type, find + * corresponding high-level accessor for a target type. Along the way, + * maintain low-level spec for target as well. Also keep updating target + * offset. + * + * Searching is performed through recursive exhaustive enumeration of all + * fields of a struct/union. If there are any anonymous (embedded) + * structs/unions, they are recursively searched as well. If field with + * desired name is found, check compatibility between local and target types, + * before returning result. + * + * 1 is returned, if field is found. + * 0 is returned if no compatible field is found. + * <0 is returned on error. + */ +static int bpf_core_match_member(const struct btf *local_btf, + const struct bpf_core_accessor *local_acc, + const struct btf *targ_btf, + __u32 targ_id, + struct bpf_core_spec *spec, + __u32 *next_targ_id) +{ + const struct btf_type *local_type, *targ_type; + const struct btf_member *local_member, *m; + const char *local_name, *targ_name; + __u32 local_id; + int i, n, found; + + targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); + if (!targ_type) + return -EINVAL; + if (!btf_is_composite(targ_type)) + return 0; + + local_id = local_acc->type_id; + local_type = btf__type_by_id(local_btf, local_id); + local_member = btf_members(local_type) + local_acc->idx; + local_name = btf__name_by_offset(local_btf, local_member->name_off); + + n = btf_vlen(targ_type); + m = btf_members(targ_type); + for (i = 0; i < n; i++, m++) { + __u32 offset; + + /* bitfield relocations not supported */ + if (btf_member_bitfield_size(targ_type, i)) + continue; + offset = btf_member_bit_offset(targ_type, i); + if (offset % 8) + continue; + + /* too deep struct/union/array nesting */ + if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) + return -E2BIG; + + /* speculate this member will be the good one */ + spec->offset += offset / 8; + spec->raw_spec[spec->raw_len++] = i; + + targ_name = btf__name_by_offset(targ_btf, m->name_off); + if (str_is_empty(targ_name)) { + /* embedded struct/union, we need to go deeper */ + found = bpf_core_match_member(local_btf, local_acc, + targ_btf, m->type, + spec, next_targ_id); + if (found) /* either found or error */ + return found; + } else if (strcmp(local_name, targ_name) == 0) { + /* matching named field */ + struct bpf_core_accessor *targ_acc; + + targ_acc = &spec->spec[spec->len++]; + targ_acc->type_id = targ_id; + targ_acc->idx = i; + targ_acc->name = targ_name; + + *next_targ_id = m->type; + found = bpf_core_fields_are_compat(local_btf, + local_member->type, + targ_btf, m->type); + if (!found) + spec->len--; /* pop accessor */ + return found; + } + /* member turned out not to be what we looked for */ + spec->offset -= offset / 8; + spec->raw_len--; + } + + return 0; +} + +/* + * Try to match local spec to a target type and, if successful, produce full + * target spec (high-level, low-level + offset). + */ +static int bpf_core_spec_match(struct bpf_core_spec *local_spec, + const struct btf *targ_btf, __u32 targ_id, + struct bpf_core_spec *targ_spec) +{ + const struct btf_type *targ_type; + const struct bpf_core_accessor *local_acc; + struct bpf_core_accessor *targ_acc; + int i, sz, matched; + + memset(targ_spec, 0, sizeof(*targ_spec)); + targ_spec->btf = targ_btf; + + local_acc = &local_spec->spec[0]; + targ_acc = &targ_spec->spec[0]; + + for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { + targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, + &targ_id); + if (!targ_type) + return -EINVAL; + + if (local_acc->name) { + matched = bpf_core_match_member(local_spec->btf, + local_acc, + targ_btf, targ_id, + targ_spec, &targ_id); + if (matched <= 0) + return matched; + } else { + /* for i=0, targ_id is already treated as array element + * type (because it's the original struct), for others + * we should find array element type first + */ + if (i > 0) { + const struct btf_array *a; + + if (!btf_is_array(targ_type)) + return 0; + + a = btf_array(targ_type); + if (local_acc->idx >= a->nelems) + return 0; + if (!skip_mods_and_typedefs(targ_btf, a->type, + &targ_id)) + return -EINVAL; + } + + /* too deep struct/union/array nesting */ + if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) + return -E2BIG; + + targ_acc->type_id = targ_id; + targ_acc->idx = local_acc->idx; + targ_acc->name = NULL; + targ_spec->len++; + targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; + targ_spec->raw_len++; + + sz = btf__resolve_size(targ_btf, targ_id); + if (sz < 0) + return sz; + targ_spec->offset += local_acc->idx * sz; + } + } + + return 1; +} + +/* + * Patch relocatable BPF instruction. + * Expected insn->imm value is provided for validation, as well as the new + * relocated value. + * + * Currently three kinds of BPF instructions are supported: + * 1. rX = (assignment with immediate operand); + * 2. rX += (arithmetic operations with immediate operand); + * 3. *(rX) = (indirect memory assignment with immediate operand). + * + * If actual insn->imm value is wrong, bail out. + */ +static int bpf_core_reloc_insn(struct bpf_program *prog, int insn_off, + __u32 orig_off, __u32 new_off) +{ + struct bpf_insn *insn; + int insn_idx; + __u8 class; + + if (insn_off % sizeof(struct bpf_insn)) + return -EINVAL; + insn_idx = insn_off / sizeof(struct bpf_insn); + + insn = &prog->insns[insn_idx]; + class = BPF_CLASS(insn->code); + + if (class == BPF_ALU || class == BPF_ALU64) { + if (BPF_SRC(insn->code) != BPF_K) + return -EINVAL; + if (insn->imm != orig_off) + return -EINVAL; + insn->imm = new_off; + pr_debug("prog '%s': patched insn #%d (ALU/ALU64) imm %d -> %d\n", + bpf_program__title(prog, false), + insn_idx, orig_off, new_off); + } else { + pr_warning("prog '%s': trying to relocate unrecognized insn #%d, code:%x, src:%x, dst:%x, off:%x, imm:%x\n", + bpf_program__title(prog, false), + insn_idx, insn->code, insn->src_reg, insn->dst_reg, + insn->off, insn->imm); + return -EINVAL; + } + return 0; +} + +/* + * Probe few well-known locations for vmlinux kernel image and try to load BTF + * data out of it to use for target BTF. + */ +static struct btf *bpf_core_find_kernel_btf(void) +{ + const char *locations[] = { + "/lib/modules/%1$s/vmlinux-%1$s", + "/usr/lib/modules/%1$s/kernel/vmlinux", + }; + char path[PATH_MAX + 1]; + struct utsname buf; + struct btf *btf; + int i; + + uname(&buf); + + for (i = 0; i < ARRAY_SIZE(locations); i++) { + snprintf(path, PATH_MAX, locations[i], buf.release); + + if (access(path, R_OK)) + continue; + + btf = btf__parse_elf(path, NULL); + pr_debug("kernel BTF load from '%s': %ld\n", + path, PTR_ERR(btf)); + if (IS_ERR(btf)) + continue; + + return btf; + } + + pr_warning("failed to find valid kernel BTF\n"); + return ERR_PTR(-ESRCH); +} + +/* Output spec definition in the format: + * [] () + => @, + * where is a C-syntax view of recorded field access, e.g.: x.a[3].b + */ +static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) +{ + const struct btf_type *t; + const char *s; + __u32 type_id; + int i; + + type_id = spec->spec[0].type_id; + t = btf__type_by_id(spec->btf, type_id); + s = btf__name_by_offset(spec->btf, t->name_off); + libbpf_print(level, "[%u] %s + ", type_id, s); + + for (i = 0; i < spec->raw_len; i++) + libbpf_print(level, "%d%s", spec->raw_spec[i], + i == spec->raw_len - 1 ? " => " : ":"); + + libbpf_print(level, "%u @ &x", spec->offset); + + for (i = 0; i < spec->len; i++) { + if (spec->spec[i].name) + libbpf_print(level, ".%s", spec->spec[i].name); + else + libbpf_print(level, "[%u]", spec->spec[i].idx); + } + +} + +static size_t bpf_core_hash_fn(const void *key, void *ctx) +{ + return (size_t)key; +} + +static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) +{ + return k1 == k2; +} + +static void *u32_as_hash_key(__u32 x) +{ + return (void *)(uintptr_t)x; +} + +/* + * CO-RE relocate single instruction. + * + * The outline and important points of the algorithm: + * 1. For given local type, find corresponding candidate target types. + * Candidate type is a type with the same "essential" name, ignoring + * everything after last triple underscore (___). E.g., `sample`, + * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates + * for each other. Names with triple underscore are referred to as + * "flavors" and are useful, among other things, to allow to + * specify/support incompatible variations of the same kernel struct, which + * might differ between different kernel versions and/or build + * configurations. + * + * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C + * converter, when deduplicated BTF of a kernel still contains more than + * one different types with the same name. In that case, ___2, ___3, etc + * are appended starting from second name conflict. But start flavors are + * also useful to be defined "locally", in BPF program, to extract same + * data from incompatible changes between different kernel + * versions/configurations. For instance, to handle field renames between + * kernel versions, one can use two flavors of the struct name with the + * same common name and use conditional relocations to extract that field, + * depending on target kernel version. + * 2. For each candidate type, try to match local specification to this + * candidate target type. Matching involves finding corresponding + * high-level spec accessors, meaning that all named fields should match, + * as well as all array accesses should be within the actual bounds. Also, + * types should be compatible (see bpf_core_fields_are_compat for details). + * 3. It is supported and expected that there might be multiple flavors + * matching the spec. As long as all the specs resolve to the same set of + * offsets across all candidates, there is not error. If there is any + * ambiguity, CO-RE relocation will fail. This is necessary to accomodate + * imprefection of BTF deduplication, which can cause slight duplication of + * the same BTF type, if some directly or indirectly referenced (by + * pointer) type gets resolved to different actual types in different + * object files. If such situation occurs, deduplicated BTF will end up + * with two (or more) structurally identical types, which differ only in + * types they refer to through pointer. This should be OK in most cases and + * is not an error. + * 4. Candidate types search is performed by linearly scanning through all + * types in target BTF. It is anticipated that this is overall more + * efficient memory-wise and not significantly worse (if not better) + * CPU-wise compared to prebuilding a map from all local type names to + * a list of candidate type names. It's also sped up by caching resolved + * list of matching candidates per each local "root" type ID, that has at + * least one bpf_offset_reloc associated with it. This list is shared + * between multiple relocations for the same type ID and is updated as some + * of the candidates are pruned due to structural incompatibility. + */ +static int bpf_core_reloc_offset(struct bpf_program *prog, + const struct bpf_offset_reloc *relo, + int relo_idx, + const struct btf *local_btf, + const struct btf *targ_btf, + struct hashmap *cand_cache) +{ + const char *prog_name = bpf_program__title(prog, false); + struct bpf_core_spec local_spec, cand_spec, targ_spec; + const void *type_key = u32_as_hash_key(relo->type_id); + const struct btf_type *local_type, *cand_type; + const char *local_name, *cand_name; + struct ids_vec *cand_ids; + __u32 local_id, cand_id; + const char *spec_str; + int i, j, err; + + local_id = relo->type_id; + local_type = btf__type_by_id(local_btf, local_id); + if (!local_type) + return -EINVAL; + + local_name = btf__name_by_offset(local_btf, local_type->name_off); + if (str_is_empty(local_name)) + return -EINVAL; + + spec_str = btf__name_by_offset(local_btf, relo->access_str_off); + if (str_is_empty(spec_str)) + return -EINVAL; + + err = bpf_core_spec_parse(local_btf, local_id, spec_str, &local_spec); + if (err) { + pr_warning("prog '%s': relo #%d: parsing [%d] %s + %s failed: %d\n", + prog_name, relo_idx, local_id, local_name, spec_str, + err); + return -EINVAL; + } + + pr_debug("prog '%s': relo #%d: spec is ", prog_name, relo_idx); + bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); + libbpf_print(LIBBPF_DEBUG, "\n"); + + if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) { + cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf); + if (IS_ERR(cand_ids)) { + pr_warning("prog '%s': relo #%d: target candidate search failed for [%d] %s: %ld", + prog_name, relo_idx, local_id, local_name, + PTR_ERR(cand_ids)); + return PTR_ERR(cand_ids); + } + err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL); + if (err) { + bpf_core_free_cands(cand_ids); + return err; + } + } + + for (i = 0, j = 0; i < cand_ids->len; i++) { + cand_id = cand_ids->data[i]; + cand_type = btf__type_by_id(targ_btf, cand_id); + cand_name = btf__name_by_offset(targ_btf, cand_type->name_off); + + err = bpf_core_spec_match(&local_spec, targ_btf, + cand_id, &cand_spec); + pr_debug("prog '%s': relo #%d: matching candidate #%d %s against spec ", + prog_name, relo_idx, i, cand_name); + bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); + libbpf_print(LIBBPF_DEBUG, ": %d\n", err); + if (err < 0) { + pr_warning("prog '%s': relo #%d: matching error: %d\n", + prog_name, relo_idx, err); + return err; + } + if (err == 0) + continue; + + if (j == 0) { + targ_spec = cand_spec; + } else if (cand_spec.offset != targ_spec.offset) { + /* if there are many candidates, they should all + * resolve to the same offset + */ + pr_warning("prog '%s': relo #%d: offset ambiguity: %u != %u\n", + prog_name, relo_idx, cand_spec.offset, + targ_spec.offset); + return -EINVAL; + } + + cand_ids->data[j++] = cand_spec.spec[0].type_id; + } + + cand_ids->len = j; + if (cand_ids->len == 0) { + pr_warning("prog '%s': relo #%d: no matching targets found for [%d] %s + %s\n", + prog_name, relo_idx, local_id, local_name, spec_str); + return -ESRCH; + } + + err = bpf_core_reloc_insn(prog, relo->insn_off, + local_spec.offset, targ_spec.offset); + if (err) { + pr_warning("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n", + prog_name, relo_idx, relo->insn_off, err); + return -EINVAL; + } + + return 0; +} + +static int +bpf_core_reloc_offsets(struct bpf_object *obj, const char *targ_btf_path) +{ + const struct btf_ext_info_sec *sec; + const struct bpf_offset_reloc *rec; + const struct btf_ext_info *seg; + struct hashmap_entry *entry; + struct hashmap *cand_cache = NULL; + struct bpf_program *prog; + struct btf *targ_btf; + const char *sec_name; + int i, err = 0; + + if (targ_btf_path) + targ_btf = btf__parse_elf(targ_btf_path, NULL); + else + targ_btf = bpf_core_find_kernel_btf(); + if (IS_ERR(targ_btf)) { + pr_warning("failed to get target BTF: %ld\n", + PTR_ERR(targ_btf)); + return PTR_ERR(targ_btf); + } + + cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); + if (IS_ERR(cand_cache)) { + err = PTR_ERR(cand_cache); + goto out; + } + + seg = &obj->btf_ext->offset_reloc_info; + for_each_btf_ext_sec(seg, sec) { + sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); + if (str_is_empty(sec_name)) { + err = -EINVAL; + goto out; + } + prog = bpf_object__find_program_by_title(obj, sec_name); + if (!prog) { + pr_warning("failed to find program '%s' for CO-RE offset relocation\n", + sec_name); + err = -EINVAL; + goto out; + } + + pr_debug("prog '%s': performing %d CO-RE offset relocs\n", + sec_name, sec->num_info); + + for_each_btf_ext_rec(seg, sec, i, rec) { + err = bpf_core_reloc_offset(prog, rec, i, obj->btf, + targ_btf, cand_cache); + if (err) { + pr_warning("prog '%s': relo #%d: failed to relocate: %d\n", + sec_name, i, err); + goto out; + } + } + } + +out: + btf__free(targ_btf); + if (!IS_ERR_OR_NULL(cand_cache)) { + hashmap__for_each_entry(cand_cache, entry, i) { + bpf_core_free_cands(entry->value); + } + hashmap__free(cand_cache); + } + return err; +} + +static int +bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) +{ + int err = 0; + + if (obj->btf_ext->offset_reloc_info.len) + err = bpf_core_reloc_offsets(obj, targ_btf_path); + + return err; +} + static int bpf_program__reloc_text(struct bpf_program *prog, struct bpf_object *obj, struct reloc_desc *relo) @@ -2397,14 +3235,21 @@ bpf_program__relocate(struct bpf_program *prog, struct bpf_object *obj) return 0; } - static int -bpf_object__relocate(struct bpf_object *obj) +bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) { struct bpf_program *prog; size_t i; int err; + if (obj->btf_ext) { + err = bpf_object__relocate_core(obj, targ_btf_path); + if (err) { + pr_warning("failed to perform CO-RE relocations: %d\n", + err); + return err; + } + } for (i = 0; i < obj->nr_programs; i++) { prog = &obj->programs[i]; @@ -2805,7 +3650,7 @@ int bpf_object__load_xattr(struct bpf_object_load_attr *attr) obj->loaded = true; CHECK_ERR(bpf_object__create_maps(obj), err, out); - CHECK_ERR(bpf_object__relocate(obj), err, out); + CHECK_ERR(bpf_object__relocate(obj, attr->target_btf_path), err, out); CHECK_ERR(bpf_object__load_progs(obj, attr->log_level), err, out); return 0; diff --git a/tools/lib/bpf/libbpf.h b/tools/lib/bpf/libbpf.h index 8a9d462a6f6d..e8f70977d137 100644 --- a/tools/lib/bpf/libbpf.h +++ b/tools/lib/bpf/libbpf.h @@ -92,6 +92,7 @@ LIBBPF_API void bpf_object__close(struct bpf_object *object); struct bpf_object_load_attr { struct bpf_object *obj; int log_level; + const char *target_btf_path; }; /* Load/unload object into/from kernel */