Convert x86 cacheinfo code to generic sysfs cacheinfo infra. (Sudeep Holla)

-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJU/VtjAAoJEBLB8Bhh3lVKZvwQAJAPihXRy6zGvT/zcWnLnPbi
 itvIgSRi8iozK8tY9+9Wd6P5xP4gc7cO9wIJvBvtTjmxv+SrHDPhYCqc6dwXSLSt
 gZ2EHWQCTAeJWf4G05WT4It6ZuQjEhu0pTIGvpLaL0lByf42ZtQUTI8+POk8vGqR
 iOjrbArA+4CeMmVYmuShffkm0r7iVDG1nMlOBrYVujsm73wXuSJqAcWdA/ocz14N
 j0GEjbofGv7IBFBdOG/U10c0M1rBCenMwJVjDvTLwMDbayqjLYuYkX+Y1ZFFJuFl
 3s30WqKgXjcBQbi0UMDeT/Z6ZCHiYq7XV+s6UGf/3GjiL4hwbcZmuBmGho0djtBM
 I1yhlE7F8KIMwTruNgABZ4DzJICxMOKTrKUwfOo9q2jsTCeNuF/UVhr8jj7cOONX
 AGWdYJ4YC6f4YzPBa7RwYyCFFabeZYWrXplReX8Og7aNCx+TfQQEx7d/81xS4Hbj
 hvKIbaW/YeT77y7CkLDVeECCRRp3oaarrNustSgSs8CD6r2QmAhb5Dbv1ZOpGLgK
 +037nrqzbHAJzsFKgdOfJXkfea/WNbdcK5TMWL+fHgnAu3Iejj3Q6nXeg5eOOFvt
 R8El50ZDwjecG6ntmikRxMoLBa91NeSYYYCXTbxgQYVHUfpym1xx1DgYzosvIio2
 WVQy9x3zN1M2n3PmnjYW
 =NQOk
 -----END PGP SIGNATURE-----

Merge tag 'tip_x86_cacheinfo' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp into x86/cpu

Pull x86 CPU cacheinfo changes from Borislav Petkov:

   "Convert x86 cacheinfo code to the generic sysfs cacheinfo infrastructure. (Sudeep Holla)"

Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
Ingo Molnar 2015-03-09 10:29:32 +01:00
commit cecae36074

View File

@ -7,16 +7,14 @@
* Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD. * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD.
*/ */
#include <linux/init.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/device.h> #include <linux/cacheinfo.h>
#include <linux/compiler.h>
#include <linux/cpu.h> #include <linux/cpu.h>
#include <linux/sched.h> #include <linux/sched.h>
#include <linux/sysfs.h>
#include <linux/pci.h> #include <linux/pci.h>
#include <asm/processor.h> #include <asm/processor.h>
#include <linux/smp.h>
#include <asm/amd_nb.h> #include <asm/amd_nb.h>
#include <asm/smp.h> #include <asm/smp.h>
@ -116,10 +114,10 @@ static const struct _cache_table cache_table[] =
enum _cache_type { enum _cache_type {
CACHE_TYPE_NULL = 0, CTYPE_NULL = 0,
CACHE_TYPE_DATA = 1, CTYPE_DATA = 1,
CACHE_TYPE_INST = 2, CTYPE_INST = 2,
CACHE_TYPE_UNIFIED = 3 CTYPE_UNIFIED = 3
}; };
union _cpuid4_leaf_eax { union _cpuid4_leaf_eax {
@ -159,11 +157,6 @@ struct _cpuid4_info_regs {
struct amd_northbridge *nb; struct amd_northbridge *nb;
}; };
struct _cpuid4_info {
struct _cpuid4_info_regs base;
DECLARE_BITMAP(shared_cpu_map, NR_CPUS);
};
unsigned short num_cache_leaves; unsigned short num_cache_leaves;
/* AMD doesn't have CPUID4. Emulate it here to report the same /* AMD doesn't have CPUID4. Emulate it here to report the same
@ -220,6 +213,13 @@ static const unsigned short assocs[] = {
static const unsigned char levels[] = { 1, 1, 2, 3 }; static const unsigned char levels[] = { 1, 1, 2, 3 };
static const unsigned char types[] = { 1, 2, 3, 3 }; static const unsigned char types[] = { 1, 2, 3, 3 };
static const enum cache_type cache_type_map[] = {
[CTYPE_NULL] = CACHE_TYPE_NOCACHE,
[CTYPE_DATA] = CACHE_TYPE_DATA,
[CTYPE_INST] = CACHE_TYPE_INST,
[CTYPE_UNIFIED] = CACHE_TYPE_UNIFIED,
};
static void static void
amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax, amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
union _cpuid4_leaf_ebx *ebx, union _cpuid4_leaf_ebx *ebx,
@ -291,14 +291,8 @@ amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
(ebx->split.ways_of_associativity + 1) - 1; (ebx->split.ways_of_associativity + 1) - 1;
} }
struct _cache_attr {
struct attribute attr;
ssize_t (*show)(struct _cpuid4_info *, char *, unsigned int);
ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count,
unsigned int);
};
#if defined(CONFIG_AMD_NB) && defined(CONFIG_SYSFS) #if defined(CONFIG_AMD_NB) && defined(CONFIG_SYSFS)
/* /*
* L3 cache descriptors * L3 cache descriptors
*/ */
@ -325,20 +319,6 @@ static void amd_calc_l3_indices(struct amd_northbridge *nb)
l3->indices = (max(max3(sc0, sc1, sc2), sc3) << 10) - 1; l3->indices = (max(max3(sc0, sc1, sc2), sc3) << 10) - 1;
} }
static void amd_init_l3_cache(struct _cpuid4_info_regs *this_leaf, int index)
{
int node;
/* only for L3, and not in virtualized environments */
if (index < 3)
return;
node = amd_get_nb_id(smp_processor_id());
this_leaf->nb = node_to_amd_nb(node);
if (this_leaf->nb && !this_leaf->nb->l3_cache.indices)
amd_calc_l3_indices(this_leaf->nb);
}
/* /*
* check whether a slot used for disabling an L3 index is occupied. * check whether a slot used for disabling an L3 index is occupied.
* @l3: L3 cache descriptor * @l3: L3 cache descriptor
@ -359,15 +339,13 @@ int amd_get_l3_disable_slot(struct amd_northbridge *nb, unsigned slot)
return -1; return -1;
} }
static ssize_t show_cache_disable(struct _cpuid4_info *this_leaf, char *buf, static ssize_t show_cache_disable(struct cacheinfo *this_leaf, char *buf,
unsigned int slot) unsigned int slot)
{ {
int index; int index;
struct amd_northbridge *nb = this_leaf->priv;
if (!this_leaf->base.nb || !amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) index = amd_get_l3_disable_slot(nb, slot);
return -EINVAL;
index = amd_get_l3_disable_slot(this_leaf->base.nb, slot);
if (index >= 0) if (index >= 0)
return sprintf(buf, "%d\n", index); return sprintf(buf, "%d\n", index);
@ -376,9 +354,10 @@ static ssize_t show_cache_disable(struct _cpuid4_info *this_leaf, char *buf,
#define SHOW_CACHE_DISABLE(slot) \ #define SHOW_CACHE_DISABLE(slot) \
static ssize_t \ static ssize_t \
show_cache_disable_##slot(struct _cpuid4_info *this_leaf, char *buf, \ cache_disable_##slot##_show(struct device *dev, \
unsigned int cpu) \ struct device_attribute *attr, char *buf) \
{ \ { \
struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
return show_cache_disable(this_leaf, buf, slot); \ return show_cache_disable(this_leaf, buf, slot); \
} }
SHOW_CACHE_DISABLE(0) SHOW_CACHE_DISABLE(0)
@ -446,25 +425,23 @@ int amd_set_l3_disable_slot(struct amd_northbridge *nb, int cpu, unsigned slot,
return 0; return 0;
} }
static ssize_t store_cache_disable(struct _cpuid4_info *this_leaf, static ssize_t store_cache_disable(struct cacheinfo *this_leaf,
const char *buf, size_t count, const char *buf, size_t count,
unsigned int slot) unsigned int slot)
{ {
unsigned long val = 0; unsigned long val = 0;
int cpu, err = 0; int cpu, err = 0;
struct amd_northbridge *nb = this_leaf->priv;
if (!capable(CAP_SYS_ADMIN)) if (!capable(CAP_SYS_ADMIN))
return -EPERM; return -EPERM;
if (!this_leaf->base.nb || !amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) cpu = cpumask_first(&this_leaf->shared_cpu_map);
return -EINVAL;
cpu = cpumask_first(to_cpumask(this_leaf->shared_cpu_map));
if (kstrtoul(buf, 10, &val) < 0) if (kstrtoul(buf, 10, &val) < 0)
return -EINVAL; return -EINVAL;
err = amd_set_l3_disable_slot(this_leaf->base.nb, cpu, slot, val); err = amd_set_l3_disable_slot(nb, cpu, slot, val);
if (err) { if (err) {
if (err == -EEXIST) if (err == -EEXIST)
pr_warning("L3 slot %d in use/index already disabled!\n", pr_warning("L3 slot %d in use/index already disabled!\n",
@ -476,41 +453,36 @@ static ssize_t store_cache_disable(struct _cpuid4_info *this_leaf,
#define STORE_CACHE_DISABLE(slot) \ #define STORE_CACHE_DISABLE(slot) \
static ssize_t \ static ssize_t \
store_cache_disable_##slot(struct _cpuid4_info *this_leaf, \ cache_disable_##slot##_store(struct device *dev, \
const char *buf, size_t count, \ struct device_attribute *attr, \
unsigned int cpu) \ const char *buf, size_t count) \
{ \ { \
struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
return store_cache_disable(this_leaf, buf, count, slot); \ return store_cache_disable(this_leaf, buf, count, slot); \
} }
STORE_CACHE_DISABLE(0) STORE_CACHE_DISABLE(0)
STORE_CACHE_DISABLE(1) STORE_CACHE_DISABLE(1)
static struct _cache_attr cache_disable_0 = __ATTR(cache_disable_0, 0644, static ssize_t subcaches_show(struct device *dev,
show_cache_disable_0, store_cache_disable_0); struct device_attribute *attr, char *buf)
static struct _cache_attr cache_disable_1 = __ATTR(cache_disable_1, 0644,
show_cache_disable_1, store_cache_disable_1);
static ssize_t
show_subcaches(struct _cpuid4_info *this_leaf, char *buf, unsigned int cpu)
{ {
if (!this_leaf->base.nb || !amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) struct cacheinfo *this_leaf = dev_get_drvdata(dev);
return -EINVAL; int cpu = cpumask_first(&this_leaf->shared_cpu_map);
return sprintf(buf, "%x\n", amd_get_subcaches(cpu)); return sprintf(buf, "%x\n", amd_get_subcaches(cpu));
} }
static ssize_t static ssize_t subcaches_store(struct device *dev,
store_subcaches(struct _cpuid4_info *this_leaf, const char *buf, size_t count, struct device_attribute *attr,
unsigned int cpu) const char *buf, size_t count)
{ {
struct cacheinfo *this_leaf = dev_get_drvdata(dev);
int cpu = cpumask_first(&this_leaf->shared_cpu_map);
unsigned long val; unsigned long val;
if (!capable(CAP_SYS_ADMIN)) if (!capable(CAP_SYS_ADMIN))
return -EPERM; return -EPERM;
if (!this_leaf->base.nb || !amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
return -EINVAL;
if (kstrtoul(buf, 16, &val) < 0) if (kstrtoul(buf, 16, &val) < 0)
return -EINVAL; return -EINVAL;
@ -520,9 +492,92 @@ store_subcaches(struct _cpuid4_info *this_leaf, const char *buf, size_t count,
return count; return count;
} }
static struct _cache_attr subcaches = static DEVICE_ATTR_RW(cache_disable_0);
__ATTR(subcaches, 0644, show_subcaches, store_subcaches); static DEVICE_ATTR_RW(cache_disable_1);
static DEVICE_ATTR_RW(subcaches);
static umode_t
cache_private_attrs_is_visible(struct kobject *kobj,
struct attribute *attr, int unused)
{
struct device *dev = kobj_to_dev(kobj);
struct cacheinfo *this_leaf = dev_get_drvdata(dev);
umode_t mode = attr->mode;
if (!this_leaf->priv)
return 0;
if ((attr == &dev_attr_subcaches.attr) &&
amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
return mode;
if ((attr == &dev_attr_cache_disable_0.attr ||
attr == &dev_attr_cache_disable_1.attr) &&
amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
return mode;
return 0;
}
static struct attribute_group cache_private_group = {
.is_visible = cache_private_attrs_is_visible,
};
static void init_amd_l3_attrs(void)
{
int n = 1;
static struct attribute **amd_l3_attrs;
if (amd_l3_attrs) /* already initialized */
return;
if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
n += 2;
if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
n += 1;
amd_l3_attrs = kcalloc(n, sizeof(*amd_l3_attrs), GFP_KERNEL);
if (!amd_l3_attrs)
return;
n = 0;
if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) {
amd_l3_attrs[n++] = &dev_attr_cache_disable_0.attr;
amd_l3_attrs[n++] = &dev_attr_cache_disable_1.attr;
}
if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
amd_l3_attrs[n++] = &dev_attr_subcaches.attr;
cache_private_group.attrs = amd_l3_attrs;
}
const struct attribute_group *
cache_get_priv_group(struct cacheinfo *this_leaf)
{
struct amd_northbridge *nb = this_leaf->priv;
if (this_leaf->level < 3)
return NULL;
if (nb && nb->l3_cache.indices)
init_amd_l3_attrs();
return &cache_private_group;
}
static void amd_init_l3_cache(struct _cpuid4_info_regs *this_leaf, int index)
{
int node;
/* only for L3, and not in virtualized environments */
if (index < 3)
return;
node = amd_get_nb_id(smp_processor_id());
this_leaf->nb = node_to_amd_nb(node);
if (this_leaf->nb && !this_leaf->nb->l3_cache.indices)
amd_calc_l3_indices(this_leaf->nb);
}
#else #else
#define amd_init_l3_cache(x, y) #define amd_init_l3_cache(x, y)
#endif /* CONFIG_AMD_NB && CONFIG_SYSFS */ #endif /* CONFIG_AMD_NB && CONFIG_SYSFS */
@ -546,7 +601,7 @@ cpuid4_cache_lookup_regs(int index, struct _cpuid4_info_regs *this_leaf)
cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx); cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
} }
if (eax.split.type == CACHE_TYPE_NULL) if (eax.split.type == CTYPE_NULL)
return -EIO; /* better error ? */ return -EIO; /* better error ? */
this_leaf->eax = eax; this_leaf->eax = eax;
@ -575,7 +630,7 @@ static int find_num_cache_leaves(struct cpuinfo_x86 *c)
/* Do cpuid(op) loop to find out num_cache_leaves */ /* Do cpuid(op) loop to find out num_cache_leaves */
cpuid_count(op, i, &eax, &ebx, &ecx, &edx); cpuid_count(op, i, &eax, &ebx, &ecx, &edx);
cache_eax.full = eax; cache_eax.full = eax;
} while (cache_eax.split.type != CACHE_TYPE_NULL); } while (cache_eax.split.type != CTYPE_NULL);
return i; return i;
} }
@ -626,9 +681,9 @@ unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c)
switch (this_leaf.eax.split.level) { switch (this_leaf.eax.split.level) {
case 1: case 1:
if (this_leaf.eax.split.type == CACHE_TYPE_DATA) if (this_leaf.eax.split.type == CTYPE_DATA)
new_l1d = this_leaf.size/1024; new_l1d = this_leaf.size/1024;
else if (this_leaf.eax.split.type == CACHE_TYPE_INST) else if (this_leaf.eax.split.type == CTYPE_INST)
new_l1i = this_leaf.size/1024; new_l1i = this_leaf.size/1024;
break; break;
case 2: case 2:
@ -747,55 +802,52 @@ unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c)
return l2; return l2;
} }
#ifdef CONFIG_SYSFS static int __cache_amd_cpumap_setup(unsigned int cpu, int index,
struct _cpuid4_info_regs *base)
/* pointer to _cpuid4_info array (for each cache leaf) */
static DEFINE_PER_CPU(struct _cpuid4_info *, ici_cpuid4_info);
#define CPUID4_INFO_IDX(x, y) (&((per_cpu(ici_cpuid4_info, x))[y]))
#ifdef CONFIG_SMP
static int cache_shared_amd_cpu_map_setup(unsigned int cpu, int index)
{ {
struct _cpuid4_info *this_leaf; struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
struct cacheinfo *this_leaf;
int i, sibling; int i, sibling;
if (cpu_has_topoext) { if (cpu_has_topoext) {
unsigned int apicid, nshared, first, last; unsigned int apicid, nshared, first, last;
if (!per_cpu(ici_cpuid4_info, cpu)) this_leaf = this_cpu_ci->info_list + index;
return 0; nshared = base->eax.split.num_threads_sharing + 1;
this_leaf = CPUID4_INFO_IDX(cpu, index);
nshared = this_leaf->base.eax.split.num_threads_sharing + 1;
apicid = cpu_data(cpu).apicid; apicid = cpu_data(cpu).apicid;
first = apicid - (apicid % nshared); first = apicid - (apicid % nshared);
last = first + nshared - 1; last = first + nshared - 1;
for_each_online_cpu(i) { for_each_online_cpu(i) {
this_cpu_ci = get_cpu_cacheinfo(i);
if (!this_cpu_ci->info_list)
continue;
apicid = cpu_data(i).apicid; apicid = cpu_data(i).apicid;
if ((apicid < first) || (apicid > last)) if ((apicid < first) || (apicid > last))
continue; continue;
if (!per_cpu(ici_cpuid4_info, i))
continue; this_leaf = this_cpu_ci->info_list + index;
this_leaf = CPUID4_INFO_IDX(i, index);
for_each_online_cpu(sibling) { for_each_online_cpu(sibling) {
apicid = cpu_data(sibling).apicid; apicid = cpu_data(sibling).apicid;
if ((apicid < first) || (apicid > last)) if ((apicid < first) || (apicid > last))
continue; continue;
set_bit(sibling, this_leaf->shared_cpu_map); cpumask_set_cpu(sibling,
&this_leaf->shared_cpu_map);
} }
} }
} else if (index == 3) { } else if (index == 3) {
for_each_cpu(i, cpu_llc_shared_mask(cpu)) { for_each_cpu(i, cpu_llc_shared_mask(cpu)) {
if (!per_cpu(ici_cpuid4_info, i)) this_cpu_ci = get_cpu_cacheinfo(i);
if (!this_cpu_ci->info_list)
continue; continue;
this_leaf = CPUID4_INFO_IDX(i, index); this_leaf = this_cpu_ci->info_list + index;
for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) { for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) {
if (!cpu_online(sibling)) if (!cpu_online(sibling))
continue; continue;
set_bit(sibling, this_leaf->shared_cpu_map); cpumask_set_cpu(sibling,
&this_leaf->shared_cpu_map);
} }
} }
} else } else
@ -804,457 +856,86 @@ static int cache_shared_amd_cpu_map_setup(unsigned int cpu, int index)
return 1; return 1;
} }
static void cache_shared_cpu_map_setup(unsigned int cpu, int index) static void __cache_cpumap_setup(unsigned int cpu, int index,
struct _cpuid4_info_regs *base)
{ {
struct _cpuid4_info *this_leaf, *sibling_leaf; struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
struct cacheinfo *this_leaf, *sibling_leaf;
unsigned long num_threads_sharing; unsigned long num_threads_sharing;
int index_msb, i; int index_msb, i;
struct cpuinfo_x86 *c = &cpu_data(cpu); struct cpuinfo_x86 *c = &cpu_data(cpu);
if (c->x86_vendor == X86_VENDOR_AMD) { if (c->x86_vendor == X86_VENDOR_AMD) {
if (cache_shared_amd_cpu_map_setup(cpu, index)) if (__cache_amd_cpumap_setup(cpu, index, base))
return; return;
} }
this_leaf = CPUID4_INFO_IDX(cpu, index); this_leaf = this_cpu_ci->info_list + index;
num_threads_sharing = 1 + this_leaf->base.eax.split.num_threads_sharing; num_threads_sharing = 1 + base->eax.split.num_threads_sharing;
cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
if (num_threads_sharing == 1) if (num_threads_sharing == 1)
cpumask_set_cpu(cpu, to_cpumask(this_leaf->shared_cpu_map)); return;
else {
index_msb = get_count_order(num_threads_sharing); index_msb = get_count_order(num_threads_sharing);
for_each_online_cpu(i) { for_each_online_cpu(i)
if (cpu_data(i).apicid >> index_msb == if (cpu_data(i).apicid >> index_msb == c->apicid >> index_msb) {
c->apicid >> index_msb) { struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
cpumask_set_cpu(i,
to_cpumask(this_leaf->shared_cpu_map));
if (i != cpu && per_cpu(ici_cpuid4_info, i)) {
sibling_leaf =
CPUID4_INFO_IDX(i, index);
cpumask_set_cpu(cpu, to_cpumask(
sibling_leaf->shared_cpu_map));
}
}
}
}
}
static void cache_remove_shared_cpu_map(unsigned int cpu, int index)
{
struct _cpuid4_info *this_leaf, *sibling_leaf;
int sibling;
this_leaf = CPUID4_INFO_IDX(cpu, index); if (i == cpu || !sib_cpu_ci->info_list)
for_each_cpu(sibling, to_cpumask(this_leaf->shared_cpu_map)) { continue;/* skip if itself or no cacheinfo */
sibling_leaf = CPUID4_INFO_IDX(sibling, index); sibling_leaf = sib_cpu_ci->info_list + index;
cpumask_clear_cpu(cpu, cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
to_cpumask(sibling_leaf->shared_cpu_map)); cpumask_set_cpu(cpu, &sibling_leaf->shared_cpu_map);
}
}
#else
static void cache_shared_cpu_map_setup(unsigned int cpu, int index)
{
}
static void cache_remove_shared_cpu_map(unsigned int cpu, int index)
{
}
#endif
static void free_cache_attributes(unsigned int cpu)
{
int i;
for (i = 0; i < num_cache_leaves; i++)
cache_remove_shared_cpu_map(cpu, i);
kfree(per_cpu(ici_cpuid4_info, cpu));
per_cpu(ici_cpuid4_info, cpu) = NULL;
}
static void get_cpu_leaves(void *_retval)
{
int j, *retval = _retval, cpu = smp_processor_id();
/* Do cpuid and store the results */
for (j = 0; j < num_cache_leaves; j++) {
struct _cpuid4_info *this_leaf = CPUID4_INFO_IDX(cpu, j);
*retval = cpuid4_cache_lookup_regs(j, &this_leaf->base);
if (unlikely(*retval < 0)) {
int i;
for (i = 0; i < j; i++)
cache_remove_shared_cpu_map(cpu, i);
break;
}
cache_shared_cpu_map_setup(cpu, j);
} }
} }
static int detect_cache_attributes(unsigned int cpu) static void ci_leaf_init(struct cacheinfo *this_leaf,
struct _cpuid4_info_regs *base)
{ {
int retval; this_leaf->level = base->eax.split.level;
this_leaf->type = cache_type_map[base->eax.split.type];
this_leaf->coherency_line_size =
base->ebx.split.coherency_line_size + 1;
this_leaf->ways_of_associativity =
base->ebx.split.ways_of_associativity + 1;
this_leaf->size = base->size;
this_leaf->number_of_sets = base->ecx.split.number_of_sets + 1;
this_leaf->physical_line_partition =
base->ebx.split.physical_line_partition + 1;
this_leaf->priv = base->nb;
}
if (num_cache_leaves == 0) static int __init_cache_level(unsigned int cpu)
{
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
if (!num_cache_leaves)
return -ENOENT; return -ENOENT;
if (!this_cpu_ci)
per_cpu(ici_cpuid4_info, cpu) = kzalloc( return -EINVAL;
sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL); this_cpu_ci->num_levels = 3;
if (per_cpu(ici_cpuid4_info, cpu) == NULL) this_cpu_ci->num_leaves = num_cache_leaves;
return -ENOMEM;
smp_call_function_single(cpu, get_cpu_leaves, &retval, true);
if (retval) {
kfree(per_cpu(ici_cpuid4_info, cpu));
per_cpu(ici_cpuid4_info, cpu) = NULL;
}
return retval;
}
#include <linux/kobject.h>
#include <linux/sysfs.h>
#include <linux/cpu.h>
/* pointer to kobject for cpuX/cache */
static DEFINE_PER_CPU(struct kobject *, ici_cache_kobject);
struct _index_kobject {
struct kobject kobj;
unsigned int cpu;
unsigned short index;
};
/* pointer to array of kobjects for cpuX/cache/indexY */
static DEFINE_PER_CPU(struct _index_kobject *, ici_index_kobject);
#define INDEX_KOBJECT_PTR(x, y) (&((per_cpu(ici_index_kobject, x))[y]))
#define show_one_plus(file_name, object, val) \
static ssize_t show_##file_name(struct _cpuid4_info *this_leaf, char *buf, \
unsigned int cpu) \
{ \
return sprintf(buf, "%lu\n", (unsigned long)this_leaf->object + val); \
}
show_one_plus(level, base.eax.split.level, 0);
show_one_plus(coherency_line_size, base.ebx.split.coherency_line_size, 1);
show_one_plus(physical_line_partition, base.ebx.split.physical_line_partition, 1);
show_one_plus(ways_of_associativity, base.ebx.split.ways_of_associativity, 1);
show_one_plus(number_of_sets, base.ecx.split.number_of_sets, 1);
static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf,
unsigned int cpu)
{
return sprintf(buf, "%luK\n", this_leaf->base.size / 1024);
}
static ssize_t show_shared_cpu_map_func(struct _cpuid4_info *this_leaf,
int type, char *buf)
{
const struct cpumask *mask = to_cpumask(this_leaf->shared_cpu_map);
int ret;
if (type)
ret = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
cpumask_pr_args(mask));
else
ret = scnprintf(buf, PAGE_SIZE - 1, "%*pb",
cpumask_pr_args(mask));
buf[ret++] = '\n';
buf[ret] = '\0';
return ret;
}
static inline ssize_t show_shared_cpu_map(struct _cpuid4_info *leaf, char *buf,
unsigned int cpu)
{
return show_shared_cpu_map_func(leaf, 0, buf);
}
static inline ssize_t show_shared_cpu_list(struct _cpuid4_info *leaf, char *buf,
unsigned int cpu)
{
return show_shared_cpu_map_func(leaf, 1, buf);
}
static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf,
unsigned int cpu)
{
switch (this_leaf->base.eax.split.type) {
case CACHE_TYPE_DATA:
return sprintf(buf, "Data\n");
case CACHE_TYPE_INST:
return sprintf(buf, "Instruction\n");
case CACHE_TYPE_UNIFIED:
return sprintf(buf, "Unified\n");
default:
return sprintf(buf, "Unknown\n");
}
}
#define to_object(k) container_of(k, struct _index_kobject, kobj)
#define to_attr(a) container_of(a, struct _cache_attr, attr)
#define define_one_ro(_name) \
static struct _cache_attr _name = \
__ATTR(_name, 0444, show_##_name, NULL)
define_one_ro(level);
define_one_ro(type);
define_one_ro(coherency_line_size);
define_one_ro(physical_line_partition);
define_one_ro(ways_of_associativity);
define_one_ro(number_of_sets);
define_one_ro(size);
define_one_ro(shared_cpu_map);
define_one_ro(shared_cpu_list);
static struct attribute *default_attrs[] = {
&type.attr,
&level.attr,
&coherency_line_size.attr,
&physical_line_partition.attr,
&ways_of_associativity.attr,
&number_of_sets.attr,
&size.attr,
&shared_cpu_map.attr,
&shared_cpu_list.attr,
NULL
};
#ifdef CONFIG_AMD_NB
static struct attribute **amd_l3_attrs(void)
{
static struct attribute **attrs;
int n;
if (attrs)
return attrs;
n = ARRAY_SIZE(default_attrs);
if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
n += 2;
if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
n += 1;
attrs = kzalloc(n * sizeof (struct attribute *), GFP_KERNEL);
if (attrs == NULL)
return attrs = default_attrs;
for (n = 0; default_attrs[n]; n++)
attrs[n] = default_attrs[n];
if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) {
attrs[n++] = &cache_disable_0.attr;
attrs[n++] = &cache_disable_1.attr;
}
if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
attrs[n++] = &subcaches.attr;
return attrs;
}
#endif
static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
{
struct _cache_attr *fattr = to_attr(attr);
struct _index_kobject *this_leaf = to_object(kobj);
ssize_t ret;
ret = fattr->show ?
fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
buf, this_leaf->cpu) :
0;
return ret;
}
static ssize_t store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
struct _cache_attr *fattr = to_attr(attr);
struct _index_kobject *this_leaf = to_object(kobj);
ssize_t ret;
ret = fattr->store ?
fattr->store(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
buf, count, this_leaf->cpu) :
0;
return ret;
}
static const struct sysfs_ops sysfs_ops = {
.show = show,
.store = store,
};
static struct kobj_type ktype_cache = {
.sysfs_ops = &sysfs_ops,
.default_attrs = default_attrs,
};
static struct kobj_type ktype_percpu_entry = {
.sysfs_ops = &sysfs_ops,
};
static void cpuid4_cache_sysfs_exit(unsigned int cpu)
{
kfree(per_cpu(ici_cache_kobject, cpu));
kfree(per_cpu(ici_index_kobject, cpu));
per_cpu(ici_cache_kobject, cpu) = NULL;
per_cpu(ici_index_kobject, cpu) = NULL;
free_cache_attributes(cpu);
}
static int cpuid4_cache_sysfs_init(unsigned int cpu)
{
int err;
if (num_cache_leaves == 0)
return -ENOENT;
err = detect_cache_attributes(cpu);
if (err)
return err;
/* Allocate all required memory */
per_cpu(ici_cache_kobject, cpu) =
kzalloc(sizeof(struct kobject), GFP_KERNEL);
if (unlikely(per_cpu(ici_cache_kobject, cpu) == NULL))
goto err_out;
per_cpu(ici_index_kobject, cpu) = kzalloc(
sizeof(struct _index_kobject) * num_cache_leaves, GFP_KERNEL);
if (unlikely(per_cpu(ici_index_kobject, cpu) == NULL))
goto err_out;
return 0;
err_out:
cpuid4_cache_sysfs_exit(cpu);
return -ENOMEM;
}
static DECLARE_BITMAP(cache_dev_map, NR_CPUS);
/* Add/Remove cache interface for CPU device */
static int cache_add_dev(struct device *dev)
{
unsigned int cpu = dev->id;
unsigned long i, j;
struct _index_kobject *this_object;
struct _cpuid4_info *this_leaf;
int retval;
retval = cpuid4_cache_sysfs_init(cpu);
if (unlikely(retval < 0))
return retval;
retval = kobject_init_and_add(per_cpu(ici_cache_kobject, cpu),
&ktype_percpu_entry,
&dev->kobj, "%s", "cache");
if (retval < 0) {
cpuid4_cache_sysfs_exit(cpu);
return retval;
}
for (i = 0; i < num_cache_leaves; i++) {
this_object = INDEX_KOBJECT_PTR(cpu, i);
this_object->cpu = cpu;
this_object->index = i;
this_leaf = CPUID4_INFO_IDX(cpu, i);
ktype_cache.default_attrs = default_attrs;
#ifdef CONFIG_AMD_NB
if (this_leaf->base.nb)
ktype_cache.default_attrs = amd_l3_attrs();
#endif
retval = kobject_init_and_add(&(this_object->kobj),
&ktype_cache,
per_cpu(ici_cache_kobject, cpu),
"index%1lu", i);
if (unlikely(retval)) {
for (j = 0; j < i; j++)
kobject_put(&(INDEX_KOBJECT_PTR(cpu, j)->kobj));
kobject_put(per_cpu(ici_cache_kobject, cpu));
cpuid4_cache_sysfs_exit(cpu);
return retval;
}
kobject_uevent(&(this_object->kobj), KOBJ_ADD);
}
cpumask_set_cpu(cpu, to_cpumask(cache_dev_map));
kobject_uevent(per_cpu(ici_cache_kobject, cpu), KOBJ_ADD);
return 0; return 0;
} }
static void cache_remove_dev(struct device *dev) static int __populate_cache_leaves(unsigned int cpu)
{ {
unsigned int cpu = dev->id; unsigned int idx, ret;
unsigned long i; struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
struct cacheinfo *this_leaf = this_cpu_ci->info_list;
struct _cpuid4_info_regs id4_regs = {};
if (per_cpu(ici_cpuid4_info, cpu) == NULL) for (idx = 0; idx < this_cpu_ci->num_leaves; idx++) {
return; ret = cpuid4_cache_lookup_regs(idx, &id4_regs);
if (!cpumask_test_cpu(cpu, to_cpumask(cache_dev_map))) if (ret)
return; return ret;
cpumask_clear_cpu(cpu, to_cpumask(cache_dev_map)); ci_leaf_init(this_leaf++, &id4_regs);
__cache_cpumap_setup(cpu, idx, &id4_regs);
for (i = 0; i < num_cache_leaves; i++)
kobject_put(&(INDEX_KOBJECT_PTR(cpu, i)->kobj));
kobject_put(per_cpu(ici_cache_kobject, cpu));
cpuid4_cache_sysfs_exit(cpu);
}
static int cacheinfo_cpu_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
struct device *dev;
dev = get_cpu_device(cpu);
switch (action) {
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
cache_add_dev(dev);
break;
case CPU_DEAD:
case CPU_DEAD_FROZEN:
cache_remove_dev(dev);
break;
} }
return NOTIFY_OK;
}
static struct notifier_block cacheinfo_cpu_notifier = {
.notifier_call = cacheinfo_cpu_callback,
};
static int __init cache_sysfs_init(void)
{
int i, err = 0;
if (num_cache_leaves == 0)
return 0; return 0;
cpu_notifier_register_begin();
for_each_online_cpu(i) {
struct device *dev = get_cpu_device(i);
err = cache_add_dev(dev);
if (err)
goto out;
}
__register_hotcpu_notifier(&cacheinfo_cpu_notifier);
out:
cpu_notifier_register_done();
return err;
} }
device_initcall(cache_sysfs_init); DEFINE_SMP_CALL_CACHE_FUNCTION(init_cache_level)
DEFINE_SMP_CALL_CACHE_FUNCTION(populate_cache_leaves)
#endif