drm/nva3/pm: rewrite clock_set, and switch to new interfaces

Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
This commit is contained in:
Ben Skeggs 2011-06-17 15:38:48 +10:00
parent 77e7da6814
commit ca94a71fc4
3 changed files with 144 additions and 140 deletions

View File

@ -59,10 +59,9 @@ void *nv50_pm_clock_pre(struct drm_device *, struct nouveau_pm_level *,
void nv50_pm_clock_set(struct drm_device *, void *); void nv50_pm_clock_set(struct drm_device *, void *);
/* nva3_pm.c */ /* nva3_pm.c */
int nva3_pm_clock_get(struct drm_device *, u32 id); int nva3_pm_clocks_get(struct drm_device *, struct nouveau_pm_level *);
void *nva3_pm_clock_pre(struct drm_device *, struct nouveau_pm_level *, void *nva3_pm_clocks_pre(struct drm_device *, struct nouveau_pm_level *);
u32 id, int khz); void nva3_pm_clocks_set(struct drm_device *, void *);
void nva3_pm_clock_set(struct drm_device *, void *);
/* nouveau_temp.c */ /* nouveau_temp.c */
void nouveau_temp_init(struct drm_device *dev); void nouveau_temp_init(struct drm_device *dev);

View File

@ -359,9 +359,9 @@ static int nouveau_init_engine_ptrs(struct drm_device *dev)
engine->pm.clock_set = nv50_pm_clock_set; engine->pm.clock_set = nv50_pm_clock_set;
break; break;
default: default:
engine->pm.clock_get = nva3_pm_clock_get; engine->pm.clocks_get = nva3_pm_clocks_get;
engine->pm.clock_pre = nva3_pm_clock_pre; engine->pm.clocks_pre = nva3_pm_clocks_pre;
engine->pm.clock_set = nva3_pm_clock_set; engine->pm.clocks_set = nva3_pm_clocks_set;
break; break;
} }
engine->pm.voltage_get = nouveau_voltage_gpio_get; engine->pm.voltage_get = nouveau_voltage_gpio_get;

View File

@ -27,11 +27,20 @@
#include "nouveau_bios.h" #include "nouveau_bios.h"
#include "nouveau_pm.h" #include "nouveau_pm.h"
static u32 read_pll(struct drm_device *dev, u32 pll, int clk); static u32 read_clk(struct drm_device *, int, bool);
static u32 read_clk(struct drm_device *dev, int clk); static u32 read_pll(struct drm_device *, u32, int);
static u32 static u32
read_clk(struct drm_device *dev, int clk) read_vco(struct drm_device *dev, int clk)
{
u32 sctl = nv_rd32(dev, 0x4120 + (clk * 4));
if ((sctl & 0x00000030) != 0x00000030)
return read_pll(dev, 0x00e820, 0x41);
return read_pll(dev, 0x00e8a0, 0x42);
}
static u32
read_clk(struct drm_device *dev, int clk, bool ignore_en)
{ {
u32 sctl, sdiv, sclk; u32 sctl, sdiv, sclk;
@ -39,20 +48,19 @@ read_clk(struct drm_device *dev, int clk)
return 27000; return 27000;
sctl = nv_rd32(dev, 0x4120 + (clk * 4)); sctl = nv_rd32(dev, 0x4120 + (clk * 4));
switch (sctl & 0x00003100) { if (!ignore_en && !(sctl & 0x00000100))
case 0x00000100: return 0;
switch (sctl & 0x00003000) {
case 0x00000000:
return 27000; return 27000;
case 0x00002100: case 0x00002000:
if (sctl & 0x00000040) if (sctl & 0x00000040)
return 108000; return 108000;
return 100000; return 100000;
case 0x00003100: case 0x00003000:
sclk = read_vco(dev, clk);
sdiv = ((sctl & 0x003f0000) >> 16) + 2; sdiv = ((sctl & 0x003f0000) >> 16) + 2;
if ((sctl & 0x00000030) != 0x00000030)
sclk = read_pll(dev, 0x00e820, 0x41);
else
sclk = read_pll(dev, 0x00e8a0, 0x42);
return (sclk * 2) / sdiv; return (sclk * 2) / sdiv;
default: default:
return 0; return 0;
@ -73,161 +81,158 @@ read_pll(struct drm_device *dev, u32 pll, int clk)
if ((pll & 0x00ff00) == 0x00e800) if ((pll & 0x00ff00) == 0x00e800)
P = 1; P = 1;
sclk = read_clk(dev, 0x00 + clk); sclk = read_clk(dev, 0x00 + clk, false);
} else { } else {
sclk = read_clk(dev, 0x10 + clk); sclk = read_clk(dev, 0x10 + clk, false);
} }
return sclk * N / (M * P); return sclk * N / (M * P);
} }
struct nva3_pm_state { struct creg {
enum pll_types type; u32 clk;
u32 src0; u32 pll;
u32 src1;
u32 ctrl;
u32 coef;
u32 old_pnm;
u32 new_pnm;
u32 new_div;
}; };
static int static int
nva3_pm_pll_offset(u32 id) calc_clk(struct drm_device *dev, u32 pll, int clk, u32 khz, struct creg *reg)
{ {
static const u32 pll_map[] = { struct pll_lims limits;
0x00, PLL_CORE, u32 oclk, sclk, sdiv;
0x01, PLL_SHADER, int P, N, M, diff;
0x02, PLL_MEMORY, int ret;
0x00, 0x00
};
const u32 *map = pll_map;
while (map[1]) { reg->pll = 0;
if (id == map[1]) reg->clk = 0;
return map[0];
map += 2; switch (khz) {
case 27000:
reg->clk = 0x00000100;
return khz;
case 100000:
reg->clk = 0x00002100;
return khz;
case 108000:
reg->clk = 0x00002140;
return khz;
default:
sclk = read_vco(dev, clk);
sdiv = min((sclk * 2) / (khz - 2999), (u32)65);
if (sdiv > 4) {
oclk = (sclk * 2) / sdiv;
diff = khz - oclk;
if (!pll || (diff >= -2000 && diff < 3000)) {
reg->clk = (((sdiv - 2) << 16) | 0x00003100);
return oclk;
}
}
break;
} }
return -ENOENT; ret = get_pll_limits(dev, pll, &limits);
if (ret)
return ret;
limits.refclk = read_clk(dev, clk - 0x10, true);
if (!limits.refclk)
return -EINVAL;
ret = nva3_calc_pll(dev, &limits, khz, &N, NULL, &M, &P);
if (ret >= 0) {
reg->clk = nv_rd32(dev, 0x4120 + (clk * 4));
reg->pll = (P << 16) | (N << 8) | M;
}
return ret;
} }
int int
nva3_pm_clock_get(struct drm_device *dev, u32 id) nva3_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{ {
switch (id) { perflvl->core = read_pll(dev, 0x4200, 0);
case PLL_CORE: perflvl->shader = read_pll(dev, 0x4220, 1);
return read_pll(dev, 0x4200, 0); perflvl->memory = read_pll(dev, 0x4000, 2);
case PLL_SHADER: return 0;
return read_pll(dev, 0x4220, 1);
case PLL_MEMORY:
return read_pll(dev, 0x4000, 2);
default:
return -ENOENT;
}
} }
struct nva3_pm_state {
struct creg nclk;
struct creg sclk;
struct creg mclk;
};
void * void *
nva3_pm_clock_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl, nva3_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
u32 id, int khz)
{ {
struct nva3_pm_state *pll; struct nva3_pm_state *info;
struct pll_lims limits; int ret;
int N, M, P, diff;
int ret, off;
ret = get_pll_limits(dev, id, &limits); info = kzalloc(sizeof(*info), GFP_KERNEL);
if (ret < 0) if (!info)
return (ret == -ENOENT) ? NULL : ERR_PTR(ret);
off = nva3_pm_pll_offset(id);
if (id < 0)
return ERR_PTR(-EINVAL);
pll = kzalloc(sizeof(*pll), GFP_KERNEL);
if (!pll)
return ERR_PTR(-ENOMEM); return ERR_PTR(-ENOMEM);
pll->type = id;
pll->src0 = 0x004120 + (off * 4);
pll->src1 = 0x004160 + (off * 4);
pll->ctrl = limits.reg + 0;
pll->coef = limits.reg + 4;
/* If target clock is within [-2, 3) MHz of a divisor, we'll ret = calc_clk(dev, 0x4200, 0x10, perflvl->core, &info->nclk);
* use that instead of calculating MNP values if (ret < 0)
*/ goto out;
pll->new_div = min((limits.refclk * 2) / (khz - 2999), 16);
if (pll->new_div) { ret = calc_clk(dev, 0x4220, 0x11, perflvl->shader, &info->sclk);
diff = khz - ((limits.refclk * 2) / pll->new_div); if (ret < 0)
if (diff < -2000 || diff >= 3000) goto out;
pll->new_div = 0;
ret = calc_clk(dev, 0x4000, 0x12, perflvl->memory, &info->mclk);
if (ret < 0)
goto out;
out:
if (ret < 0) {
kfree(info);
info = ERR_PTR(ret);
} }
return info;
}
if (!pll->new_div) { static void
ret = nva3_calc_pll(dev, &limits, khz, &N, NULL, &M, &P); prog_pll(struct drm_device *dev, u32 pll, int clk, struct creg *reg)
if (ret < 0) {
return ERR_PTR(ret); const u32 src0 = 0x004120 + (clk * 4);
const u32 src1 = 0x004160 + (clk * 4);
const u32 ctrl = pll + 0;
const u32 coef = pll + 4;
u32 cntl;
pll->new_pnm = (P << 16) | (N << 8) | M; cntl = nv_rd32(dev, ctrl) & 0xfffffff2;
pll->new_div = 2 - 1; if (reg->pll) {
nv_mask(dev, src0, 0x00000101, 0x00000101);
nv_wr32(dev, coef, reg->pll);
nv_wr32(dev, ctrl, cntl | 0x00000015);
nv_mask(dev, src1, 0x00000100, 0x00000000);
nv_mask(dev, src1, 0x00000001, 0x00000000);
} else { } else {
pll->new_pnm = 0; nv_mask(dev, src1, 0x003f3141, 0x00000101 | reg->clk);
pll->new_div--; nv_wr32(dev, ctrl, cntl | 0x0000001d);
nv_mask(dev, ctrl, 0x00000001, 0x00000000);
nv_mask(dev, src0, 0x00000100, 0x00000000);
nv_mask(dev, src0, 0x00000001, 0x00000000);
} }
if ((nv_rd32(dev, pll->src1) & 0x00000101) != 0x00000101)
pll->old_pnm = nv_rd32(dev, pll->coef);
return pll;
} }
void void
nva3_pm_clock_set(struct drm_device *dev, void *pre_state) nva3_pm_clocks_set(struct drm_device *dev, void *pre_state)
{ {
struct nva3_pm_state *pll = pre_state; struct nva3_pm_state *info = pre_state;
u32 ctrl = 0;
/* For the memory clock, NVIDIA will build a "script" describing prog_pll(dev, 0x004200, 0, &info->nclk);
* the reclocking process and ask PDAEMON to execute it. prog_pll(dev, 0x004220, 1, &info->sclk);
*/
if (pll->type == PLL_MEMORY) {
nv_wr32(dev, 0x100210, 0);
nv_wr32(dev, 0x1002dc, 1);
nv_wr32(dev, 0x004018, 0x00001000);
ctrl = 0x18000100;
}
if (pll->old_pnm || !pll->new_pnm) { nv_wr32(dev, 0x100210, 0);
nv_mask(dev, pll->src1, 0x003c0101, 0x00000101 | nv_wr32(dev, 0x1002dc, 1);
(pll->new_div << 18)); nv_wr32(dev, 0x004018, 0x00001000);
nv_wr32(dev, pll->ctrl, 0x0001001d | ctrl); prog_pll(dev, 0x004000, 2, &info->mclk);
nv_mask(dev, pll->ctrl, 0x00000001, 0x00000000); if (nv_rd32(dev, 0x4000) & 0x00000008)
} nv_wr32(dev, 0x004018, 0x1000d000);
else
nv_wr32(dev, 0x004018, 0x10005000);
nv_wr32(dev, 0x1002dc, 0);
nv_wr32(dev, 0x100210, 0x80000000);
if (pll->new_pnm) { kfree(info);
nv_mask(dev, pll->src0, 0x00000101, 0x00000101);
nv_wr32(dev, pll->coef, pll->new_pnm);
nv_wr32(dev, pll->ctrl, 0x0001001d | ctrl);
nv_mask(dev, pll->ctrl, 0x00000010, 0x00000000);
nv_mask(dev, pll->ctrl, 0x00020010, 0x00020010);
nv_wr32(dev, pll->ctrl, 0x00010015 | ctrl);
nv_mask(dev, pll->src1, 0x00000100, 0x00000000);
nv_mask(dev, pll->src1, 0x00000001, 0x00000000);
if (pll->type == PLL_MEMORY)
nv_wr32(dev, 0x4018, 0x10005000);
} else {
nv_mask(dev, pll->ctrl, 0x00000001, 0x00000000);
nv_mask(dev, pll->src0, 0x00000100, 0x00000000);
nv_mask(dev, pll->src0, 0x00000001, 0x00000000);
if (pll->type == PLL_MEMORY)
nv_wr32(dev, 0x4018, 0x1000d000);
}
if (pll->type == PLL_MEMORY) {
nv_wr32(dev, 0x1002dc, 0);
nv_wr32(dev, 0x100210, 0x80000000);
}
kfree(pll);
} }