drm/amd/pp: Remove SAMU support in powerplay

As the SAMU ip was not supported in linux,
so delete the SAMU support in powerplay on
asics Bonarire/Hawwii/Tonga/Fiji/Polaris/vegam.

Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
Signed-off-by: Rex Zhu <Rex.Zhu@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
This commit is contained in:
Rex Zhu 2018-06-04 13:33:14 +08:00 committed by Alex Deucher
parent dc85db256d
commit c5792d7776
12 changed files with 0 additions and 430 deletions

View File

@ -39,13 +39,6 @@ static int smu7_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
PPSMC_MSG_VCEDPM_Disable);
}
static int smu7_enable_disable_samu_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
return smum_send_msg_to_smc(hwmgr, enable ?
PPSMC_MSG_SAMUDPM_Enable :
PPSMC_MSG_SAMUDPM_Disable);
}
static int smu7_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate)
{
if (!bgate)
@ -60,13 +53,6 @@ static int smu7_update_vce_dpm(struct pp_hwmgr *hwmgr, bool bgate)
return smu7_enable_disable_vce_dpm(hwmgr, !bgate);
}
static int smu7_update_samu_dpm(struct pp_hwmgr *hwmgr, bool bgate)
{
if (!bgate)
smum_update_smc_table(hwmgr, SMU_SAMU_TABLE);
return smu7_enable_disable_samu_dpm(hwmgr, !bgate);
}
int smu7_powerdown_uvd(struct pp_hwmgr *hwmgr)
{
if (phm_cf_want_uvd_power_gating(hwmgr))
@ -107,35 +93,15 @@ static int smu7_powerup_vce(struct pp_hwmgr *hwmgr)
return 0;
}
static int smu7_powerdown_samu(struct pp_hwmgr *hwmgr)
{
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SamuPowerGating))
return smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_SAMPowerOFF);
return 0;
}
static int smu7_powerup_samu(struct pp_hwmgr *hwmgr)
{
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SamuPowerGating))
return smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_SAMPowerON);
return 0;
}
int smu7_disable_clock_power_gating(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
data->uvd_power_gated = false;
data->vce_power_gated = false;
data->samu_power_gated = false;
smu7_powerup_uvd(hwmgr);
smu7_powerup_vce(hwmgr);
smu7_powerup_samu(hwmgr);
return 0;
}
@ -195,26 +161,6 @@ void smu7_powergate_vce(struct pp_hwmgr *hwmgr, bool bgate)
}
}
int smu7_powergate_samu(struct pp_hwmgr *hwmgr, bool bgate)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (data->samu_power_gated == bgate)
return 0;
data->samu_power_gated = bgate;
if (bgate) {
smu7_update_samu_dpm(hwmgr, true);
smu7_powerdown_samu(hwmgr);
} else {
smu7_powerup_samu(hwmgr);
smu7_update_samu_dpm(hwmgr, false);
}
return 0;
}
int smu7_update_clock_gatings(struct pp_hwmgr *hwmgr,
const uint32_t *msg_id)
{

View File

@ -29,7 +29,6 @@
void smu7_powergate_vce(struct pp_hwmgr *hwmgr, bool bgate);
void smu7_powergate_uvd(struct pp_hwmgr *hwmgr, bool bgate);
int smu7_powerdown_uvd(struct pp_hwmgr *hwmgr);
int smu7_powergate_samu(struct pp_hwmgr *hwmgr, bool bgate);
int smu7_powergate_acp(struct pp_hwmgr *hwmgr, bool bgate);
int smu7_disable_clock_power_gating(struct pp_hwmgr *hwmgr);
int smu7_update_clock_gatings(struct pp_hwmgr *hwmgr,

View File

@ -4300,7 +4300,6 @@ static int smu7_init_power_gate_state(struct pp_hwmgr *hwmgr)
data->uvd_power_gated = false;
data->vce_power_gated = false;
data->samu_power_gated = false;
return 0;
}

View File

@ -310,7 +310,6 @@ struct smu7_hwmgr {
/* ---- Power Gating States ---- */
bool uvd_power_gated;
bool vce_power_gated;
bool samu_power_gated;
bool need_long_memory_training;
/* Application power optimization parameters */

View File

@ -370,7 +370,6 @@ struct vega10_hwmgr {
/* ---- Power Gating States ---- */
bool uvd_power_gated;
bool vce_power_gated;
bool samu_power_gated;
bool need_long_memory_training;
/* Internal settings to apply the application power optimization parameters */

View File

@ -29,7 +29,6 @@
enum SMU_TABLE {
SMU_UVD_TABLE = 0,
SMU_VCE_TABLE,
SMU_SAMU_TABLE,
SMU_BIF_TABLE,
};
@ -47,7 +46,6 @@ enum SMU_MEMBER {
UcodeLoadStatus,
UvdBootLevel,
VceBootLevel,
SamuBootLevel,
LowSclkInterruptThreshold,
DRAM_LOG_ADDR_H,
DRAM_LOG_ADDR_L,

View File

@ -1614,37 +1614,6 @@ static int ci_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
return result;
}
static int ci_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
SMU7_Discrete_DpmTable *table)
{
int result = -EINVAL;
uint8_t count;
struct pp_atomctrl_clock_dividers_vi dividers;
struct phm_samu_clock_voltage_dependency_table *samu_table =
hwmgr->dyn_state.samu_clock_voltage_dependency_table;
table->SamuBootLevel = 0;
table->SamuLevelCount = (uint8_t)(samu_table->count);
for (count = 0; count < table->SamuLevelCount; count++) {
table->SamuLevel[count].Frequency = samu_table->entries[count].samclk;
table->SamuLevel[count].MinVoltage = samu_table->entries[count].v * VOLTAGE_SCALE;
table->SamuLevel[count].MinPhases = 1;
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->SamuLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for samu clock", return result);
table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
CONVERT_FROM_HOST_TO_SMC_US(table->SamuLevel[count].MinVoltage);
}
return result;
}
static int ci_populate_memory_timing_parameters(
struct pp_hwmgr *hwmgr,
uint32_t engine_clock,
@ -2026,10 +1995,6 @@ static int ci_init_smc_table(struct pp_hwmgr *hwmgr)
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize ACP Level!", return result);
result = ci_populate_smc_samu_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize SAMU Level!", return result);
/* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
/* need to populate the ARB settings for the initial state. */
result = ci_program_memory_timing_parameters(hwmgr);

View File

@ -1503,44 +1503,6 @@ static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
return result;
}
static int fiji_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
SMU73_Discrete_DpmTable *table)
{
int result = -EINVAL;
uint8_t count;
struct pp_atomctrl_clock_dividers_vi dividers;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
table_info->mm_dep_table;
table->SamuBootLevel = 0;
table->SamuLevelCount = (uint8_t)(mm_table->count);
for (count = 0; count < table->SamuLevelCount; count++) {
/* not sure whether we need evclk or not */
table->SamuLevel[count].MinVoltage = 0;
table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
VOLTAGE_SCALE) << VDDC_SHIFT;
table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->SamuLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for samu clock", return result);
table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
}
return result;
}
static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
int32_t eng_clock, int32_t mem_clock,
struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
@ -2028,10 +1990,6 @@ static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize ACP Level!", return result);
result = fiji_populate_smc_samu_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize SAMU Level!", return result);
/* Since only the initial state is completely set up at this point
* (the other states are just copies of the boot state) we only
* need to populate the ARB settings for the initial state.
@ -2378,8 +2336,6 @@ static uint32_t fiji_get_offsetof(uint32_t type, uint32_t member)
return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
case VceBootLevel:
return offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
case SamuBootLevel:
return offsetof(SMU73_Discrete_DpmTable, SamuBootLevel);
case LowSclkInterruptThreshold:
return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold);
}
@ -2478,33 +2434,6 @@ static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr)
return 0;
}
static int fiji_update_samu_smc_table(struct pp_hwmgr *hwmgr)
{
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
uint32_t mm_boot_level_offset, mm_boot_level_value;
smu_data->smc_state_table.SamuBootLevel = 0;
mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
offsetof(SMU73_Discrete_DpmTable, SamuBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset);
mm_boot_level_value &= 0xFFFFFF00;
mm_boot_level_value |= smu_data->smc_state_table.SamuBootLevel << 0;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState))
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SAMUDPM_SetEnabledMask,
(uint32_t)(1 << smu_data->smc_state_table.SamuBootLevel));
return 0;
}
static int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
{
switch (type) {
@ -2514,9 +2443,6 @@ static int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
case SMU_VCE_TABLE:
fiji_update_vce_smc_table(hwmgr);
break;
case SMU_SAMU_TABLE:
fiji_update_samu_smc_table(hwmgr);
break;
default:
break;
}

View File

@ -1578,12 +1578,6 @@ static int iceland_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
return 0;
}
static int iceland_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
SMU71_Discrete_DpmTable *table)
{
return 0;
}
static int iceland_populate_memory_timing_parameters(
struct pp_hwmgr *hwmgr,
uint32_t engine_clock,
@ -1992,10 +1986,6 @@ static int iceland_init_smc_table(struct pp_hwmgr *hwmgr)
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize ACP Level!", return result;);
result = iceland_populate_smc_samu_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize SAMU Level!", return result;);
/* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
/* need to populate the ARB settings for the initial state. */
result = iceland_program_memory_timing_parameters(hwmgr);

View File

@ -1337,55 +1337,6 @@ static int polaris10_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
return result;
}
static int polaris10_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
SMU74_Discrete_DpmTable *table)
{
int result = -EINVAL;
uint8_t count;
struct pp_atomctrl_clock_dividers_vi dividers;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
table_info->mm_dep_table;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t vddci;
table->SamuBootLevel = 0;
table->SamuLevelCount = (uint8_t)(mm_table->count);
for (count = 0; count < table->SamuLevelCount; count++) {
/* not sure whether we need evclk or not */
table->SamuLevel[count].MinVoltage = 0;
table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
VOLTAGE_SCALE) << VDDC_SHIFT;
if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
else
vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
table->SamuLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->SamuLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for samu clock", return result);
table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
}
return result;
}
static int polaris10_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
int32_t eng_clock, int32_t mem_clock,
SMU74_Discrete_MCArbDramTimingTableEntry *arb_regs)
@ -1865,10 +1816,6 @@ static int polaris10_init_smc_table(struct pp_hwmgr *hwmgr)
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize VCE Level!", return result);
result = polaris10_populate_smc_samu_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize SAMU Level!", return result);
/* Since only the initial state is completely set up at this point
* (the other states are just copies of the boot state) we only
* need to populate the ARB settings for the initial state.
@ -2222,34 +2169,6 @@ static int polaris10_update_vce_smc_table(struct pp_hwmgr *hwmgr)
return 0;
}
static int polaris10_update_samu_smc_table(struct pp_hwmgr *hwmgr)
{
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend);
uint32_t mm_boot_level_offset, mm_boot_level_value;
smu_data->smc_state_table.SamuBootLevel = 0;
mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
offsetof(SMU74_Discrete_DpmTable, SamuBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset);
mm_boot_level_value &= 0xFFFFFF00;
mm_boot_level_value |= smu_data->smc_state_table.SamuBootLevel << 0;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState))
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SAMUDPM_SetEnabledMask,
(uint32_t)(1 << smu_data->smc_state_table.SamuBootLevel));
return 0;
}
static int polaris10_update_bif_smc_table(struct pp_hwmgr *hwmgr)
{
struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend);
@ -2276,9 +2195,6 @@ static int polaris10_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
case SMU_VCE_TABLE:
polaris10_update_vce_smc_table(hwmgr);
break;
case SMU_SAMU_TABLE:
polaris10_update_samu_smc_table(hwmgr);
break;
case SMU_BIF_TABLE:
polaris10_update_bif_smc_table(hwmgr);
default:
@ -2357,8 +2273,6 @@ static uint32_t polaris10_get_offsetof(uint32_t type, uint32_t member)
return offsetof(SMU74_Discrete_DpmTable, UvdBootLevel);
case VceBootLevel:
return offsetof(SMU74_Discrete_DpmTable, VceBootLevel);
case SamuBootLevel:
return offsetof(SMU74_Discrete_DpmTable, SamuBootLevel);
case LowSclkInterruptThreshold:
return offsetof(SMU74_Discrete_DpmTable, LowSclkInterruptThreshold);
}

View File

@ -1443,51 +1443,6 @@ static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
return result;
}
static int tonga_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
int result = 0;
uint8_t count;
pp_atomctrl_clock_dividers_vi dividers;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
pptable_info->mm_dep_table;
table->SamuBootLevel = 0;
table->SamuLevelCount = (uint8_t) (mm_table->count);
for (count = 0; count < table->SamuLevelCount; count++) {
/* not sure whether we need evclk or not */
table->SamuLevel[count].Frequency =
pptable_info->mm_dep_table->entries[count].samclock;
table->SamuLevel[count].MinVoltage.Vddc =
phm_get_voltage_index(pptable_info->vddc_lookup_table,
mm_table->entries[count].vddc);
table->SamuLevel[count].MinVoltage.VddGfx =
(data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
mm_table->entries[count].vddgfx) : 0;
table->SamuLevel[count].MinVoltage.Vddci =
phm_get_voltage_id(&data->vddci_voltage_table,
mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
table->SamuLevel[count].MinVoltage.Phases = 1;
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->SamuLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((!result),
"can not find divide id for samu clock", return result);
table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
}
return result;
}
static int tonga_populate_memory_timing_parameters(
struct pp_hwmgr *hwmgr,
uint32_t engine_clock,
@ -2323,10 +2278,6 @@ static int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize ACP Level !", return result);
result = tonga_populate_smc_samu_level(hwmgr, table);
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize SAMU Level !", return result);
/* Since only the initial state is completely set up at this
* point (the other states are just copies of the boot state) we only
* need to populate the ARB settings for the initial state.
@ -2673,8 +2624,6 @@ static uint32_t tonga_get_offsetof(uint32_t type, uint32_t member)
return offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
case VceBootLevel:
return offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
case SamuBootLevel:
return offsetof(SMU72_Discrete_DpmTable, SamuBootLevel);
case LowSclkInterruptThreshold:
return offsetof(SMU72_Discrete_DpmTable, LowSclkInterruptThreshold);
}
@ -2773,32 +2722,6 @@ static int tonga_update_vce_smc_table(struct pp_hwmgr *hwmgr)
return 0;
}
static int tonga_update_samu_smc_table(struct pp_hwmgr *hwmgr)
{
struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
uint32_t mm_boot_level_offset, mm_boot_level_value;
smu_data->smc_state_table.SamuBootLevel = 0;
mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
offsetof(SMU72_Discrete_DpmTable, SamuBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset);
mm_boot_level_value &= 0xFFFFFF00;
mm_boot_level_value |= smu_data->smc_state_table.SamuBootLevel << 0;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState))
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SAMUDPM_SetEnabledMask,
(uint32_t)(1 << smu_data->smc_state_table.SamuBootLevel));
return 0;
}
static int tonga_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
{
switch (type) {
@ -2808,9 +2731,6 @@ static int tonga_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
case SMU_VCE_TABLE:
tonga_update_vce_smc_table(hwmgr);
break;
case SMU_SAMU_TABLE:
tonga_update_samu_smc_table(hwmgr);
break;
default:
break;
}

View File

@ -393,34 +393,6 @@ static int vegam_update_vce_smc_table(struct pp_hwmgr *hwmgr)
return 0;
}
static int vegam_update_samu_smc_table(struct pp_hwmgr *hwmgr)
{
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
uint32_t mm_boot_level_offset, mm_boot_level_value;
smu_data->smc_state_table.SamuBootLevel = 0;
mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
offsetof(SMU75_Discrete_DpmTable, SamuBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset);
mm_boot_level_value &= 0xFFFFFF00;
mm_boot_level_value |= smu_data->smc_state_table.SamuBootLevel << 0;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState))
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SAMUDPM_SetEnabledMask,
(uint32_t)(1 << smu_data->smc_state_table.SamuBootLevel));
return 0;
}
static int vegam_update_bif_smc_table(struct pp_hwmgr *hwmgr)
{
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
@ -447,9 +419,6 @@ static int vegam_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
case SMU_VCE_TABLE:
vegam_update_vce_smc_table(hwmgr);
break;
case SMU_SAMU_TABLE:
vegam_update_samu_smc_table(hwmgr);
break;
case SMU_BIF_TABLE:
vegam_update_bif_smc_table(hwmgr);
break;
@ -1281,54 +1250,6 @@ static int vegam_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
return result;
}
static int vegam_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
SMU75_Discrete_DpmTable *table)
{
int result = -EINVAL;
uint8_t count;
struct pp_atomctrl_clock_dividers_vi dividers;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
table_info->mm_dep_table;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t vddci;
table->SamuBootLevel = 0;
table->SamuLevelCount = (uint8_t)(mm_table->count);
for (count = 0; count < table->SamuLevelCount; count++) {
/* not sure whether we need evclk or not */
table->SamuLevel[count].MinVoltage = 0;
table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
VOLTAGE_SCALE) << VDDC_SHIFT;
if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
else
vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
table->SamuLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->SamuLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for samu clock", return result);
table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
}
return result;
}
static int vegam_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
int32_t eng_clock, int32_t mem_clock,
SMU75_Discrete_MCArbDramTimingTableEntry *arb_regs)
@ -2062,10 +1983,6 @@ static int vegam_init_smc_table(struct pp_hwmgr *hwmgr)
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize VCE Level!", return result);
result = vegam_populate_smc_samu_level(hwmgr, table);
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize SAMU Level!", return result);
/* Since only the initial state is completely set up at this point
* (the other states are just copies of the boot state) we only
* need to populate the ARB settings for the initial state.
@ -2273,8 +2190,6 @@ static uint32_t vegam_get_offsetof(uint32_t type, uint32_t member)
return offsetof(SMU75_Discrete_DpmTable, UvdBootLevel);
case VceBootLevel:
return offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
case SamuBootLevel:
return offsetof(SMU75_Discrete_DpmTable, SamuBootLevel);
case LowSclkInterruptThreshold:
return offsetof(SMU75_Discrete_DpmTable, LowSclkInterruptThreshold);
}