of: Documentation regarding attaching OF Selftest testdata
This patch add a document that explains how the selftest test data is dynamically attached into the live device tree irrespective of the machine's architecture. Signed-off-by: Gaurav Minocha <gaurav.minocha.os@gmail.com> Signed-off-by: Grant Likely <grant.likely@linaro.org>
This commit is contained in:
parent
ef69d74035
commit
b9c74fd7d2
211
Documentation/devicetree/of_selftest.txt
Normal file
211
Documentation/devicetree/of_selftest.txt
Normal file
@ -0,0 +1,211 @@
|
||||
Open Firmware Device Tree Selftest
|
||||
----------------------------------
|
||||
|
||||
Author: Gaurav Minocha <gaurav.minocha.os@gmail.com>
|
||||
|
||||
1. Introduction
|
||||
|
||||
This document explains how the test data required for executing OF selftest
|
||||
is attached to the live tree dynamically, independent of the machine's
|
||||
architecture.
|
||||
|
||||
It is recommended to read the following documents before moving ahead.
|
||||
|
||||
[1] Documentation/devicetree/usage-model.txt
|
||||
[2] http://www.devicetree.org/Device_Tree_Usage
|
||||
|
||||
OF Selftest has been designed to test the interface (include/linux/of.h)
|
||||
provided to device driver developers to fetch the device information..etc.
|
||||
from the unflattened device tree data structure. This interface is used by
|
||||
most of the device drivers in various use cases.
|
||||
|
||||
|
||||
2. Test-data
|
||||
|
||||
The Device Tree Source file (drivers/of/testcase-data/testcases.dts) contains
|
||||
the test data required for executing the unit tests automated in
|
||||
drivers/of/selftests.c. Currently, following Device Tree Source Include files
|
||||
(.dtsi) are included in testcase.dts:
|
||||
|
||||
drivers/of/testcase-data/tests-interrupts.dtsi
|
||||
drivers/of/testcase-data/tests-platform.dtsi
|
||||
drivers/of/testcase-data/tests-phandle.dtsi
|
||||
drivers/of/testcase-data/tests-match.dtsi
|
||||
|
||||
When the kernel is build with OF_SELFTEST enabled, then the following make rule
|
||||
|
||||
$(obj)/%.dtb: $(src)/%.dts FORCE
|
||||
$(call if_changed_dep, dtc)
|
||||
|
||||
is used to compile the DT source file (testcase.dts) into a binary blob
|
||||
(testcase.dtb), also referred as flattened DT.
|
||||
|
||||
After that, using the following rule the binary blob above is wrapped as an
|
||||
assembly file (testcase.dtb.S).
|
||||
|
||||
$(obj)/%.dtb.S: $(obj)/%.dtb
|
||||
$(call cmd, dt_S_dtb)
|
||||
|
||||
The assembly file is compiled into an object file (testcase.dtb.o), and is
|
||||
linked into the kernel image.
|
||||
|
||||
|
||||
2.1. Adding the test data
|
||||
|
||||
Un-flattened device tree structure:
|
||||
|
||||
Un-flattened device tree consists of connected device_node(s) in form of a tree
|
||||
structure described below.
|
||||
|
||||
// following struct members are used to construct the tree
|
||||
struct device_node {
|
||||
...
|
||||
struct device_node *parent;
|
||||
struct device_node *child;
|
||||
struct device_node *sibling;
|
||||
struct device_node *allnext; /* next in list of all nodes */
|
||||
...
|
||||
};
|
||||
|
||||
Figure 1, describes a generic structure of machine’s un-flattened device tree
|
||||
considering only child and sibling pointers. There exists another pointer,
|
||||
*parent, that is used to traverse the tree in the reverse direction. So, at
|
||||
a particular level the child node and all the sibling nodes will have a parent
|
||||
pointer pointing to a common node (e.g. child1, sibling2, sibling3, sibling4’s
|
||||
parent points to root node)
|
||||
|
||||
root (‘/’)
|
||||
|
|
||||
child1 -> sibling2 -> sibling3 -> sibling4 -> null
|
||||
| | | |
|
||||
| | | null
|
||||
| | |
|
||||
| | child31 -> sibling32 -> null
|
||||
| | | |
|
||||
| | null null
|
||||
| |
|
||||
| child21 -> sibling22 -> sibling23 -> null
|
||||
| | | |
|
||||
| null null null
|
||||
|
|
||||
child11 -> sibling12 -> sibling13 -> sibling14 -> null
|
||||
| | | |
|
||||
| | | null
|
||||
| | |
|
||||
null null child131 -> null
|
||||
|
|
||||
null
|
||||
|
||||
Figure 1: Generic structure of un-flattened device tree
|
||||
|
||||
|
||||
*allnext: it is used to link all the nodes of DT into a list. So, for the
|
||||
above tree the list would be as follows:
|
||||
|
||||
root->child1->child11->sibling12->sibling13->child131->sibling14->sibling2->
|
||||
child21->sibling22->sibling23->sibling3->child31->sibling32->sibling4->null
|
||||
|
||||
Before executing OF selftest, it is required to attach the test data to
|
||||
machine's device tree (if present). So, when selftest_data_add() is called,
|
||||
at first it reads the flattened device tree data linked into the kernel image
|
||||
via the following kernel symbols:
|
||||
|
||||
__dtb_testcases_begin - address marking the start of test data blob
|
||||
__dtb_testcases_end - address marking the end of test data blob
|
||||
|
||||
Secondly, it calls of_fdt_unflatten_device_tree() to unflatten the flattened
|
||||
blob. And finally, if the machine’s device tree (i.e live tree) is present,
|
||||
then it attaches the unflattened test data tree to the live tree, else it
|
||||
attaches itself as a live device tree.
|
||||
|
||||
attach_node_and_children() uses of_attach_node() to attach the nodes into the
|
||||
live tree as explained below. To explain the same, the test data tree described
|
||||
in Figure 2 is attached to the live tree described in Figure 1.
|
||||
|
||||
root (‘/’)
|
||||
|
|
||||
testcase-data
|
||||
|
|
||||
test-child0 -> test-sibling1 -> test-sibling2 -> test-sibling3 -> null
|
||||
| | | |
|
||||
test-child01 null null null
|
||||
|
||||
|
||||
allnext list:
|
||||
|
||||
root->testcase-data->test-child0->test-child01->test-sibling1->test-sibling2
|
||||
->test-sibling3->null
|
||||
|
||||
Figure 2: Example test data tree to be attached to live tree.
|
||||
|
||||
According to the scenario above, the live tree is already present so it isn’t
|
||||
required to attach the root(‘/’) node. All other nodes are attached by calling
|
||||
of_attach_node() on each node.
|
||||
|
||||
In the function of_attach_node(), the new node is attached as the child of the
|
||||
given parent in live tree. But, if parent already has a child then the new node
|
||||
replaces the current child and turns it into its sibling. So, when the testcase
|
||||
data node is attached to the live tree above (Figure 1), the final structure is
|
||||
as shown in Figure 3.
|
||||
|
||||
root (‘/’)
|
||||
|
|
||||
testcase-data -> child1 -> sibling2 -> sibling3 -> sibling4 -> null
|
||||
| | | | |
|
||||
(...) | | | null
|
||||
| | child31 -> sibling32 -> null
|
||||
| | | |
|
||||
| | null null
|
||||
| |
|
||||
| child21 -> sibling22 -> sibling23 -> null
|
||||
| | | |
|
||||
| null null null
|
||||
|
|
||||
child11 -> sibling12 -> sibling13 -> sibling14 -> null
|
||||
| | | |
|
||||
null null | null
|
||||
|
|
||||
child131 -> null
|
||||
|
|
||||
null
|
||||
-----------------------------------------------------------------------
|
||||
|
||||
root (‘/’)
|
||||
|
|
||||
testcase-data -> child1 -> sibling2 -> sibling3 -> sibling4 -> null
|
||||
| | | | |
|
||||
| (...) (...) (...) null
|
||||
|
|
||||
test-sibling3 -> test-sibling2 -> test-sibling1 -> test-child0 -> null
|
||||
| | | |
|
||||
null null null test-child01
|
||||
|
||||
|
||||
Figure 3: Live device tree structure after attaching the testcase-data.
|
||||
|
||||
|
||||
Astute readers would have noticed that test-child0 node becomes the last
|
||||
sibling compared to the earlier structure (Figure 2). After attaching first
|
||||
test-child0 the test-sibling1 is attached that pushes the child node
|
||||
(i.e. test-child0) to become a sibling and makes itself a child node,
|
||||
as mentioned above.
|
||||
|
||||
If a duplicate node is found (i.e. if a node with same full_name property is
|
||||
already present in the live tree), then the node isn’t attached rather its
|
||||
properties are updated to the live tree’s node by calling the function
|
||||
update_node_properties().
|
||||
|
||||
|
||||
2.2. Removing the test data
|
||||
|
||||
Once the test case execution is complete, selftest_data_remove is called in
|
||||
order to remove the device nodes attached initially (first the leaf nodes are
|
||||
detached and then moving up the parent nodes are removed, and eventually the
|
||||
whole tree). selftest_data_remove() calls detach_node_and_children() that uses
|
||||
of_detach_node() to detach the nodes from the live device tree.
|
||||
|
||||
To detach a node, of_detach_node() first updates all_next linked list, by
|
||||
attaching the previous node’s allnext to current node’s allnext pointer. And
|
||||
then, it either updates the child pointer of given node’s parent to its
|
||||
sibling or attaches the previous sibling to the given node’s sibling, as
|
||||
appropriate. That is it :)
|
Loading…
Reference in New Issue
Block a user