Staging: et131x: tidy eeprom code up
Turn this one into something resembling a clean Linux driver Signed-off-by: Alan Cox <alan@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This commit is contained in:
parent
53f8aeef7d
commit
b802ce0c70
@ -95,198 +95,120 @@
|
||||
#include "et1310_tx.h"
|
||||
|
||||
|
||||
/*
|
||||
* EEPROM Defines
|
||||
*/
|
||||
|
||||
/* LBCIF Register Groups (addressed via 32-bit offsets) */
|
||||
#define LBCIF_DWORD0_GROUP_OFFSET 0xAC
|
||||
#define LBCIF_DWORD1_GROUP_OFFSET 0xB0
|
||||
static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
|
||||
{
|
||||
u32 reg;
|
||||
int i;
|
||||
|
||||
/* LBCIF Registers (addressed via 8-bit offsets) */
|
||||
#define LBCIF_ADDRESS_REGISTER_OFFSET 0xAC
|
||||
#define LBCIF_DATA_REGISTER_OFFSET 0xB0
|
||||
#define LBCIF_CONTROL_REGISTER_OFFSET 0xB1
|
||||
#define LBCIF_STATUS_REGISTER_OFFSET 0xB2
|
||||
/*
|
||||
* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
|
||||
* bits 7,1:0 both equal to 1, at least once after reset.
|
||||
* Subsequent operations need only to check that bits 1:0 are equal
|
||||
* to 1 prior to starting a single byte read/write
|
||||
*/
|
||||
|
||||
/* LBCIF Control Register Bits */
|
||||
#define LBCIF_CONTROL_SEQUENTIAL_READ 0x01
|
||||
#define LBCIF_CONTROL_PAGE_WRITE 0x02
|
||||
#define LBCIF_CONTROL_UNUSED1 0x04
|
||||
#define LBCIF_CONTROL_EEPROM_RELOAD 0x08
|
||||
#define LBCIF_CONTROL_UNUSED2 0x10
|
||||
#define LBCIF_CONTROL_TWO_BYTE_ADDR 0x20
|
||||
#define LBCIF_CONTROL_I2C_WRITE 0x40
|
||||
#define LBCIF_CONTROL_LBCIF_ENABLE 0x80
|
||||
for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
|
||||
/* Read registers grouped in DWORD1 */
|
||||
if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, ®))
|
||||
return -EIO;
|
||||
|
||||
/* LBCIF Status Register Bits */
|
||||
#define LBCIF_STATUS_PHY_QUEUE_AVAIL 0x01
|
||||
#define LBCIF_STATUS_I2C_IDLE 0x02
|
||||
#define LBCIF_STATUS_ACK_ERROR 0x04
|
||||
#define LBCIF_STATUS_GENERAL_ERROR 0x08
|
||||
#define LBCIF_STATUS_UNUSED 0x30
|
||||
#define LBCIF_STATUS_CHECKSUM_ERROR 0x40
|
||||
#define LBCIF_STATUS_EEPROM_PRESENT 0x80
|
||||
/* I2C idle and Phy Queue Avail both true */
|
||||
if ((reg & 0x3000) == 0x3000) {
|
||||
if (status)
|
||||
*status = reg;
|
||||
return reg & 0xFF;
|
||||
}
|
||||
}
|
||||
return -ETIMEDOUT;
|
||||
}
|
||||
|
||||
/* Miscellaneous Constraints */
|
||||
#define MAX_NUM_REGISTER_POLLS 1000
|
||||
#define MAX_NUM_WRITE_RETRIES 2
|
||||
|
||||
/*
|
||||
* Define macros that allow individual register values to be extracted from a
|
||||
* DWORD1 register grouping
|
||||
*/
|
||||
#define EXTRACT_DATA_REGISTER(x) (u8)(x & 0xFF)
|
||||
#define EXTRACT_STATUS_REGISTER(x) (u8)((x >> 16) & 0xFF)
|
||||
#define EXTRACT_CONTROL_REG(x) (u8)((x >> 8) & 0xFF)
|
||||
|
||||
/**
|
||||
* EepromWriteByte - Write a byte to the ET1310's EEPROM
|
||||
* eeprom_write - Write a byte to the ET1310's EEPROM
|
||||
* @etdev: pointer to our private adapter structure
|
||||
* @addr: the address to write
|
||||
* @data: the value to write
|
||||
*
|
||||
* Returns 1 for a successful write.
|
||||
*/
|
||||
int EepromWriteByte(struct et131x_adapter *etdev, u32 addr, u8 data)
|
||||
int eeprom_write(struct et131x_adapter *etdev, u32 addr, u8 data)
|
||||
{
|
||||
struct pci_dev *pdev = etdev->pdev;
|
||||
int index;
|
||||
int index = 0;
|
||||
int retries;
|
||||
int err = 0;
|
||||
int i2c_wack = 0;
|
||||
int writeok = 0;
|
||||
u8 control;
|
||||
u8 status = 0;
|
||||
u32 dword1 = 0;
|
||||
u32 status;
|
||||
u32 val = 0;
|
||||
|
||||
/*
|
||||
* The following excerpt is from "Serial EEPROM HW Design
|
||||
* Specification" Version 0.92 (9/20/2004):
|
||||
*
|
||||
* Single Byte Writes
|
||||
*
|
||||
* For an EEPROM, an I2C single byte write is defined as a START
|
||||
* condition followed by the device address, EEPROM address, one byte
|
||||
* of data and a STOP condition. The STOP condition will trigger the
|
||||
* EEPROM's internally timed write cycle to the nonvolatile memory.
|
||||
* All inputs are disabled during this write cycle and the EEPROM will
|
||||
* not respond to any access until the internal write is complete.
|
||||
* The steps to execute a single byte write are as follows:
|
||||
*
|
||||
* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
|
||||
* bits 7,1:0 both equal to 1, at least once after reset.
|
||||
* Subsequent operations need only to check that bits 1:0 are
|
||||
* equal to 1 prior to starting a single byte write.
|
||||
*
|
||||
*/
|
||||
|
||||
err = eeprom_wait_ready(pdev, NULL);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
/*
|
||||
* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
|
||||
* and bits 1:0 both =0. Bit 5 should be set according to the
|
||||
* type of EEPROM being accessed (1=two byte addressing, 0=one
|
||||
* byte addressing).
|
||||
*
|
||||
* 3. Write the address to the LBCIF Address Register.
|
||||
*
|
||||
* 4. Write the data to the LBCIF Data Register (the I2C write will
|
||||
* begin).
|
||||
*
|
||||
* 5. Monitor bit 1:0 of the LBCIF Status Register. When bits 1:0 are
|
||||
* both equal to 1, the I2C write has completed and the internal
|
||||
* write cycle of the EEPROM is about to start. (bits 1:0 = 01 is
|
||||
* a legal state while waiting from both equal to 1, but bits
|
||||
* 1:0 = 10 is invalid and implies that something is broken).
|
||||
*
|
||||
* 6. Check bit 3 of the LBCIF Status Register. If equal to 1, an
|
||||
* error has occurred.
|
||||
*
|
||||
* 7. Check bit 2 of the LBCIF Status Register. If equal to 1 an ACK
|
||||
* error has occurred on the address phase of the write. This
|
||||
* could be due to an actual hardware failure or the EEPROM may
|
||||
* still be in its internal write cycle from a previous write.
|
||||
* This write operation was ignored and must be repeated later.
|
||||
*
|
||||
* 8. Set bit 6 of the LBCIF Control Register = 0. If another write is
|
||||
* required, go to step 1.
|
||||
*/
|
||||
|
||||
/* Step 1: */
|
||||
for (index = 0; index < MAX_NUM_REGISTER_POLLS; index++) {
|
||||
/* Read registers grouped in DWORD1 */
|
||||
if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP_OFFSET,
|
||||
&dword1)) {
|
||||
err = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
status = EXTRACT_STATUS_REGISTER(dword1);
|
||||
|
||||
if (status & LBCIF_STATUS_PHY_QUEUE_AVAIL &&
|
||||
status & LBCIF_STATUS_I2C_IDLE)
|
||||
/* bits 1:0 are equal to 1 */
|
||||
break;
|
||||
}
|
||||
|
||||
if (err || (index >= MAX_NUM_REGISTER_POLLS))
|
||||
return 0;
|
||||
|
||||
/* Step 2: */
|
||||
control = 0;
|
||||
control |= LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE;
|
||||
|
||||
if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER_OFFSET,
|
||||
control)) {
|
||||
return 0;
|
||||
}
|
||||
if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
|
||||
LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
|
||||
return -EIO;
|
||||
|
||||
i2c_wack = 1;
|
||||
|
||||
/* Prepare EEPROM address for Step 3 */
|
||||
|
||||
for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
|
||||
/* Step 3:*/
|
||||
if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER_OFFSET,
|
||||
addr)) {
|
||||
/* Write the address to the LBCIF Address Register */
|
||||
if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
|
||||
break;
|
||||
}
|
||||
|
||||
/* Step 4: */
|
||||
if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER_OFFSET,
|
||||
data)) {
|
||||
/*
|
||||
* Write the data to the LBCIF Data Register (the I2C write
|
||||
* will begin).
|
||||
*/
|
||||
if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
|
||||
break;
|
||||
}
|
||||
/*
|
||||
* Monitor bit 1:0 of the LBCIF Status Register. When bits
|
||||
* 1:0 are both equal to 1, the I2C write has completed and the
|
||||
* internal write cycle of the EEPROM is about to start.
|
||||
* (bits 1:0 = 01 is a legal state while waiting from both
|
||||
* equal to 1, but bits 1:0 = 10 is invalid and implies that
|
||||
* something is broken).
|
||||
*/
|
||||
err = eeprom_wait_ready(pdev, &status);
|
||||
if (err < 0)
|
||||
return 0;
|
||||
|
||||
/* Step 5: */
|
||||
for (index = 0; index < MAX_NUM_REGISTER_POLLS; index++) {
|
||||
/* Read registers grouped in DWORD1 */
|
||||
if (pci_read_config_dword(pdev,
|
||||
LBCIF_DWORD1_GROUP_OFFSET,
|
||||
&dword1)) {
|
||||
err = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
status = EXTRACT_STATUS_REGISTER(dword1);
|
||||
|
||||
if (status & LBCIF_STATUS_PHY_QUEUE_AVAIL &&
|
||||
status & LBCIF_STATUS_I2C_IDLE) {
|
||||
/* I2C write complete */
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (err || (index >= MAX_NUM_REGISTER_POLLS))
|
||||
/*
|
||||
* Check bit 3 of the LBCIF Status Register. If equal to 1,
|
||||
* an error has occurred.Don't break here if we are revision
|
||||
* 1, this is so we do a blind write for load bug.
|
||||
*/
|
||||
if ((status & LBCIF_STATUS_GENERAL_ERROR)
|
||||
&& etdev->pdev->revision == 0)
|
||||
break;
|
||||
|
||||
/*
|
||||
* Step 6: Don't break here if we are revision 1, this is
|
||||
* so we do a blind write for load bug.
|
||||
* Check bit 2 of the LBCIF Status Register. If equal to 1 an
|
||||
* ACK error has occurred on the address phase of the write.
|
||||
* This could be due to an actual hardware failure or the
|
||||
* EEPROM may still be in its internal write cycle from a
|
||||
* previous write. This write operation was ignored and must be
|
||||
*repeated later.
|
||||
*/
|
||||
if (status & LBCIF_STATUS_GENERAL_ERROR
|
||||
&& etdev->pdev->revision == 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
/* Step 7 */
|
||||
if (status & LBCIF_STATUS_ACK_ERROR) {
|
||||
/*
|
||||
* This could be due to an actual hardware failure
|
||||
@ -302,43 +224,38 @@ int EepromWriteByte(struct et131x_adapter *etdev, u32 addr, u8 data)
|
||||
break;
|
||||
}
|
||||
|
||||
/* Step 8: */
|
||||
/*
|
||||
* Set bit 6 of the LBCIF Control Register = 0.
|
||||
*/
|
||||
udelay(10);
|
||||
index = 0;
|
||||
while (i2c_wack) {
|
||||
control &= ~LBCIF_CONTROL_I2C_WRITE;
|
||||
|
||||
if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER_OFFSET,
|
||||
control)) {
|
||||
while (i2c_wack) {
|
||||
if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
|
||||
LBCIF_CONTROL_LBCIF_ENABLE))
|
||||
writeok = 0;
|
||||
}
|
||||
|
||||
/* Do read until internal ACK_ERROR goes away meaning write
|
||||
* completed
|
||||
*/
|
||||
do {
|
||||
pci_write_config_dword(pdev,
|
||||
LBCIF_ADDRESS_REGISTER_OFFSET,
|
||||
LBCIF_ADDRESS_REGISTER,
|
||||
addr);
|
||||
do {
|
||||
pci_read_config_dword(pdev,
|
||||
LBCIF_DATA_REGISTER_OFFSET, &val);
|
||||
LBCIF_DATA_REGISTER, &val);
|
||||
} while ((val & 0x00010000) == 0);
|
||||
} while (val & 0x00040000);
|
||||
|
||||
control = EXTRACT_CONTROL_REG(val);
|
||||
|
||||
if (control != 0xC0 || index == 10000)
|
||||
if ((val & 0xFF00) != 0xC000 || index == 10000)
|
||||
break;
|
||||
|
||||
index++;
|
||||
}
|
||||
|
||||
return writeok;
|
||||
return writeok ? 0 : -EIO;
|
||||
}
|
||||
|
||||
/**
|
||||
* EepromReadByte - Read a byte from the ET1310's EEPROM
|
||||
* eeprom_read - Read a byte from the ET1310's EEPROM
|
||||
* @etdev: pointer to our private adapter structure
|
||||
* @addr: the address from which to read
|
||||
* @pdata: a pointer to a byte in which to store the value of the read
|
||||
@ -347,109 +264,51 @@ int EepromWriteByte(struct et131x_adapter *etdev, u32 addr, u8 data)
|
||||
*
|
||||
* Returns 1 for a successful read
|
||||
*/
|
||||
int EepromReadByte(struct et131x_adapter *etdev, u32 addr, u8 *pdata)
|
||||
int eeprom_read(struct et131x_adapter *etdev, u32 addr, u8 *pdata)
|
||||
{
|
||||
struct pci_dev *pdev = etdev->pdev;
|
||||
int index;
|
||||
int err = 0;
|
||||
u8 control;
|
||||
u8 status = 0;
|
||||
u32 dword1 = 0;
|
||||
int err;
|
||||
u32 status;
|
||||
|
||||
/*
|
||||
* The following excerpt is from "Serial EEPROM HW Design
|
||||
* Specification" Version 0.92 (9/20/2004):
|
||||
*
|
||||
* Single Byte Reads
|
||||
*
|
||||
* A single byte read is similar to the single byte write, with the
|
||||
* exception of the data flow:
|
||||
*
|
||||
* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
|
||||
* bits 7,1:0 both equal to 1, at least once after reset.
|
||||
* Subsequent operations need only to check that bits 1:0 are equal
|
||||
* to 1 prior to starting a single byte read.
|
||||
*
|
||||
* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
|
||||
* and bits 1:0 both =0. Bit 5 should be set according to the type
|
||||
* of EEPROM being accessed (1=two byte addressing, 0=one byte
|
||||
* addressing).
|
||||
*
|
||||
* 3. Write the address to the LBCIF Address Register (I2C read will
|
||||
* begin).
|
||||
*
|
||||
* 4. Monitor bit 0 of the LBCIF Status Register. When =1, I2C read
|
||||
* is complete. (if bit 1 =1 and bit 0 stays =0, a hardware failure
|
||||
* has occurred).
|
||||
*
|
||||
* 5. Check bit 2 of the LBCIF Status Register. If =1, then an error
|
||||
* has occurred. The data that has been returned from the PHY may
|
||||
* be invalid.
|
||||
*
|
||||
* 6. Regardless of error status, read data byte from LBCIF Data
|
||||
* Register. If another byte is required, go to step 1.
|
||||
*/
|
||||
|
||||
/* Step 1: */
|
||||
for (index = 0; index < MAX_NUM_REGISTER_POLLS; index++) {
|
||||
/* Read registers grouped in DWORD1 */
|
||||
if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP_OFFSET,
|
||||
&dword1)) {
|
||||
err = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
status = EXTRACT_STATUS_REGISTER(dword1);
|
||||
|
||||
if (status & LBCIF_STATUS_PHY_QUEUE_AVAIL &&
|
||||
status & LBCIF_STATUS_I2C_IDLE) {
|
||||
/* bits 1:0 are equal to 1 */
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (err || (index >= MAX_NUM_REGISTER_POLLS))
|
||||
return 0;
|
||||
|
||||
/* Step 2: */
|
||||
control = 0;
|
||||
control |= LBCIF_CONTROL_LBCIF_ENABLE;
|
||||
|
||||
if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER_OFFSET,
|
||||
control)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Step 3: */
|
||||
|
||||
if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER_OFFSET,
|
||||
addr)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Step 4: */
|
||||
for (index = 0; index < MAX_NUM_REGISTER_POLLS; index++) {
|
||||
/* Read registers grouped in DWORD1 */
|
||||
if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP_OFFSET,
|
||||
&dword1)) {
|
||||
err = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
status = EXTRACT_STATUS_REGISTER(dword1);
|
||||
|
||||
if (status & LBCIF_STATUS_PHY_QUEUE_AVAIL
|
||||
&& status & LBCIF_STATUS_I2C_IDLE) {
|
||||
/* I2C read complete */
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (err || (index >= MAX_NUM_REGISTER_POLLS))
|
||||
return 0;
|
||||
|
||||
/* Step 6: */
|
||||
*pdata = EXTRACT_DATA_REGISTER(dword1);
|
||||
|
||||
return (status & LBCIF_STATUS_ACK_ERROR) ? 0 : 1;
|
||||
err = eeprom_wait_ready(pdev, NULL);
|
||||
if (err)
|
||||
return err;
|
||||
/*
|
||||
* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
|
||||
* and bits 1:0 both =0. Bit 5 should be set according to the type
|
||||
* of EEPROM being accessed (1=two byte addressing, 0=one byte
|
||||
* addressing).
|
||||
*/
|
||||
if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
|
||||
LBCIF_CONTROL_LBCIF_ENABLE))
|
||||
return -EIO;
|
||||
/*
|
||||
* Write the address to the LBCIF Address Register (I2C read will
|
||||
* begin).
|
||||
*/
|
||||
if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
|
||||
return -EIO;
|
||||
/*
|
||||
* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
|
||||
* is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
|
||||
* has occurred).
|
||||
*/
|
||||
err = eeprom_wait_ready(pdev, &status);
|
||||
if (err < 0)
|
||||
return err;
|
||||
/*
|
||||
* Regardless of error status, read data byte from LBCIF Data
|
||||
* Register.
|
||||
*/
|
||||
*pdata = err;
|
||||
/*
|
||||
* Check bit 2 of the LBCIF Status Register. If = 1,
|
||||
* then an error has occurred.
|
||||
*/
|
||||
return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
|
||||
}
|
||||
|
@ -61,12 +61,46 @@
|
||||
|
||||
#include "et1310_address_map.h"
|
||||
|
||||
/*
|
||||
* EEPROM Defines
|
||||
*/
|
||||
|
||||
/* LBCIF Register Groups (addressed via 32-bit offsets) */
|
||||
#define LBCIF_DWORD0_GROUP 0xAC
|
||||
#define LBCIF_DWORD1_GROUP 0xB0
|
||||
|
||||
/* LBCIF Registers (addressed via 8-bit offsets) */
|
||||
#define LBCIF_ADDRESS_REGISTER 0xAC
|
||||
#define LBCIF_DATA_REGISTER 0xB0
|
||||
#define LBCIF_CONTROL_REGISTER 0xB1
|
||||
#define LBCIF_STATUS_REGISTER 0xB2
|
||||
|
||||
/* LBCIF Control Register Bits */
|
||||
#define LBCIF_CONTROL_SEQUENTIAL_READ 0x01
|
||||
#define LBCIF_CONTROL_PAGE_WRITE 0x02
|
||||
#define LBCIF_CONTROL_EEPROM_RELOAD 0x08
|
||||
#define LBCIF_CONTROL_TWO_BYTE_ADDR 0x20
|
||||
#define LBCIF_CONTROL_I2C_WRITE 0x40
|
||||
#define LBCIF_CONTROL_LBCIF_ENABLE 0x80
|
||||
|
||||
/* LBCIF Status Register Bits */
|
||||
#define LBCIF_STATUS_PHY_QUEUE_AVAIL 0x01
|
||||
#define LBCIF_STATUS_I2C_IDLE 0x02
|
||||
#define LBCIF_STATUS_ACK_ERROR 0x04
|
||||
#define LBCIF_STATUS_GENERAL_ERROR 0x08
|
||||
#define LBCIF_STATUS_CHECKSUM_ERROR 0x40
|
||||
#define LBCIF_STATUS_EEPROM_PRESENT 0x80
|
||||
|
||||
/* Miscellaneous Constraints */
|
||||
#define MAX_NUM_REGISTER_POLLS 1000
|
||||
#define MAX_NUM_WRITE_RETRIES 2
|
||||
|
||||
/* Forward declaration of the private adapter structure */
|
||||
struct et131x_adapter;
|
||||
|
||||
int EepromWriteByte(struct et131x_adapter *adapter, u32 unAddress,
|
||||
int eeprom_write(struct et131x_adapter *adapter, u32 unAddress,
|
||||
u8 bData);
|
||||
int EepromReadByte(struct et131x_adapter *adapter, u32 unAddress,
|
||||
int eeprom_read(struct et131x_adapter *adapter, u32 unAddress,
|
||||
u8 *pbData);
|
||||
|
||||
#endif /* _ET1310_EEPROM_H_ */
|
||||
|
@ -199,7 +199,7 @@ int et131x_find_adapter(struct et131x_adapter *adapter, struct pci_dev *pdev)
|
||||
* corruption seen with 1310 B Silicon
|
||||
*/
|
||||
for (nLoop = 0; nLoop < 3; nLoop++) {
|
||||
EepromWriteByte(adapter, nLoop, temp[nLoop]);
|
||||
eeprom_write(adapter, nLoop, temp[nLoop]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -219,8 +219,8 @@ int et131x_find_adapter(struct et131x_adapter *adapter, struct pci_dev *pdev)
|
||||
/* Read the EEPROM for information regarding LED behavior. Refer to
|
||||
* ET1310_phy.c, et131x_xcvr_init(), for its use.
|
||||
*/
|
||||
EepromReadByte(adapter, 0x70, &adapter->eepromData[0]);
|
||||
EepromReadByte(adapter, 0x71, &adapter->eepromData[1]);
|
||||
eeprom_read(adapter, 0x70, &adapter->eepromData[0]);
|
||||
eeprom_read(adapter, 0x71, &adapter->eepromData[1]);
|
||||
|
||||
if (adapter->eepromData[0] != 0xcd)
|
||||
/* Disable all optional features */
|
||||
|
Loading…
Reference in New Issue
Block a user