Random number generator updates for Linux 5.19-rc1.
-----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEq5lC5tSkz8NBJiCnSfxwEqXeA64FAmKKpM8ACgkQSfxwEqXe A6726w/+OJimGd4arvpSmdn+vxepSyDLgKfwM0x5zprRVd16xg8CjJr4eMonTesq YvtJRqpetb53MB+sMhutlvQqQzrjtf2MBkgPwF4I2gUrk7vLD45Q+AGdGhi/rUwz wHGA7xg1FHLHia2M/9idSqi8QlZmUP4u4l5ZnMyTUHiwvRD6XOrWKfqvUSawNzyh hCWlTUxDrjizsW5YpsJX/MkRadSC8loJEk5ByZebow6nRPfurJvqfrcOMgHyNrbY pOZ/CGPxcetMqotL2TuuJt5wKmenqYhIWGAp3YM2SWWgU2ueBZekW8AYeMfgUcvh LWV93RpSuAnE5wsdjIULvjFnEDJBf8ihfMnMrd9G5QjQu44tuKWfY2MghLSpYzaR V6UFbRmhrqhqiStHQXOvk1oqxtpbHlc9zzJLmvPmDJcbvzXQ9Opk5GVXAmdtnHnj M/ty3wGWxucY6mHqT8MkCShSSslbgEtc1pEIWHdrUgnaiSVoCVBEO+9LqLbjvOTm XA/6YtoiCE5FasK51pir1zVb2GORQn0v8HnuAOsusD/iPAlRQ/G5jZkaXbwRQI6j atYL1svqvSKn5POnzqAlMUXfMUr19K5xqJdp7i6qmlO1Vq6Z+tWbCQgD1JV+Wjkb CMyvXomFCFu4aYKGRE2SBRnWLRghG3kYHqEQ15yTPMQerxbUDNg= =SUr3 -----END PGP SIGNATURE----- Merge tag 'random-5.19-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random Pull random number generator updates from Jason Donenfeld: "These updates continue to refine the work began in 5.17 and 5.18 of modernizing the RNG's crypto and streamlining and documenting its code. New for 5.19, the updates aim to improve entropy collection methods and make some initial decisions regarding the "premature next" problem and our threat model. The cloc utility now reports that random.c is 931 lines of code and 466 lines of comments, not that basic metrics like that mean all that much, but at the very least it tells you that this is very much a manageable driver now. Here's a summary of the various updates: - The random_get_entropy() function now always returns something at least minimally useful. This is the primary entropy source in most collectors, which in the best case expands to something like RDTSC, but prior to this change, in the worst case it would just return 0, contributing nothing. For 5.19, additional architectures are wired up, and architectures that are entirely missing a cycle counter now have a generic fallback path, which uses the highest resolution clock available from the timekeeping subsystem. Some of those clocks can actually be quite good, despite the CPU not having a cycle counter of its own, and going off-core for a stamp is generally thought to increase jitter, something positive from the perspective of entropy gathering. Done very early on in the development cycle, this has been sitting in next getting some testing for a while now and has relevant acks from the archs, so it should be pretty well tested and fine, but is nonetheless the thing I'll be keeping my eye on most closely. - Of particular note with the random_get_entropy() improvements is MIPS, which, on CPUs that lack the c0 count register, will now combine the high-speed but short-cycle c0 random register with the lower-speed but long-cycle generic fallback path. - With random_get_entropy() now always returning something useful, the interrupt handler now collects entropy in a consistent construction. - Rather than comparing two samples of random_get_entropy() for the jitter dance, the algorithm now tests many samples, and uses the amount of differing ones to determine whether or not jitter entropy is usable and how laborious it must be. The problem with comparing only two samples was that if the cycle counter was extremely slow, but just so happened to be on the cusp of a change, the slowness wouldn't be detected. Taking many samples fixes that to some degree. This, combined with the other improvements to random_get_entropy(), should make future unification of /dev/random and /dev/urandom maybe more possible. At the very least, were we to attempt it again today (we're not), it wouldn't break any of Guenter's test rigs that broke when we tried it with 5.18. So, not today, but perhaps down the road, that's something we can revisit. - We attempt to reseed the RNG immediately upon waking up from system suspend or hibernation, making use of the various timestamps about suspend time and such available, as well as the usual inputs such as RDRAND when available. - Batched randomness now falls back to ordinary randomness before the RNG is initialized. This provides more consistent guarantees to the types of random numbers being returned by the various accessors. - The "pre-init injection" code is now gone for good. I suspect you in particular will be happy to read that, as I recall you expressing your distaste for it a few months ago. Instead, to avoid a "premature first" issue, while still allowing for maximal amount of entropy availability during system boot, the first 128 bits of estimated entropy are used immediately as it arrives, with the next 128 bits being buffered. And, as before, after the RNG has been fully initialized, it winds up reseeding anyway a few seconds later in most cases. This resulted in a pretty big simplification of the initialization code and let us remove various ad-hoc mechanisms like the ugly crng_pre_init_inject(). - The RNG no longer pretends to handle the "premature next" security model, something that various academics and other RNG designs have tried to care about in the past. After an interesting mailing list thread, these issues are thought to be a) mainly academic and not practical at all, and b) actively harming the real security of the RNG by delaying new entropy additions after a potential compromise, making a potentially bad situation even worse. As well, in the first place, our RNG never even properly handled the premature next issue, so removing an incomplete solution to a fake problem was particularly nice. This allowed for numerous other simplifications in the code, which is a lot cleaner as a consequence. If you didn't see it before, https://lore.kernel.org/lkml/YmlMGx6+uigkGiZ0@zx2c4.com/ may be a thread worth skimming through. - While the interrupt handler received a separate code path years ago that avoids locks by using per-cpu data structures and a faster mixing algorithm, in order to reduce interrupt latency, input and disk events that are triggered in hardirq handlers were still hitting locks and more expensive algorithms. Those are now redirected to use the faster per-cpu data structures. - Rather than having the fake-crypto almost-siphash-based random32 implementation be used right and left, and in many places where cryptographically secure randomness is desirable, the batched entropy code is now fast enough to replace that. - As usual, numerous code quality and documentation cleanups. For example, the initialization state machine now uses enum symbolic constants instead of just hard coding numbers everywhere. - Since the RNG initializes once, and then is always initialized thereafter, a pretty heavy amount of code used during that initialization is never used again. It is now completely cordoned off using static branches and it winds up in the .text.unlikely section so that it doesn't reduce cache compactness after the RNG is ready. - A variety of functions meant for waiting on the RNG to be initialized were only used by vsprintf, and in not a particularly optimal way. Replacing that usage with a more ordinary setup made it possible to remove those functions. - A cleanup of how we warn userspace about the use of uninitialized /dev/urandom and uninitialized get_random_bytes() usage. Interestingly, with the change you merged for 5.18 that attempts to use jitter (but does not block if it can't), the majority of users should never see those warnings for /dev/urandom at all now, and the one for in-kernel usage is mainly a debug thing. - The file_operations struct for /dev/[u]random now implements .read_iter and .write_iter instead of .read and .write, allowing it to also implement .splice_read and .splice_write, which makes splice(2) work again after it was broken here (and in many other places in the tree) during the set_fs() removal. This was a bit of a last minute arrival from Jens that hasn't had as much time to bake, so I'll be keeping my eye on this as well, but it seems fairly ordinary. Unfortunately, read_iter() is around 3% slower than read() in my tests, which I'm not thrilled about. But Jens and Al, spurred by this observation, seem to be making progress in removing the bottlenecks on the iter paths in the VFS layer in general, which should remove the performance gap for all drivers. - Assorted other bug fixes, cleanups, and optimizations. - A small SipHash cleanup" * tag 'random-5.19-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: (49 commits) random: check for signals after page of pool writes random: wire up fops->splice_{read,write}_iter() random: convert to using fops->write_iter() random: convert to using fops->read_iter() random: unify batched entropy implementations random: move randomize_page() into mm where it belongs random: remove mostly unused async readiness notifier random: remove get_random_bytes_arch() and add rng_has_arch_random() random: move initialization functions out of hot pages random: make consistent use of buf and len random: use proper return types on get_random_{int,long}_wait() random: remove extern from functions in header random: use static branch for crng_ready() random: credit architectural init the exact amount random: handle latent entropy and command line from random_init() random: use proper jiffies comparison macro random: remove ratelimiting for in-kernel unseeded randomness random: move initialization out of reseeding hot path random: avoid initializing twice in credit race random: use symbolic constants for crng_init states ...
This commit is contained in:
commit
ac2ab99072
@ -994,6 +994,9 @@ This is a directory, with the following entries:
|
||||
* ``boot_id``: a UUID generated the first time this is retrieved, and
|
||||
unvarying after that;
|
||||
|
||||
* ``uuid``: a UUID generated every time this is retrieved (this can
|
||||
thus be used to generate UUIDs at will);
|
||||
|
||||
* ``entropy_avail``: the pool's entropy count, in bits;
|
||||
|
||||
* ``poolsize``: the entropy pool size, in bits;
|
||||
@ -1001,10 +1004,7 @@ This is a directory, with the following entries:
|
||||
* ``urandom_min_reseed_secs``: obsolete (used to determine the minimum
|
||||
number of seconds between urandom pool reseeding). This file is
|
||||
writable for compatibility purposes, but writing to it has no effect
|
||||
on any RNG behavior.
|
||||
|
||||
* ``uuid``: a UUID generated every time this is retrieved (this can
|
||||
thus be used to generate UUIDs at will);
|
||||
on any RNG behavior;
|
||||
|
||||
* ``write_wakeup_threshold``: when the entropy count drops below this
|
||||
(as a number of bits), processes waiting to write to ``/dev/random``
|
||||
|
@ -28,5 +28,6 @@ static inline cycles_t get_cycles (void)
|
||||
__asm__ __volatile__ ("rpcc %0" : "=r"(ret));
|
||||
return ret;
|
||||
}
|
||||
#define get_cycles get_cycles
|
||||
|
||||
#endif
|
||||
|
@ -11,5 +11,6 @@
|
||||
|
||||
typedef unsigned long cycles_t;
|
||||
#define get_cycles() ({ cycles_t c; read_current_timer(&c) ? 0 : c; })
|
||||
#define random_get_entropy() (((unsigned long)get_cycles()) ?: random_get_entropy_fallback())
|
||||
|
||||
#endif
|
||||
|
@ -39,6 +39,7 @@ get_cycles (void)
|
||||
ret = ia64_getreg(_IA64_REG_AR_ITC);
|
||||
return ret;
|
||||
}
|
||||
#define get_cycles get_cycles
|
||||
|
||||
extern void ia64_cpu_local_tick (void);
|
||||
extern unsigned long long ia64_native_sched_clock (void);
|
||||
|
@ -35,7 +35,7 @@ static inline unsigned long random_get_entropy(void)
|
||||
{
|
||||
if (mach_random_get_entropy)
|
||||
return mach_random_get_entropy();
|
||||
return 0;
|
||||
return random_get_entropy_fallback();
|
||||
}
|
||||
#define random_get_entropy random_get_entropy
|
||||
|
||||
|
@ -76,25 +76,24 @@ static inline cycles_t get_cycles(void)
|
||||
else
|
||||
return 0; /* no usable counter */
|
||||
}
|
||||
#define get_cycles get_cycles
|
||||
|
||||
/*
|
||||
* Like get_cycles - but where c0_count is not available we desperately
|
||||
* use c0_random in an attempt to get at least a little bit of entropy.
|
||||
*
|
||||
* R6000 and R6000A neither have a count register nor a random register.
|
||||
* That leaves no entropy source in the CPU itself.
|
||||
*/
|
||||
static inline unsigned long random_get_entropy(void)
|
||||
{
|
||||
unsigned int prid = read_c0_prid();
|
||||
unsigned int imp = prid & PRID_IMP_MASK;
|
||||
unsigned int c0_random;
|
||||
|
||||
if (can_use_mips_counter(prid))
|
||||
if (can_use_mips_counter(read_c0_prid()))
|
||||
return read_c0_count();
|
||||
else if (likely(imp != PRID_IMP_R6000 && imp != PRID_IMP_R6000A))
|
||||
return read_c0_random();
|
||||
|
||||
if (cpu_has_3kex)
|
||||
c0_random = (read_c0_random() >> 8) & 0x3f;
|
||||
else
|
||||
return 0; /* no usable register */
|
||||
c0_random = read_c0_random() & 0x3f;
|
||||
return (random_get_entropy_fallback() << 6) | (0x3f - c0_random);
|
||||
}
|
||||
#define random_get_entropy random_get_entropy
|
||||
|
||||
|
@ -8,5 +8,8 @@
|
||||
typedef unsigned long cycles_t;
|
||||
|
||||
extern cycles_t get_cycles(void);
|
||||
#define get_cycles get_cycles
|
||||
|
||||
#define random_get_entropy() (((unsigned long)get_cycles()) ?: random_get_entropy_fallback())
|
||||
|
||||
#endif
|
||||
|
@ -23,6 +23,7 @@ static inline cycles_t get_cycles(void)
|
||||
{
|
||||
return mfspr(SPR_TTCR);
|
||||
}
|
||||
#define get_cycles get_cycles
|
||||
|
||||
/* This isn't really used any more */
|
||||
#define CLOCK_TICK_RATE 1000
|
||||
|
@ -521,6 +521,15 @@ _start:
|
||||
l.ori r3,r0,0x1
|
||||
l.mtspr r0,r3,SPR_SR
|
||||
|
||||
/*
|
||||
* Start the TTCR as early as possible, so that the RNG can make use of
|
||||
* measurements of boot time from the earliest opportunity. Especially
|
||||
* important is that the TTCR does not return zero by the time we reach
|
||||
* random_init().
|
||||
*/
|
||||
l.movhi r3,hi(SPR_TTMR_CR)
|
||||
l.mtspr r0,r3,SPR_TTMR
|
||||
|
||||
CLEAR_GPR(r1)
|
||||
CLEAR_GPR(r2)
|
||||
CLEAR_GPR(r3)
|
||||
|
@ -13,9 +13,10 @@
|
||||
|
||||
typedef unsigned long cycles_t;
|
||||
|
||||
static inline cycles_t get_cycles (void)
|
||||
static inline cycles_t get_cycles(void)
|
||||
{
|
||||
return mfctl(16);
|
||||
}
|
||||
#define get_cycles get_cycles
|
||||
|
||||
#endif
|
||||
|
@ -19,6 +19,7 @@ static inline cycles_t get_cycles(void)
|
||||
{
|
||||
return mftb();
|
||||
}
|
||||
#define get_cycles get_cycles
|
||||
|
||||
#endif /* __KERNEL__ */
|
||||
#endif /* _ASM_POWERPC_TIMEX_H */
|
||||
|
@ -41,7 +41,7 @@ static inline u32 get_cycles_hi(void)
|
||||
static inline unsigned long random_get_entropy(void)
|
||||
{
|
||||
if (unlikely(clint_time_val == NULL))
|
||||
return 0;
|
||||
return random_get_entropy_fallback();
|
||||
return get_cycles();
|
||||
}
|
||||
#define random_get_entropy() random_get_entropy()
|
||||
|
@ -197,6 +197,7 @@ static inline cycles_t get_cycles(void)
|
||||
{
|
||||
return (cycles_t) get_tod_clock() >> 2;
|
||||
}
|
||||
#define get_cycles get_cycles
|
||||
|
||||
int get_phys_clock(unsigned long *clock);
|
||||
void init_cpu_timer(void);
|
||||
|
@ -9,8 +9,6 @@
|
||||
|
||||
#define CLOCK_TICK_RATE 1193180 /* Underlying HZ */
|
||||
|
||||
/* XXX Maybe do something better at some point... -DaveM */
|
||||
typedef unsigned long cycles_t;
|
||||
#define get_cycles() (0)
|
||||
#include <asm-generic/timex.h>
|
||||
|
||||
#endif
|
||||
|
@ -2,13 +2,8 @@
|
||||
#ifndef __UM_TIMEX_H
|
||||
#define __UM_TIMEX_H
|
||||
|
||||
typedef unsigned long cycles_t;
|
||||
|
||||
static inline cycles_t get_cycles (void)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
#define CLOCK_TICK_RATE (HZ)
|
||||
|
||||
#include <asm-generic/timex.h>
|
||||
|
||||
#endif
|
||||
|
@ -5,6 +5,15 @@
|
||||
#include <asm/processor.h>
|
||||
#include <asm/tsc.h>
|
||||
|
||||
static inline unsigned long random_get_entropy(void)
|
||||
{
|
||||
if (!IS_ENABLED(CONFIG_X86_TSC) &&
|
||||
!cpu_feature_enabled(X86_FEATURE_TSC))
|
||||
return random_get_entropy_fallback();
|
||||
return rdtsc();
|
||||
}
|
||||
#define random_get_entropy random_get_entropy
|
||||
|
||||
/* Assume we use the PIT time source for the clock tick */
|
||||
#define CLOCK_TICK_RATE PIT_TICK_RATE
|
||||
|
||||
|
@ -20,13 +20,12 @@ extern void disable_TSC(void);
|
||||
|
||||
static inline cycles_t get_cycles(void)
|
||||
{
|
||||
#ifndef CONFIG_X86_TSC
|
||||
if (!boot_cpu_has(X86_FEATURE_TSC))
|
||||
if (!IS_ENABLED(CONFIG_X86_TSC) &&
|
||||
!cpu_feature_enabled(X86_FEATURE_TSC))
|
||||
return 0;
|
||||
#endif
|
||||
|
||||
return rdtsc();
|
||||
}
|
||||
#define get_cycles get_cycles
|
||||
|
||||
extern struct system_counterval_t convert_art_to_tsc(u64 art);
|
||||
extern struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns);
|
||||
|
@ -29,10 +29,6 @@
|
||||
|
||||
extern unsigned long ccount_freq;
|
||||
|
||||
typedef unsigned long long cycles_t;
|
||||
|
||||
#define get_cycles() (0)
|
||||
|
||||
void local_timer_setup(unsigned cpu);
|
||||
|
||||
/*
|
||||
@ -59,4 +55,6 @@ static inline void set_linux_timer (unsigned long ccompare)
|
||||
xtensa_set_sr(ccompare, SREG_CCOMPARE + LINUX_TIMER);
|
||||
}
|
||||
|
||||
#include <asm-generic/timex.h>
|
||||
|
||||
#endif /* _XTENSA_TIMEX_H */
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -2677,6 +2677,7 @@ extern int install_special_mapping(struct mm_struct *mm,
|
||||
unsigned long flags, struct page **pages);
|
||||
|
||||
unsigned long randomize_stack_top(unsigned long stack_top);
|
||||
unsigned long randomize_page(unsigned long start, unsigned long range);
|
||||
|
||||
extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
|
||||
|
||||
|
@ -10,62 +10,16 @@
|
||||
|
||||
#include <linux/types.h>
|
||||
#include <linux/percpu.h>
|
||||
#include <linux/random.h>
|
||||
|
||||
u32 prandom_u32(void);
|
||||
void prandom_bytes(void *buf, size_t nbytes);
|
||||
void prandom_seed(u32 seed);
|
||||
void prandom_reseed_late(void);
|
||||
|
||||
DECLARE_PER_CPU(unsigned long, net_rand_noise);
|
||||
|
||||
#define PRANDOM_ADD_NOISE(a, b, c, d) \
|
||||
prandom_u32_add_noise((unsigned long)(a), (unsigned long)(b), \
|
||||
(unsigned long)(c), (unsigned long)(d))
|
||||
|
||||
#if BITS_PER_LONG == 64
|
||||
/*
|
||||
* The core SipHash round function. Each line can be executed in
|
||||
* parallel given enough CPU resources.
|
||||
*/
|
||||
#define PRND_SIPROUND(v0, v1, v2, v3) ( \
|
||||
v0 += v1, v1 = rol64(v1, 13), v2 += v3, v3 = rol64(v3, 16), \
|
||||
v1 ^= v0, v0 = rol64(v0, 32), v3 ^= v2, \
|
||||
v0 += v3, v3 = rol64(v3, 21), v2 += v1, v1 = rol64(v1, 17), \
|
||||
v3 ^= v0, v1 ^= v2, v2 = rol64(v2, 32) \
|
||||
)
|
||||
|
||||
#define PRND_K0 (0x736f6d6570736575 ^ 0x6c7967656e657261)
|
||||
#define PRND_K1 (0x646f72616e646f6d ^ 0x7465646279746573)
|
||||
|
||||
#elif BITS_PER_LONG == 32
|
||||
/*
|
||||
* On 32-bit machines, we use HSipHash, a reduced-width version of SipHash.
|
||||
* This is weaker, but 32-bit machines are not used for high-traffic
|
||||
* applications, so there is less output for an attacker to analyze.
|
||||
*/
|
||||
#define PRND_SIPROUND(v0, v1, v2, v3) ( \
|
||||
v0 += v1, v1 = rol32(v1, 5), v2 += v3, v3 = rol32(v3, 8), \
|
||||
v1 ^= v0, v0 = rol32(v0, 16), v3 ^= v2, \
|
||||
v0 += v3, v3 = rol32(v3, 7), v2 += v1, v1 = rol32(v1, 13), \
|
||||
v3 ^= v0, v1 ^= v2, v2 = rol32(v2, 16) \
|
||||
)
|
||||
#define PRND_K0 0x6c796765
|
||||
#define PRND_K1 0x74656462
|
||||
|
||||
#else
|
||||
#error Unsupported BITS_PER_LONG
|
||||
#endif
|
||||
|
||||
static inline void prandom_u32_add_noise(unsigned long a, unsigned long b,
|
||||
unsigned long c, unsigned long d)
|
||||
static inline u32 prandom_u32(void)
|
||||
{
|
||||
/*
|
||||
* This is not used cryptographically; it's just
|
||||
* a convenient 4-word hash function. (3 xor, 2 add, 2 rol)
|
||||
*/
|
||||
a ^= raw_cpu_read(net_rand_noise);
|
||||
PRND_SIPROUND(a, b, c, d);
|
||||
raw_cpu_write(net_rand_noise, d);
|
||||
return get_random_u32();
|
||||
}
|
||||
|
||||
static inline void prandom_bytes(void *buf, size_t nbytes)
|
||||
{
|
||||
return get_random_bytes(buf, nbytes);
|
||||
}
|
||||
|
||||
struct rnd_state {
|
||||
@ -117,7 +71,6 @@ static inline void prandom_seed_state(struct rnd_state *state, u64 seed)
|
||||
state->s2 = __seed(i, 8U);
|
||||
state->s3 = __seed(i, 16U);
|
||||
state->s4 = __seed(i, 128U);
|
||||
PRANDOM_ADD_NOISE(state, i, 0, 0);
|
||||
}
|
||||
|
||||
/* Pseudo random number generator from numerical recipes. */
|
||||
|
@ -12,45 +12,32 @@
|
||||
|
||||
struct notifier_block;
|
||||
|
||||
extern void add_device_randomness(const void *, size_t);
|
||||
extern void add_bootloader_randomness(const void *, size_t);
|
||||
void add_device_randomness(const void *buf, size_t len);
|
||||
void add_bootloader_randomness(const void *buf, size_t len);
|
||||
void add_input_randomness(unsigned int type, unsigned int code,
|
||||
unsigned int value) __latent_entropy;
|
||||
void add_interrupt_randomness(int irq) __latent_entropy;
|
||||
void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
|
||||
|
||||
#if defined(LATENT_ENTROPY_PLUGIN) && !defined(__CHECKER__)
|
||||
static inline void add_latent_entropy(void)
|
||||
{
|
||||
add_device_randomness((const void *)&latent_entropy,
|
||||
sizeof(latent_entropy));
|
||||
add_device_randomness((const void *)&latent_entropy, sizeof(latent_entropy));
|
||||
}
|
||||
#else
|
||||
static inline void add_latent_entropy(void) {}
|
||||
static inline void add_latent_entropy(void) { }
|
||||
#endif
|
||||
|
||||
extern void add_input_randomness(unsigned int type, unsigned int code,
|
||||
unsigned int value) __latent_entropy;
|
||||
extern void add_interrupt_randomness(int irq) __latent_entropy;
|
||||
extern void add_hwgenerator_randomness(const void *buffer, size_t count,
|
||||
size_t entropy);
|
||||
#if IS_ENABLED(CONFIG_VMGENID)
|
||||
extern void add_vmfork_randomness(const void *unique_vm_id, size_t size);
|
||||
extern int register_random_vmfork_notifier(struct notifier_block *nb);
|
||||
extern int unregister_random_vmfork_notifier(struct notifier_block *nb);
|
||||
void add_vmfork_randomness(const void *unique_vm_id, size_t len);
|
||||
int register_random_vmfork_notifier(struct notifier_block *nb);
|
||||
int unregister_random_vmfork_notifier(struct notifier_block *nb);
|
||||
#else
|
||||
static inline int register_random_vmfork_notifier(struct notifier_block *nb) { return 0; }
|
||||
static inline int unregister_random_vmfork_notifier(struct notifier_block *nb) { return 0; }
|
||||
#endif
|
||||
|
||||
extern void get_random_bytes(void *buf, size_t nbytes);
|
||||
extern int wait_for_random_bytes(void);
|
||||
extern int __init rand_initialize(void);
|
||||
extern bool rng_is_initialized(void);
|
||||
extern int register_random_ready_notifier(struct notifier_block *nb);
|
||||
extern int unregister_random_ready_notifier(struct notifier_block *nb);
|
||||
extern size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes);
|
||||
|
||||
#ifndef MODULE
|
||||
extern const struct file_operations random_fops, urandom_fops;
|
||||
#endif
|
||||
|
||||
void get_random_bytes(void *buf, size_t len);
|
||||
u32 get_random_u32(void);
|
||||
u64 get_random_u64(void);
|
||||
static inline unsigned int get_random_int(void)
|
||||
@ -82,11 +69,14 @@ static inline unsigned long get_random_long(void)
|
||||
|
||||
static inline unsigned long get_random_canary(void)
|
||||
{
|
||||
unsigned long val = get_random_long();
|
||||
|
||||
return val & CANARY_MASK;
|
||||
return get_random_long() & CANARY_MASK;
|
||||
}
|
||||
|
||||
int __init random_init(const char *command_line);
|
||||
bool rng_is_initialized(void);
|
||||
bool rng_has_arch_random(void);
|
||||
int wait_for_random_bytes(void);
|
||||
|
||||
/* Calls wait_for_random_bytes() and then calls get_random_bytes(buf, nbytes).
|
||||
* Returns the result of the call to wait_for_random_bytes. */
|
||||
static inline int get_random_bytes_wait(void *buf, size_t nbytes)
|
||||
@ -96,22 +86,20 @@ static inline int get_random_bytes_wait(void *buf, size_t nbytes)
|
||||
return ret;
|
||||
}
|
||||
|
||||
#define declare_get_random_var_wait(var) \
|
||||
static inline int get_random_ ## var ## _wait(var *out) { \
|
||||
#define declare_get_random_var_wait(name, ret_type) \
|
||||
static inline int get_random_ ## name ## _wait(ret_type *out) { \
|
||||
int ret = wait_for_random_bytes(); \
|
||||
if (unlikely(ret)) \
|
||||
return ret; \
|
||||
*out = get_random_ ## var(); \
|
||||
*out = get_random_ ## name(); \
|
||||
return 0; \
|
||||
}
|
||||
declare_get_random_var_wait(u32)
|
||||
declare_get_random_var_wait(u64)
|
||||
declare_get_random_var_wait(int)
|
||||
declare_get_random_var_wait(long)
|
||||
declare_get_random_var_wait(u32, u32)
|
||||
declare_get_random_var_wait(u64, u32)
|
||||
declare_get_random_var_wait(int, unsigned int)
|
||||
declare_get_random_var_wait(long, unsigned long)
|
||||
#undef declare_get_random_var
|
||||
|
||||
unsigned long randomize_page(unsigned long start, unsigned long range);
|
||||
|
||||
/*
|
||||
* This is designed to be standalone for just prandom
|
||||
* users, but for now we include it from <linux/random.h>
|
||||
@ -122,22 +110,10 @@ unsigned long randomize_page(unsigned long start, unsigned long range);
|
||||
#ifdef CONFIG_ARCH_RANDOM
|
||||
# include <asm/archrandom.h>
|
||||
#else
|
||||
static inline bool __must_check arch_get_random_long(unsigned long *v)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
static inline bool __must_check arch_get_random_int(unsigned int *v)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
static inline bool __must_check arch_get_random_seed_long(unsigned long *v)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
static inline bool __must_check arch_get_random_seed_int(unsigned int *v)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
static inline bool __must_check arch_get_random_long(unsigned long *v) { return false; }
|
||||
static inline bool __must_check arch_get_random_int(unsigned int *v) { return false; }
|
||||
static inline bool __must_check arch_get_random_seed_long(unsigned long *v) { return false; }
|
||||
static inline bool __must_check arch_get_random_seed_int(unsigned int *v) { return false; }
|
||||
#endif
|
||||
|
||||
/*
|
||||
@ -161,8 +137,12 @@ static inline bool __init arch_get_random_long_early(unsigned long *v)
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
extern int random_prepare_cpu(unsigned int cpu);
|
||||
extern int random_online_cpu(unsigned int cpu);
|
||||
int random_prepare_cpu(unsigned int cpu);
|
||||
int random_online_cpu(unsigned int cpu);
|
||||
#endif
|
||||
|
||||
#ifndef MODULE
|
||||
extern const struct file_operations random_fops, urandom_fops;
|
||||
#endif
|
||||
|
||||
#endif /* _LINUX_RANDOM_H */
|
||||
|
@ -138,4 +138,32 @@ static inline u32 hsiphash(const void *data, size_t len,
|
||||
return ___hsiphash_aligned(data, len, key);
|
||||
}
|
||||
|
||||
/*
|
||||
* These macros expose the raw SipHash and HalfSipHash permutations.
|
||||
* Do not use them directly! If you think you have a use for them,
|
||||
* be sure to CC the maintainer of this file explaining why.
|
||||
*/
|
||||
|
||||
#define SIPHASH_PERMUTATION(a, b, c, d) ( \
|
||||
(a) += (b), (b) = rol64((b), 13), (b) ^= (a), (a) = rol64((a), 32), \
|
||||
(c) += (d), (d) = rol64((d), 16), (d) ^= (c), \
|
||||
(a) += (d), (d) = rol64((d), 21), (d) ^= (a), \
|
||||
(c) += (b), (b) = rol64((b), 17), (b) ^= (c), (c) = rol64((c), 32))
|
||||
|
||||
#define SIPHASH_CONST_0 0x736f6d6570736575ULL
|
||||
#define SIPHASH_CONST_1 0x646f72616e646f6dULL
|
||||
#define SIPHASH_CONST_2 0x6c7967656e657261ULL
|
||||
#define SIPHASH_CONST_3 0x7465646279746573ULL
|
||||
|
||||
#define HSIPHASH_PERMUTATION(a, b, c, d) ( \
|
||||
(a) += (b), (b) = rol32((b), 5), (b) ^= (a), (a) = rol32((a), 16), \
|
||||
(c) += (d), (d) = rol32((d), 8), (d) ^= (c), \
|
||||
(a) += (d), (d) = rol32((d), 7), (d) ^= (a), \
|
||||
(c) += (b), (b) = rol32((b), 13), (b) ^= (c), (c) = rol32((c), 16))
|
||||
|
||||
#define HSIPHASH_CONST_0 0U
|
||||
#define HSIPHASH_CONST_1 0U
|
||||
#define HSIPHASH_CONST_2 0x6c796765U
|
||||
#define HSIPHASH_CONST_3 0x74656462U
|
||||
|
||||
#endif /* _LINUX_SIPHASH_H */
|
||||
|
@ -62,6 +62,8 @@
|
||||
#include <linux/types.h>
|
||||
#include <linux/param.h>
|
||||
|
||||
unsigned long random_get_entropy_fallback(void);
|
||||
|
||||
#include <asm/timex.h>
|
||||
|
||||
#ifndef random_get_entropy
|
||||
@ -74,8 +76,14 @@
|
||||
*
|
||||
* By default we use get_cycles() for this purpose, but individual
|
||||
* architectures may override this in their asm/timex.h header file.
|
||||
* If a given arch does not have get_cycles(), then we fallback to
|
||||
* using random_get_entropy_fallback().
|
||||
*/
|
||||
#ifdef get_cycles
|
||||
#define random_get_entropy() ((unsigned long)get_cycles())
|
||||
#else
|
||||
#define random_get_entropy() random_get_entropy_fallback()
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/*
|
||||
|
13
init/main.c
13
init/main.c
@ -1035,21 +1035,18 @@ asmlinkage __visible void __init __no_sanitize_address start_kernel(void)
|
||||
softirq_init();
|
||||
timekeeping_init();
|
||||
kfence_init();
|
||||
time_init();
|
||||
|
||||
/*
|
||||
* For best initial stack canary entropy, prepare it after:
|
||||
* - setup_arch() for any UEFI RNG entropy and boot cmdline access
|
||||
* - timekeeping_init() for ktime entropy used in rand_initialize()
|
||||
* - rand_initialize() to get any arch-specific entropy like RDRAND
|
||||
* - add_latent_entropy() to get any latent entropy
|
||||
* - adding command line entropy
|
||||
* - timekeeping_init() for ktime entropy used in random_init()
|
||||
* - time_init() for making random_get_entropy() work on some platforms
|
||||
* - random_init() to initialize the RNG from from early entropy sources
|
||||
*/
|
||||
rand_initialize();
|
||||
add_latent_entropy();
|
||||
add_device_randomness(command_line, strlen(command_line));
|
||||
random_init(command_line);
|
||||
boot_init_stack_canary();
|
||||
|
||||
time_init();
|
||||
perf_event_init();
|
||||
profile_init();
|
||||
call_function_init();
|
||||
|
@ -17,6 +17,7 @@
|
||||
#include <linux/clocksource.h>
|
||||
#include <linux/jiffies.h>
|
||||
#include <linux/time.h>
|
||||
#include <linux/timex.h>
|
||||
#include <linux/tick.h>
|
||||
#include <linux/stop_machine.h>
|
||||
#include <linux/pvclock_gtod.h>
|
||||
@ -2397,6 +2398,20 @@ static int timekeeping_validate_timex(const struct __kernel_timex *txc)
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* random_get_entropy_fallback - Returns the raw clock source value,
|
||||
* used by random.c for platforms with no valid random_get_entropy().
|
||||
*/
|
||||
unsigned long random_get_entropy_fallback(void)
|
||||
{
|
||||
struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
|
||||
struct clocksource *clock = READ_ONCE(tkr->clock);
|
||||
|
||||
if (unlikely(timekeeping_suspended || !clock))
|
||||
return 0;
|
||||
return clock->read(clock);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
|
||||
|
||||
/**
|
||||
* do_adjtimex() - Accessor function to NTP __do_adjtimex function
|
||||
|
@ -1833,8 +1833,6 @@ void update_process_times(int user_tick)
|
||||
{
|
||||
struct task_struct *p = current;
|
||||
|
||||
PRANDOM_ADD_NOISE(jiffies, user_tick, p, 0);
|
||||
|
||||
/* Note: this timer irq context must be accounted for as well. */
|
||||
account_process_tick(p, user_tick);
|
||||
run_local_timers();
|
||||
|
@ -1617,8 +1617,7 @@ config WARN_ALL_UNSEEDED_RANDOM
|
||||
so architecture maintainers really need to do what they can
|
||||
to get the CRNG seeded sooner after the system is booted.
|
||||
However, since users cannot do anything actionable to
|
||||
address this, by default the kernel will issue only a single
|
||||
warning for the first use of unseeded randomness.
|
||||
address this, by default this option is disabled.
|
||||
|
||||
Say Y here if you want to receive warnings for all uses of
|
||||
unseeded randomness. This will be of use primarily for
|
||||
|
347
lib/random32.c
347
lib/random32.c
@ -245,25 +245,13 @@ static struct prandom_test2 {
|
||||
{ 407983964U, 921U, 728767059U },
|
||||
};
|
||||
|
||||
static u32 __extract_hwseed(void)
|
||||
{
|
||||
unsigned int val = 0;
|
||||
|
||||
(void)(arch_get_random_seed_int(&val) ||
|
||||
arch_get_random_int(&val));
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
static void prandom_seed_early(struct rnd_state *state, u32 seed,
|
||||
bool mix_with_hwseed)
|
||||
static void prandom_state_selftest_seed(struct rnd_state *state, u32 seed)
|
||||
{
|
||||
#define LCG(x) ((x) * 69069U) /* super-duper LCG */
|
||||
#define HWSEED() (mix_with_hwseed ? __extract_hwseed() : 0)
|
||||
state->s1 = __seed(HWSEED() ^ LCG(seed), 2U);
|
||||
state->s2 = __seed(HWSEED() ^ LCG(state->s1), 8U);
|
||||
state->s3 = __seed(HWSEED() ^ LCG(state->s2), 16U);
|
||||
state->s4 = __seed(HWSEED() ^ LCG(state->s3), 128U);
|
||||
state->s1 = __seed(LCG(seed), 2U);
|
||||
state->s2 = __seed(LCG(state->s1), 8U);
|
||||
state->s3 = __seed(LCG(state->s2), 16U);
|
||||
state->s4 = __seed(LCG(state->s3), 128U);
|
||||
}
|
||||
|
||||
static int __init prandom_state_selftest(void)
|
||||
@ -274,7 +262,7 @@ static int __init prandom_state_selftest(void)
|
||||
for (i = 0; i < ARRAY_SIZE(test1); i++) {
|
||||
struct rnd_state state;
|
||||
|
||||
prandom_seed_early(&state, test1[i].seed, false);
|
||||
prandom_state_selftest_seed(&state, test1[i].seed);
|
||||
prandom_warmup(&state);
|
||||
|
||||
if (test1[i].result != prandom_u32_state(&state))
|
||||
@ -289,7 +277,7 @@ static int __init prandom_state_selftest(void)
|
||||
for (i = 0; i < ARRAY_SIZE(test2); i++) {
|
||||
struct rnd_state state;
|
||||
|
||||
prandom_seed_early(&state, test2[i].seed, false);
|
||||
prandom_state_selftest_seed(&state, test2[i].seed);
|
||||
prandom_warmup(&state);
|
||||
|
||||
for (j = 0; j < test2[i].iteration - 1; j++)
|
||||
@ -310,324 +298,3 @@ static int __init prandom_state_selftest(void)
|
||||
}
|
||||
core_initcall(prandom_state_selftest);
|
||||
#endif
|
||||
|
||||
/*
|
||||
* The prandom_u32() implementation is now completely separate from the
|
||||
* prandom_state() functions, which are retained (for now) for compatibility.
|
||||
*
|
||||
* Because of (ab)use in the networking code for choosing random TCP/UDP port
|
||||
* numbers, which open DoS possibilities if guessable, we want something
|
||||
* stronger than a standard PRNG. But the performance requirements of
|
||||
* the network code do not allow robust crypto for this application.
|
||||
*
|
||||
* So this is a homebrew Junior Spaceman implementation, based on the
|
||||
* lowest-latency trustworthy crypto primitive available, SipHash.
|
||||
* (The authors of SipHash have not been consulted about this abuse of
|
||||
* their work.)
|
||||
*
|
||||
* Standard SipHash-2-4 uses 2n+4 rounds to hash n words of input to
|
||||
* one word of output. This abbreviated version uses 2 rounds per word
|
||||
* of output.
|
||||
*/
|
||||
|
||||
struct siprand_state {
|
||||
unsigned long v0;
|
||||
unsigned long v1;
|
||||
unsigned long v2;
|
||||
unsigned long v3;
|
||||
};
|
||||
|
||||
static DEFINE_PER_CPU(struct siprand_state, net_rand_state) __latent_entropy;
|
||||
DEFINE_PER_CPU(unsigned long, net_rand_noise);
|
||||
EXPORT_PER_CPU_SYMBOL(net_rand_noise);
|
||||
|
||||
/*
|
||||
* This is the core CPRNG function. As "pseudorandom", this is not used
|
||||
* for truly valuable things, just intended to be a PITA to guess.
|
||||
* For maximum speed, we do just two SipHash rounds per word. This is
|
||||
* the same rate as 4 rounds per 64 bits that SipHash normally uses,
|
||||
* so hopefully it's reasonably secure.
|
||||
*
|
||||
* There are two changes from the official SipHash finalization:
|
||||
* - We omit some constants XORed with v2 in the SipHash spec as irrelevant;
|
||||
* they are there only to make the output rounds distinct from the input
|
||||
* rounds, and this application has no input rounds.
|
||||
* - Rather than returning v0^v1^v2^v3, return v1+v3.
|
||||
* If you look at the SipHash round, the last operation on v3 is
|
||||
* "v3 ^= v0", so "v0 ^ v3" just undoes that, a waste of time.
|
||||
* Likewise "v1 ^= v2". (The rotate of v2 makes a difference, but
|
||||
* it still cancels out half of the bits in v2 for no benefit.)
|
||||
* Second, since the last combining operation was xor, continue the
|
||||
* pattern of alternating xor/add for a tiny bit of extra non-linearity.
|
||||
*/
|
||||
static inline u32 siprand_u32(struct siprand_state *s)
|
||||
{
|
||||
unsigned long v0 = s->v0, v1 = s->v1, v2 = s->v2, v3 = s->v3;
|
||||
unsigned long n = raw_cpu_read(net_rand_noise);
|
||||
|
||||
v3 ^= n;
|
||||
PRND_SIPROUND(v0, v1, v2, v3);
|
||||
PRND_SIPROUND(v0, v1, v2, v3);
|
||||
v0 ^= n;
|
||||
s->v0 = v0; s->v1 = v1; s->v2 = v2; s->v3 = v3;
|
||||
return v1 + v3;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* prandom_u32 - pseudo random number generator
|
||||
*
|
||||
* A 32 bit pseudo-random number is generated using a fast
|
||||
* algorithm suitable for simulation. This algorithm is NOT
|
||||
* considered safe for cryptographic use.
|
||||
*/
|
||||
u32 prandom_u32(void)
|
||||
{
|
||||
struct siprand_state *state = get_cpu_ptr(&net_rand_state);
|
||||
u32 res = siprand_u32(state);
|
||||
|
||||
put_cpu_ptr(&net_rand_state);
|
||||
return res;
|
||||
}
|
||||
EXPORT_SYMBOL(prandom_u32);
|
||||
|
||||
/**
|
||||
* prandom_bytes - get the requested number of pseudo-random bytes
|
||||
* @buf: where to copy the pseudo-random bytes to
|
||||
* @bytes: the requested number of bytes
|
||||
*/
|
||||
void prandom_bytes(void *buf, size_t bytes)
|
||||
{
|
||||
struct siprand_state *state = get_cpu_ptr(&net_rand_state);
|
||||
u8 *ptr = buf;
|
||||
|
||||
while (bytes >= sizeof(u32)) {
|
||||
put_unaligned(siprand_u32(state), (u32 *)ptr);
|
||||
ptr += sizeof(u32);
|
||||
bytes -= sizeof(u32);
|
||||
}
|
||||
|
||||
if (bytes > 0) {
|
||||
u32 rem = siprand_u32(state);
|
||||
|
||||
do {
|
||||
*ptr++ = (u8)rem;
|
||||
rem >>= BITS_PER_BYTE;
|
||||
} while (--bytes > 0);
|
||||
}
|
||||
put_cpu_ptr(&net_rand_state);
|
||||
}
|
||||
EXPORT_SYMBOL(prandom_bytes);
|
||||
|
||||
/**
|
||||
* prandom_seed - add entropy to pseudo random number generator
|
||||
* @entropy: entropy value
|
||||
*
|
||||
* Add some additional seed material to the prandom pool.
|
||||
* The "entropy" is actually our IP address (the only caller is
|
||||
* the network code), not for unpredictability, but to ensure that
|
||||
* different machines are initialized differently.
|
||||
*/
|
||||
void prandom_seed(u32 entropy)
|
||||
{
|
||||
int i;
|
||||
|
||||
add_device_randomness(&entropy, sizeof(entropy));
|
||||
|
||||
for_each_possible_cpu(i) {
|
||||
struct siprand_state *state = per_cpu_ptr(&net_rand_state, i);
|
||||
unsigned long v0 = state->v0, v1 = state->v1;
|
||||
unsigned long v2 = state->v2, v3 = state->v3;
|
||||
|
||||
do {
|
||||
v3 ^= entropy;
|
||||
PRND_SIPROUND(v0, v1, v2, v3);
|
||||
PRND_SIPROUND(v0, v1, v2, v3);
|
||||
v0 ^= entropy;
|
||||
} while (unlikely(!v0 || !v1 || !v2 || !v3));
|
||||
|
||||
WRITE_ONCE(state->v0, v0);
|
||||
WRITE_ONCE(state->v1, v1);
|
||||
WRITE_ONCE(state->v2, v2);
|
||||
WRITE_ONCE(state->v3, v3);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL(prandom_seed);
|
||||
|
||||
/*
|
||||
* Generate some initially weak seeding values to allow
|
||||
* the prandom_u32() engine to be started.
|
||||
*/
|
||||
static int __init prandom_init_early(void)
|
||||
{
|
||||
int i;
|
||||
unsigned long v0, v1, v2, v3;
|
||||
|
||||
if (!arch_get_random_long(&v0))
|
||||
v0 = jiffies;
|
||||
if (!arch_get_random_long(&v1))
|
||||
v1 = random_get_entropy();
|
||||
v2 = v0 ^ PRND_K0;
|
||||
v3 = v1 ^ PRND_K1;
|
||||
|
||||
for_each_possible_cpu(i) {
|
||||
struct siprand_state *state;
|
||||
|
||||
v3 ^= i;
|
||||
PRND_SIPROUND(v0, v1, v2, v3);
|
||||
PRND_SIPROUND(v0, v1, v2, v3);
|
||||
v0 ^= i;
|
||||
|
||||
state = per_cpu_ptr(&net_rand_state, i);
|
||||
state->v0 = v0; state->v1 = v1;
|
||||
state->v2 = v2; state->v3 = v3;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
core_initcall(prandom_init_early);
|
||||
|
||||
|
||||
/* Stronger reseeding when available, and periodically thereafter. */
|
||||
static void prandom_reseed(struct timer_list *unused);
|
||||
|
||||
static DEFINE_TIMER(seed_timer, prandom_reseed);
|
||||
|
||||
static void prandom_reseed(struct timer_list *unused)
|
||||
{
|
||||
unsigned long expires;
|
||||
int i;
|
||||
|
||||
/*
|
||||
* Reinitialize each CPU's PRNG with 128 bits of key.
|
||||
* No locking on the CPUs, but then somewhat random results are,
|
||||
* well, expected.
|
||||
*/
|
||||
for_each_possible_cpu(i) {
|
||||
struct siprand_state *state;
|
||||
unsigned long v0 = get_random_long(), v2 = v0 ^ PRND_K0;
|
||||
unsigned long v1 = get_random_long(), v3 = v1 ^ PRND_K1;
|
||||
#if BITS_PER_LONG == 32
|
||||
int j;
|
||||
|
||||
/*
|
||||
* On 32-bit machines, hash in two extra words to
|
||||
* approximate 128-bit key length. Not that the hash
|
||||
* has that much security, but this prevents a trivial
|
||||
* 64-bit brute force.
|
||||
*/
|
||||
for (j = 0; j < 2; j++) {
|
||||
unsigned long m = get_random_long();
|
||||
|
||||
v3 ^= m;
|
||||
PRND_SIPROUND(v0, v1, v2, v3);
|
||||
PRND_SIPROUND(v0, v1, v2, v3);
|
||||
v0 ^= m;
|
||||
}
|
||||
#endif
|
||||
/*
|
||||
* Probably impossible in practice, but there is a
|
||||
* theoretical risk that a race between this reseeding
|
||||
* and the target CPU writing its state back could
|
||||
* create the all-zero SipHash fixed point.
|
||||
*
|
||||
* To ensure that never happens, ensure the state
|
||||
* we write contains no zero words.
|
||||
*/
|
||||
state = per_cpu_ptr(&net_rand_state, i);
|
||||
WRITE_ONCE(state->v0, v0 ? v0 : -1ul);
|
||||
WRITE_ONCE(state->v1, v1 ? v1 : -1ul);
|
||||
WRITE_ONCE(state->v2, v2 ? v2 : -1ul);
|
||||
WRITE_ONCE(state->v3, v3 ? v3 : -1ul);
|
||||
}
|
||||
|
||||
/* reseed every ~60 seconds, in [40 .. 80) interval with slack */
|
||||
expires = round_jiffies(jiffies + 40 * HZ + prandom_u32_max(40 * HZ));
|
||||
mod_timer(&seed_timer, expires);
|
||||
}
|
||||
|
||||
/*
|
||||
* The random ready callback can be called from almost any interrupt.
|
||||
* To avoid worrying about whether it's safe to delay that interrupt
|
||||
* long enough to seed all CPUs, just schedule an immediate timer event.
|
||||
*/
|
||||
static int prandom_timer_start(struct notifier_block *nb,
|
||||
unsigned long action, void *data)
|
||||
{
|
||||
mod_timer(&seed_timer, jiffies);
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_RANDOM32_SELFTEST
|
||||
/* Principle: True 32-bit random numbers will all have 16 differing bits on
|
||||
* average. For each 32-bit number, there are 601M numbers differing by 16
|
||||
* bits, and 89% of the numbers differ by at least 12 bits. Note that more
|
||||
* than 16 differing bits also implies a correlation with inverted bits. Thus
|
||||
* we take 1024 random numbers and compare each of them to the other ones,
|
||||
* counting the deviation of correlated bits to 16. Constants report 32,
|
||||
* counters 32-log2(TEST_SIZE), and pure randoms, around 6 or lower. With the
|
||||
* u32 total, TEST_SIZE may be as large as 4096 samples.
|
||||
*/
|
||||
#define TEST_SIZE 1024
|
||||
static int __init prandom32_state_selftest(void)
|
||||
{
|
||||
unsigned int x, y, bits, samples;
|
||||
u32 xor, flip;
|
||||
u32 total;
|
||||
u32 *data;
|
||||
|
||||
data = kmalloc(sizeof(*data) * TEST_SIZE, GFP_KERNEL);
|
||||
if (!data)
|
||||
return 0;
|
||||
|
||||
for (samples = 0; samples < TEST_SIZE; samples++)
|
||||
data[samples] = prandom_u32();
|
||||
|
||||
flip = total = 0;
|
||||
for (x = 0; x < samples; x++) {
|
||||
for (y = 0; y < samples; y++) {
|
||||
if (x == y)
|
||||
continue;
|
||||
xor = data[x] ^ data[y];
|
||||
flip |= xor;
|
||||
bits = hweight32(xor);
|
||||
total += (bits - 16) * (bits - 16);
|
||||
}
|
||||
}
|
||||
|
||||
/* We'll return the average deviation as 2*sqrt(corr/samples), which
|
||||
* is also sqrt(4*corr/samples) which provides a better resolution.
|
||||
*/
|
||||
bits = int_sqrt(total / (samples * (samples - 1)) * 4);
|
||||
if (bits > 6)
|
||||
pr_warn("prandom32: self test failed (at least %u bits"
|
||||
" correlated, fixed_mask=%#x fixed_value=%#x\n",
|
||||
bits, ~flip, data[0] & ~flip);
|
||||
else
|
||||
pr_info("prandom32: self test passed (less than %u bits"
|
||||
" correlated)\n",
|
||||
bits+1);
|
||||
kfree(data);
|
||||
return 0;
|
||||
}
|
||||
core_initcall(prandom32_state_selftest);
|
||||
#endif /* CONFIG_RANDOM32_SELFTEST */
|
||||
|
||||
/*
|
||||
* Start periodic full reseeding as soon as strong
|
||||
* random numbers are available.
|
||||
*/
|
||||
static int __init prandom_init_late(void)
|
||||
{
|
||||
static struct notifier_block random_ready = {
|
||||
.notifier_call = prandom_timer_start
|
||||
};
|
||||
int ret = register_random_ready_notifier(&random_ready);
|
||||
|
||||
if (ret == -EALREADY) {
|
||||
prandom_timer_start(&random_ready, 0, NULL);
|
||||
ret = 0;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
late_initcall(prandom_init_late);
|
||||
|
@ -18,19 +18,13 @@
|
||||
#include <asm/word-at-a-time.h>
|
||||
#endif
|
||||
|
||||
#define SIPROUND \
|
||||
do { \
|
||||
v0 += v1; v1 = rol64(v1, 13); v1 ^= v0; v0 = rol64(v0, 32); \
|
||||
v2 += v3; v3 = rol64(v3, 16); v3 ^= v2; \
|
||||
v0 += v3; v3 = rol64(v3, 21); v3 ^= v0; \
|
||||
v2 += v1; v1 = rol64(v1, 17); v1 ^= v2; v2 = rol64(v2, 32); \
|
||||
} while (0)
|
||||
#define SIPROUND SIPHASH_PERMUTATION(v0, v1, v2, v3)
|
||||
|
||||
#define PREAMBLE(len) \
|
||||
u64 v0 = 0x736f6d6570736575ULL; \
|
||||
u64 v1 = 0x646f72616e646f6dULL; \
|
||||
u64 v2 = 0x6c7967656e657261ULL; \
|
||||
u64 v3 = 0x7465646279746573ULL; \
|
||||
u64 v0 = SIPHASH_CONST_0; \
|
||||
u64 v1 = SIPHASH_CONST_1; \
|
||||
u64 v2 = SIPHASH_CONST_2; \
|
||||
u64 v3 = SIPHASH_CONST_3; \
|
||||
u64 b = ((u64)(len)) << 56; \
|
||||
v3 ^= key->key[1]; \
|
||||
v2 ^= key->key[0]; \
|
||||
@ -389,19 +383,13 @@ u32 hsiphash_4u32(const u32 first, const u32 second, const u32 third,
|
||||
}
|
||||
EXPORT_SYMBOL(hsiphash_4u32);
|
||||
#else
|
||||
#define HSIPROUND \
|
||||
do { \
|
||||
v0 += v1; v1 = rol32(v1, 5); v1 ^= v0; v0 = rol32(v0, 16); \
|
||||
v2 += v3; v3 = rol32(v3, 8); v3 ^= v2; \
|
||||
v0 += v3; v3 = rol32(v3, 7); v3 ^= v0; \
|
||||
v2 += v1; v1 = rol32(v1, 13); v1 ^= v2; v2 = rol32(v2, 16); \
|
||||
} while (0)
|
||||
#define HSIPROUND HSIPHASH_PERMUTATION(v0, v1, v2, v3)
|
||||
|
||||
#define HPREAMBLE(len) \
|
||||
u32 v0 = 0; \
|
||||
u32 v1 = 0; \
|
||||
u32 v2 = 0x6c796765U; \
|
||||
u32 v3 = 0x74656462U; \
|
||||
u32 v0 = HSIPHASH_CONST_0; \
|
||||
u32 v1 = HSIPHASH_CONST_1; \
|
||||
u32 v2 = HSIPHASH_CONST_2; \
|
||||
u32 v3 = HSIPHASH_CONST_3; \
|
||||
u32 b = ((u32)(len)) << 24; \
|
||||
v3 ^= key->key[1]; \
|
||||
v2 ^= key->key[0]; \
|
||||
|
@ -750,61 +750,38 @@ static int __init debug_boot_weak_hash_enable(char *str)
|
||||
}
|
||||
early_param("debug_boot_weak_hash", debug_boot_weak_hash_enable);
|
||||
|
||||
static DEFINE_STATIC_KEY_TRUE(not_filled_random_ptr_key);
|
||||
static siphash_key_t ptr_key __read_mostly;
|
||||
static DEFINE_STATIC_KEY_FALSE(filled_random_ptr_key);
|
||||
|
||||
static void enable_ptr_key_workfn(struct work_struct *work)
|
||||
{
|
||||
get_random_bytes(&ptr_key, sizeof(ptr_key));
|
||||
/* Needs to run from preemptible context */
|
||||
static_branch_disable(¬_filled_random_ptr_key);
|
||||
static_branch_enable(&filled_random_ptr_key);
|
||||
}
|
||||
|
||||
static DECLARE_WORK(enable_ptr_key_work, enable_ptr_key_workfn);
|
||||
|
||||
static int fill_random_ptr_key(struct notifier_block *nb,
|
||||
unsigned long action, void *data)
|
||||
{
|
||||
/* This may be in an interrupt handler. */
|
||||
queue_work(system_unbound_wq, &enable_ptr_key_work);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct notifier_block random_ready = {
|
||||
.notifier_call = fill_random_ptr_key
|
||||
};
|
||||
|
||||
static int __init initialize_ptr_random(void)
|
||||
{
|
||||
int key_size = sizeof(ptr_key);
|
||||
int ret;
|
||||
|
||||
/* Use hw RNG if available. */
|
||||
if (get_random_bytes_arch(&ptr_key, key_size) == key_size) {
|
||||
static_branch_disable(¬_filled_random_ptr_key);
|
||||
return 0;
|
||||
}
|
||||
|
||||
ret = register_random_ready_notifier(&random_ready);
|
||||
if (!ret) {
|
||||
return 0;
|
||||
} else if (ret == -EALREADY) {
|
||||
/* This is in preemptible context */
|
||||
enable_ptr_key_workfn(&enable_ptr_key_work);
|
||||
return 0;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
early_initcall(initialize_ptr_random);
|
||||
|
||||
/* Maps a pointer to a 32 bit unique identifier. */
|
||||
static inline int __ptr_to_hashval(const void *ptr, unsigned long *hashval_out)
|
||||
{
|
||||
static siphash_key_t ptr_key __read_mostly;
|
||||
unsigned long hashval;
|
||||
|
||||
if (static_branch_unlikely(¬_filled_random_ptr_key))
|
||||
return -EAGAIN;
|
||||
if (!static_branch_likely(&filled_random_ptr_key)) {
|
||||
static bool filled = false;
|
||||
static DEFINE_SPINLOCK(filling);
|
||||
static DECLARE_WORK(enable_ptr_key_work, enable_ptr_key_workfn);
|
||||
unsigned long flags;
|
||||
|
||||
if (!system_unbound_wq ||
|
||||
(!rng_is_initialized() && !rng_has_arch_random()) ||
|
||||
!spin_trylock_irqsave(&filling, flags))
|
||||
return -EAGAIN;
|
||||
|
||||
if (!filled) {
|
||||
get_random_bytes(&ptr_key, sizeof(ptr_key));
|
||||
queue_work(system_unbound_wq, &enable_ptr_key_work);
|
||||
filled = true;
|
||||
}
|
||||
spin_unlock_irqrestore(&filling, flags);
|
||||
}
|
||||
|
||||
|
||||
#ifdef CONFIG_64BIT
|
||||
hashval = (unsigned long)siphash_1u64((u64)ptr, &ptr_key);
|
||||
|
32
mm/util.c
32
mm/util.c
@ -343,6 +343,38 @@ unsigned long randomize_stack_top(unsigned long stack_top)
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* randomize_page - Generate a random, page aligned address
|
||||
* @start: The smallest acceptable address the caller will take.
|
||||
* @range: The size of the area, starting at @start, within which the
|
||||
* random address must fall.
|
||||
*
|
||||
* If @start + @range would overflow, @range is capped.
|
||||
*
|
||||
* NOTE: Historical use of randomize_range, which this replaces, presumed that
|
||||
* @start was already page aligned. We now align it regardless.
|
||||
*
|
||||
* Return: A page aligned address within [start, start + range). On error,
|
||||
* @start is returned.
|
||||
*/
|
||||
unsigned long randomize_page(unsigned long start, unsigned long range)
|
||||
{
|
||||
if (!PAGE_ALIGNED(start)) {
|
||||
range -= PAGE_ALIGN(start) - start;
|
||||
start = PAGE_ALIGN(start);
|
||||
}
|
||||
|
||||
if (start > ULONG_MAX - range)
|
||||
range = ULONG_MAX - start;
|
||||
|
||||
range >>= PAGE_SHIFT;
|
||||
|
||||
if (range == 0)
|
||||
return start;
|
||||
|
||||
return start + (get_random_long() % range << PAGE_SHIFT);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
|
||||
unsigned long arch_randomize_brk(struct mm_struct *mm)
|
||||
{
|
||||
|
@ -3527,7 +3527,6 @@ static int xmit_one(struct sk_buff *skb, struct net_device *dev,
|
||||
dev_queue_xmit_nit(skb, dev);
|
||||
|
||||
len = skb->len;
|
||||
PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
|
||||
trace_net_dev_start_xmit(skb, dev);
|
||||
rc = netdev_start_xmit(skb, dev, txq, more);
|
||||
trace_net_dev_xmit(skb, rc, dev, len);
|
||||
@ -4168,7 +4167,6 @@ static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
|
||||
if (!skb)
|
||||
goto out;
|
||||
|
||||
PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
|
||||
HARD_TX_LOCK(dev, txq, cpu);
|
||||
|
||||
if (!netif_xmit_stopped(txq)) {
|
||||
@ -4234,7 +4232,6 @@ int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
|
||||
|
||||
skb_set_queue_mapping(skb, queue_id);
|
||||
txq = skb_get_tx_queue(dev, skb);
|
||||
PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
|
||||
|
||||
local_bh_disable();
|
||||
|
||||
|
@ -536,10 +536,8 @@ static int __inet_insert_ifa(struct in_ifaddr *ifa, struct nlmsghdr *nlh,
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (!(ifa->ifa_flags & IFA_F_SECONDARY)) {
|
||||
prandom_seed((__force u32) ifa->ifa_local);
|
||||
if (!(ifa->ifa_flags & IFA_F_SECONDARY))
|
||||
ifap = last_primary;
|
||||
}
|
||||
|
||||
rcu_assign_pointer(ifa->ifa_next, *ifap);
|
||||
rcu_assign_pointer(*ifap, ifa);
|
||||
|
@ -3972,8 +3972,6 @@ static void addrconf_dad_begin(struct inet6_ifaddr *ifp)
|
||||
|
||||
addrconf_join_solict(dev, &ifp->addr);
|
||||
|
||||
prandom_seed((__force u32) ifp->addr.s6_addr32[3]);
|
||||
|
||||
read_lock_bh(&idev->lock);
|
||||
spin_lock(&ifp->lock);
|
||||
if (ifp->state == INET6_IFADDR_STATE_DEAD)
|
||||
|
Loading…
Reference in New Issue
Block a user