dt-bindings: iio: adc: stm32-adc: convert bindings to json-schema

Convert the STM32 ADC binding to DT schema format using json-schema

Signed-off-by: Fabrice Gasnier <fabrice.gasnier@st.com>
Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
This commit is contained in:
Fabrice Gasnier 2020-01-15 14:45:41 +01:00 committed by Jonathan Cameron
parent 8ef0c4f064
commit a8cf1723c4
2 changed files with 458 additions and 149 deletions

View File

@ -1,149 +0,0 @@
STMicroelectronics STM32 ADC device driver
STM32 ADC is a successive approximation analog-to-digital converter.
It has several multiplexed input channels. Conversions can be performed
in single, continuous, scan or discontinuous mode. Result of the ADC is
stored in a left-aligned or right-aligned 32-bit data register.
Conversions can be launched in software or using hardware triggers.
The analog watchdog feature allows the application to detect if the input
voltage goes beyond the user-defined, higher or lower thresholds.
Each STM32 ADC block can have up to 3 ADC instances.
Each instance supports two contexts to manage conversions, each one has its
own configurable sequence and trigger:
- regular conversion can be done in sequence, running in background
- injected conversions have higher priority, and so have the ability to
interrupt regular conversion sequence (either triggered in SW or HW).
Regular sequence is resumed, in case it has been interrupted.
Contents of a stm32 adc root node:
-----------------------------------
Required properties:
- compatible: Should be one of:
"st,stm32f4-adc-core"
"st,stm32h7-adc-core"
"st,stm32mp1-adc-core"
- reg: Offset and length of the ADC block register set.
- interrupts: One or more interrupts for ADC block. Some parts like stm32f4
and stm32h7 share a common ADC interrupt line. stm32mp1 has two separate
interrupt lines, one for each ADC within ADC block.
- clocks: Core can use up to two clocks, depending on part used:
- "adc" clock: for the analog circuitry, common to all ADCs.
It's required on stm32f4.
It's optional on stm32h7.
- "bus" clock: for registers access, common to all ADCs.
It's not present on stm32f4.
It's required on stm32h7.
- clock-names: Must be "adc" and/or "bus" depending on part used.
- interrupt-controller: Identifies the controller node as interrupt-parent
- vdda-supply: Phandle to the vdda input analog voltage.
- vref-supply: Phandle to the vref input analog reference voltage.
- #interrupt-cells = <1>;
- #address-cells = <1>;
- #size-cells = <0>;
Optional properties:
- A pinctrl state named "default" for each ADC channel may be defined to set
inX ADC pins in mode of operation for analog input on external pin.
- booster-supply: Phandle to the embedded booster regulator that can be used
to supply ADC analog input switches on stm32h7 and stm32mp1.
- vdd-supply: Phandle to the vdd input voltage. It can be used to supply ADC
analog input switches on stm32mp1.
- st,syscfg: Phandle to system configuration controller. It can be used to
control the analog circuitry on stm32mp1.
- st,max-clk-rate-hz: Allow to specify desired max clock rate used by analog
circuitry.
Contents of a stm32 adc child node:
-----------------------------------
An ADC block node should contain at least one subnode, representing an
ADC instance available on the machine.
Required properties:
- compatible: Should be one of:
"st,stm32f4-adc"
"st,stm32h7-adc"
"st,stm32mp1-adc"
- reg: Offset of ADC instance in ADC block (e.g. may be 0x0, 0x100, 0x200).
- clocks: Input clock private to this ADC instance. It's required only on
stm32f4, that has per instance clock input for registers access.
- interrupts: IRQ Line for the ADC (e.g. may be 0 for adc@0, 1 for adc@100 or
2 for adc@200).
- st,adc-channels: List of single-ended channels muxed for this ADC.
It can have up to 16 channels on stm32f4 or 20 channels on stm32h7, numbered
from 0 to 15 or 19 (resp. for in0..in15 or in0..in19).
- st,adc-diff-channels: List of differential channels muxed for this ADC.
Depending on part used, some channels can be configured as differential
instead of single-ended (e.g. stm32h7). List here positive and negative
inputs pairs as <vinp vinn>, <vinp vinn>,... vinp and vinn are numbered
from 0 to 19 on stm32h7)
Note: At least one of "st,adc-channels" or "st,adc-diff-channels" is required.
Both properties can be used together. Some channels can be used as
single-ended and some other ones as differential (mixed). But channels
can't be configured both as single-ended and differential (invalid).
- #io-channel-cells = <1>: See the IIO bindings section "IIO consumers" in
Documentation/devicetree/bindings/iio/iio-bindings.txt
Optional properties:
- dmas: Phandle to dma channel for this ADC instance.
See ../../dma/dma.txt for details.
- dma-names: Must be "rx" when dmas property is being used.
- assigned-resolution-bits: Resolution (bits) to use for conversions. Must
match device available resolutions:
* can be 6, 8, 10 or 12 on stm32f4
* can be 8, 10, 12, 14 or 16 on stm32h7
Default is maximum resolution if unset.
- st,min-sample-time-nsecs: Minimum sampling time in nanoseconds.
Depending on hardware (board) e.g. high/low analog input source impedance,
fine tune of ADC sampling time may be recommended.
This can be either one value or an array that matches 'st,adc-channels' list,
to set sample time resp. for all channels, or independently for each channel.
Example:
adc: adc@40012000 {
compatible = "st,stm32f4-adc-core";
reg = <0x40012000 0x400>;
interrupts = <18>;
clocks = <&rcc 0 168>;
clock-names = "adc";
vref-supply = <&reg_vref>;
interrupt-controller;
pinctrl-names = "default";
pinctrl-0 = <&adc3_in8_pin>;
#interrupt-cells = <1>;
#address-cells = <1>;
#size-cells = <0>;
adc@0 {
compatible = "st,stm32f4-adc";
#io-channel-cells = <1>;
reg = <0x0>;
clocks = <&rcc 0 168>;
interrupt-parent = <&adc>;
interrupts = <0>;
st,adc-channels = <8>;
dmas = <&dma2 0 0 0x400 0x0>;
dma-names = "rx";
assigned-resolution-bits = <8>;
};
...
other adc child nodes follow...
};
Example to setup:
- channel 1 as single-ended
- channels 2 & 3 as differential (with resp. 6 & 7 negative inputs)
adc: adc@40022000 {
compatible = "st,stm32h7-adc-core";
...
adc1: adc@0 {
compatible = "st,stm32h7-adc";
...
st,adc-channels = <1>;
st,adc-diff-channels = <2 6>, <3 7>;
};
};

View File

@ -0,0 +1,458 @@
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: "http://devicetree.org/schemas/bindings/iio/adc/st,stm32-adc.yaml#"
$schema: "http://devicetree.org/meta-schemas/core.yaml#"
title: STMicroelectronics STM32 ADC bindings
description: |
STM32 ADC is a successive approximation analog-to-digital converter.
It has several multiplexed input channels. Conversions can be performed
in single, continuous, scan or discontinuous mode. Result of the ADC is
stored in a left-aligned or right-aligned 32-bit data register.
Conversions can be launched in software or using hardware triggers.
The analog watchdog feature allows the application to detect if the input
voltage goes beyond the user-defined, higher or lower thresholds.
Each STM32 ADC block can have up to 3 ADC instances.
maintainers:
- Fabrice Gasnier <fabrice.gasnier@st.com>
properties:
compatible:
enum:
- st,stm32f4-adc-core
- st,stm32h7-adc-core
- st,stm32mp1-adc-core
reg:
maxItems: 1
interrupts:
description: |
One or more interrupts for ADC block, depending on part used:
- stm32f4 and stm32h7 share a common ADC interrupt line.
- stm32mp1 has two separate interrupt lines, one for each ADC within
ADC block.
minItems: 1
maxItems: 2
clocks:
description: |
Core can use up to two clocks, depending on part used:
- "adc" clock: for the analog circuitry, common to all ADCs.
It's required on stm32f4.
It's optional on stm32h7 and stm32mp1.
- "bus" clock: for registers access, common to all ADCs.
It's not present on stm32f4.
It's required on stm32h7 and stm32mp1.
clock-names: true
st,max-clk-rate-hz:
description:
Allow to specify desired max clock rate used by analog circuitry.
vdda-supply:
description: Phandle to the vdda input analog voltage.
vref-supply:
description: Phandle to the vref input analog reference voltage.
booster-supply:
description:
Phandle to the embedded booster regulator that can be used to supply ADC
analog input switches on stm32h7 and stm32mp1.
vdd-supply:
description:
Phandle to the vdd input voltage. It can be used to supply ADC analog
input switches on stm32mp1.
st,syscfg:
description:
Phandle to system configuration controller. It can be used to control the
analog circuitry on stm32mp1.
allOf:
- $ref: "/schemas/types.yaml#/definitions/phandle-array"
interrupt-controller: true
'#interrupt-cells':
const: 1
'#address-cells':
const: 1
'#size-cells':
const: 0
allOf:
- if:
properties:
compatible:
contains:
const: st,stm32f4-adc-core
then:
properties:
clocks:
maxItems: 1
clock-names:
const: adc
interrupts:
items:
- description: interrupt line common for all ADCs
st,max-clk-rate-hz:
minimum: 600000
maximum: 36000000
default: 36000000
booster-supply: false
vdd-supply: false
st,syscfg: false
- if:
properties:
compatible:
contains:
const: st,stm32h7-adc-core
then:
properties:
clocks:
minItems: 1
maxItems: 2
clock-names:
items:
- const: bus
- const: adc
minItems: 1
maxItems: 2
interrupts:
items:
- description: interrupt line common for all ADCs
st,max-clk-rate-hz:
minimum: 120000
maximum: 36000000
default: 36000000
vdd-supply: false
st,syscfg: false
- if:
properties:
compatible:
contains:
const: st,stm32mp1-adc-core
then:
properties:
clocks:
minItems: 1
maxItems: 2
clock-names:
items:
- const: bus
- const: adc
minItems: 1
maxItems: 2
interrupts:
items:
- description: interrupt line for ADC1
- description: interrupt line for ADC2
st,max-clk-rate-hz:
minimum: 120000
maximum: 36000000
default: 36000000
additionalProperties: false
required:
- compatible
- reg
- interrupts
- clocks
- clock-names
- vdda-supply
- vref-supply
- interrupt-controller
- '#interrupt-cells'
- '#address-cells'
- '#size-cells'
patternProperties:
"^adc@[0-9]+$":
type: object
description:
An ADC block node should contain at least one subnode, representing an
ADC instance available on the machine.
properties:
compatible:
enum:
- st,stm32f4-adc
- st,stm32h7-adc
- st,stm32mp1-adc
reg:
description: |
Offset of ADC instance in ADC block. Valid values are:
- 0x0: ADC1
- 0x100: ADC2
- 0x200: ADC3 (stm32f4 only)
maxItems: 1
'#io-channel-cells':
const: 1
interrupts:
description: |
IRQ Line for the ADC instance. Valid values are:
- 0 for adc@0
- 1 for adc@100
- 2 for adc@200 (stm32f4 only)
maxItems: 1
clocks:
description:
Input clock private to this ADC instance. It's required only on
stm32f4, that has per instance clock input for registers access.
maxItems: 1
dmas:
description: RX DMA Channel
maxItems: 1
dma-names:
const: rx
assigned-resolution-bits:
description: |
Resolution (bits) to use for conversions:
- can be 6, 8, 10 or 12 on stm32f4
- can be 8, 10, 12, 14 or 16 on stm32h7 and stm32mp1
allOf:
- $ref: /schemas/types.yaml#/definitions/uint32
st,adc-channels:
description: |
List of single-ended channels muxed for this ADC. It can have up to:
- 16 channels, numbered from 0 to 15 (for in0..in15) on stm32f4
- 20 channels, numbered from 0 to 19 (for in0..in19) on stm32h7 and
stm32mp1.
allOf:
- $ref: /schemas/types.yaml#/definitions/uint32-array
st,adc-diff-channels:
description: |
List of differential channels muxed for this ADC. Some channels can
be configured as differential instead of single-ended on stm32h7 and
on stm32mp1. Positive and negative inputs pairs are listed:
<vinp vinn>, <vinp vinn>,... vinp and vinn are numbered from 0 to 19.
Note: At least one of "st,adc-channels" or "st,adc-diff-channels" is
required. Both properties can be used together. Some channels can be
used as single-ended and some other ones as differential (mixed). But
channels can't be configured both as single-ended and differential.
allOf:
- $ref: /schemas/types.yaml#/definitions/uint32-matrix
- items:
items:
- description: |
"vinp" indicates positive input number
minimum: 0
maximum: 19
- description: |
"vinn" indicates negative input number
minimum: 0
maximum: 19
st,min-sample-time-nsecs:
description:
Minimum sampling time in nanoseconds. Depending on hardware (board)
e.g. high/low analog input source impedance, fine tune of ADC
sampling time may be recommended. This can be either one value or an
array that matches "st,adc-channels" and/or "st,adc-diff-channels"
list, to set sample time resp. for all channels, or independently for
each channel.
allOf:
- $ref: /schemas/types.yaml#/definitions/uint32-array
allOf:
- if:
properties:
compatible:
contains:
const: st,stm32f4-adc
then:
properties:
reg:
enum:
- 0x0
- 0x100
- 0x200
interrupts:
minimum: 0
maximum: 2
assigned-resolution-bits:
enum: [6, 8, 10, 12]
default: 12
st,adc-channels:
minItems: 1
maxItems: 16
items:
minimum: 0
maximum: 15
st,adc-diff-channels: false
st,min-sample-time-nsecs:
minItems: 1
maxItems: 16
items:
minimum: 80
required:
- clocks
- if:
properties:
compatible:
contains:
enum:
- st,stm32h7-adc
- st,stm32mp1-adc
then:
properties:
reg:
enum:
- 0x0
- 0x100
interrupts:
minimum: 0
maximum: 1
assigned-resolution-bits:
enum: [8, 10, 12, 14, 16]
default: 16
st,adc-channels:
minItems: 1
maxItems: 20
items:
minimum: 0
maximum: 19
st,min-sample-time-nsecs:
minItems: 1
maxItems: 20
items:
minimum: 40
additionalProperties: false
anyOf:
- required:
- st,adc-channels
- required:
- st,adc-diff-channels
required:
- compatible
- reg
- interrupts
- '#io-channel-cells'
examples:
- |
// Example 1: with stm32f429, ADC1, single-ended channel 8
adc123: adc@40012000 {
compatible = "st,stm32f4-adc-core";
reg = <0x40012000 0x400>;
interrupts = <18>;
clocks = <&rcc 0 168>;
clock-names = "adc";
st,max-clk-rate-hz = <36000000>;
vdda-supply = <&vdda>;
vref-supply = <&vref>;
interrupt-controller;
#interrupt-cells = <1>;
#address-cells = <1>;
#size-cells = <0>;
adc@0 {
compatible = "st,stm32f4-adc";
#io-channel-cells = <1>;
reg = <0x0>;
clocks = <&rcc 0 168>;
interrupt-parent = <&adc123>;
interrupts = <0>;
st,adc-channels = <8>;
dmas = <&dma2 0 0 0x400 0x0>;
dma-names = "rx";
assigned-resolution-bits = <8>;
};
// ...
// other adc child nodes follow...
};
- |
// Example 2: with stm32mp157c to setup ADC1 with:
// - channels 0 & 1 as single-ended
// - channels 2 & 3 as differential (with resp. 6 & 7 negative inputs)
#include <dt-bindings/interrupt-controller/arm-gic.h>
#include <dt-bindings/clock/stm32mp1-clks.h>
adc12: adc@48003000 {
compatible = "st,stm32mp1-adc-core";
reg = <0x48003000 0x400>;
interrupts = <GIC_SPI 18 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 90 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&rcc ADC12>, <&rcc ADC12_K>;
clock-names = "bus", "adc";
booster-supply = <&booster>;
vdd-supply = <&vdd>;
vdda-supply = <&vdda>;
vref-supply = <&vref>;
st,syscfg = <&syscfg>;
interrupt-controller;
#interrupt-cells = <1>;
#address-cells = <1>;
#size-cells = <0>;
adc@0 {
compatible = "st,stm32mp1-adc";
#io-channel-cells = <1>;
reg = <0x0>;
interrupt-parent = <&adc12>;
interrupts = <0>;
st,adc-channels = <0 1>;
st,adc-diff-channels = <2 6>, <3 7>;
st,min-sample-time-nsecs = <5000>;
dmas = <&dmamux1 9 0x400 0x05>;
dma-names = "rx";
};
// ...
// other adc child node follow...
};
...