mtd: onenand: omap2: Configure driver from DT

Move away from platform data configuration and use pure DT approach.

Use generic probe function to deal with OneNAND node and remove now useless
gpmc_probe_onenand_child function. Import sync mode timing calculation
function from mach-omap2/gpmc-onenand.c

Signed-off-by: Ladislav Michl <ladis@linux-mips.org>
Reviewed-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Tested-by: Tony Lindgren <tony@atomide.com>
Tested-by: Aaro Koskinen <aaro.koskinen@iki.fi>
Acked-by: Roger Quadros <rogerq@ti.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
This commit is contained in:
Ladislav Michl 2018-01-12 14:17:25 +01:00 committed by Boris Brezillon
parent bdaca9345d
commit a758f50f10
4 changed files with 300 additions and 138 deletions

View File

@ -32,7 +32,6 @@
#include <linux/pm_runtime.h>
#include <linux/platform_data/mtd-nand-omap2.h>
#include <linux/platform_data/mtd-onenand-omap2.h>
#include <asm/mach-types.h>
@ -1138,6 +1137,112 @@ struct gpmc_nand_ops *gpmc_omap_get_nand_ops(struct gpmc_nand_regs *reg, int cs)
}
EXPORT_SYMBOL_GPL(gpmc_omap_get_nand_ops);
static void gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings *t,
struct gpmc_settings *s,
int freq, int latency)
{
struct gpmc_device_timings dev_t;
const int t_cer = 15;
const int t_avdp = 12;
const int t_cez = 20; /* max of t_cez, t_oez */
const int t_wpl = 40;
const int t_wph = 30;
int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
switch (freq) {
case 104:
min_gpmc_clk_period = 9600; /* 104 MHz */
t_ces = 3;
t_avds = 4;
t_avdh = 2;
t_ach = 3;
t_aavdh = 6;
t_rdyo = 6;
break;
case 83:
min_gpmc_clk_period = 12000; /* 83 MHz */
t_ces = 5;
t_avds = 4;
t_avdh = 2;
t_ach = 6;
t_aavdh = 6;
t_rdyo = 9;
break;
case 66:
min_gpmc_clk_period = 15000; /* 66 MHz */
t_ces = 6;
t_avds = 5;
t_avdh = 2;
t_ach = 6;
t_aavdh = 6;
t_rdyo = 11;
break;
default:
min_gpmc_clk_period = 18500; /* 54 MHz */
t_ces = 7;
t_avds = 7;
t_avdh = 7;
t_ach = 9;
t_aavdh = 7;
t_rdyo = 15;
break;
}
/* Set synchronous read timings */
memset(&dev_t, 0, sizeof(dev_t));
if (!s->sync_write) {
dev_t.t_avdp_w = max(t_avdp, t_cer) * 1000;
dev_t.t_wpl = t_wpl * 1000;
dev_t.t_wph = t_wph * 1000;
dev_t.t_aavdh = t_aavdh * 1000;
}
dev_t.ce_xdelay = true;
dev_t.avd_xdelay = true;
dev_t.oe_xdelay = true;
dev_t.we_xdelay = true;
dev_t.clk = min_gpmc_clk_period;
dev_t.t_bacc = dev_t.clk;
dev_t.t_ces = t_ces * 1000;
dev_t.t_avds = t_avds * 1000;
dev_t.t_avdh = t_avdh * 1000;
dev_t.t_ach = t_ach * 1000;
dev_t.cyc_iaa = (latency + 1);
dev_t.t_cez_r = t_cez * 1000;
dev_t.t_cez_w = dev_t.t_cez_r;
dev_t.cyc_aavdh_oe = 1;
dev_t.t_rdyo = t_rdyo * 1000 + min_gpmc_clk_period;
gpmc_calc_timings(t, s, &dev_t);
}
int gpmc_omap_onenand_set_timings(struct device *dev, int cs, int freq,
int latency,
struct gpmc_onenand_info *info)
{
int ret;
struct gpmc_timings gpmc_t;
struct gpmc_settings gpmc_s;
gpmc_read_settings_dt(dev->of_node, &gpmc_s);
info->sync_read = gpmc_s.sync_read;
info->sync_write = gpmc_s.sync_write;
info->burst_len = gpmc_s.burst_len;
if (!gpmc_s.sync_read && !gpmc_s.sync_write)
return 0;
gpmc_omap_onenand_calc_sync_timings(&gpmc_t, &gpmc_s, freq, latency);
ret = gpmc_cs_program_settings(cs, &gpmc_s);
if (ret < 0)
return ret;
return gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
}
EXPORT_SYMBOL_GPL(gpmc_omap_onenand_set_timings);
int gpmc_get_client_irq(unsigned irq_config)
{
if (!gpmc_irq_domain) {
@ -1916,41 +2021,6 @@ static void __maybe_unused gpmc_read_timings_dt(struct device_node *np,
of_property_read_bool(np, "gpmc,time-para-granularity");
}
#if IS_ENABLED(CONFIG_MTD_ONENAND)
static int gpmc_probe_onenand_child(struct platform_device *pdev,
struct device_node *child)
{
u32 val;
struct omap_onenand_platform_data *gpmc_onenand_data;
if (of_property_read_u32(child, "reg", &val) < 0) {
dev_err(&pdev->dev, "%pOF has no 'reg' property\n",
child);
return -ENODEV;
}
gpmc_onenand_data = devm_kzalloc(&pdev->dev, sizeof(*gpmc_onenand_data),
GFP_KERNEL);
if (!gpmc_onenand_data)
return -ENOMEM;
gpmc_onenand_data->cs = val;
gpmc_onenand_data->of_node = child;
gpmc_onenand_data->dma_channel = -1;
if (!of_property_read_u32(child, "dma-channel", &val))
gpmc_onenand_data->dma_channel = val;
return gpmc_onenand_init(gpmc_onenand_data);
}
#else
static int gpmc_probe_onenand_child(struct platform_device *pdev,
struct device_node *child)
{
return 0;
}
#endif
/**
* gpmc_probe_generic_child - configures the gpmc for a child device
* @pdev: pointer to gpmc platform device
@ -2053,6 +2123,16 @@ static int gpmc_probe_generic_child(struct platform_device *pdev,
}
}
if (of_node_cmp(child->name, "onenand") == 0) {
/* Warn about older DT blobs with no compatible property */
if (!of_property_read_bool(child, "compatible")) {
dev_warn(&pdev->dev,
"Incompatible OneNAND node: missing compatible");
ret = -EINVAL;
goto err;
}
}
if (of_device_is_compatible(child, "ti,omap2-nand")) {
/* NAND specific setup */
val = 8;
@ -2189,11 +2269,7 @@ static void gpmc_probe_dt_children(struct platform_device *pdev)
if (!child->name)
continue;
if (of_node_cmp(child->name, "onenand") == 0)
ret = gpmc_probe_onenand_child(pdev, child);
else
ret = gpmc_probe_generic_child(pdev, child);
ret = gpmc_probe_generic_child(pdev, child);
if (ret) {
dev_err(&pdev->dev, "failed to probe DT child '%s': %d\n",
child->name, ret);

View File

@ -25,9 +25,11 @@ config MTD_ONENAND_GENERIC
config MTD_ONENAND_OMAP2
tristate "OneNAND on OMAP2/OMAP3 support"
depends on ARCH_OMAP2 || ARCH_OMAP3
depends on OF || COMPILE_TEST
help
Support for a OneNAND flash device connected to an OMAP2/OMAP3 CPU
Support for a OneNAND flash device connected to an OMAP2/OMAP3 SoC
via the GPMC memory controller.
Enable dmaengine and gpiolib for better performance.
config MTD_ONENAND_SAMSUNG
tristate "OneNAND on Samsung SOC controller support"

View File

@ -28,6 +28,8 @@
#include <linux/mtd/mtd.h>
#include <linux/mtd/onenand.h>
#include <linux/mtd/partitions.h>
#include <linux/of_device.h>
#include <linux/omap-gpmc.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
@ -35,10 +37,9 @@
#include <linux/dmaengine.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/gpio.h>
#include <linux/gpio/consumer.h>
#include <asm/mach/flash.h>
#include <linux/platform_data/mtd-onenand-omap2.h>
#define DRIVER_NAME "omap2-onenand"
@ -48,15 +49,12 @@ struct omap2_onenand {
struct platform_device *pdev;
int gpmc_cs;
unsigned long phys_base;
unsigned int mem_size;
int gpio_irq;
struct gpio_desc *int_gpiod;
struct mtd_info mtd;
struct onenand_chip onenand;
struct completion irq_done;
struct completion dma_done;
struct dma_chan *dma_chan;
int freq;
int (*setup)(void __iomem *base, int *freq_ptr);
};
static void omap2_onenand_dma_complete_func(void *completion)
@ -84,6 +82,65 @@ static inline void write_reg(struct omap2_onenand *c, unsigned short value,
writew(value, c->onenand.base + reg);
}
static int omap2_onenand_set_cfg(struct omap2_onenand *c,
bool sr, bool sw,
int latency, int burst_len)
{
unsigned short reg = ONENAND_SYS_CFG1_RDY | ONENAND_SYS_CFG1_INT;
reg |= latency << ONENAND_SYS_CFG1_BRL_SHIFT;
switch (burst_len) {
case 0: /* continuous */
break;
case 4:
reg |= ONENAND_SYS_CFG1_BL_4;
break;
case 8:
reg |= ONENAND_SYS_CFG1_BL_8;
break;
case 16:
reg |= ONENAND_SYS_CFG1_BL_16;
break;
case 32:
reg |= ONENAND_SYS_CFG1_BL_32;
break;
default:
return -EINVAL;
}
if (latency > 5)
reg |= ONENAND_SYS_CFG1_HF;
if (latency > 7)
reg |= ONENAND_SYS_CFG1_VHF;
if (sr)
reg |= ONENAND_SYS_CFG1_SYNC_READ;
if (sw)
reg |= ONENAND_SYS_CFG1_SYNC_WRITE;
write_reg(c, reg, ONENAND_REG_SYS_CFG1);
return 0;
}
static int omap2_onenand_get_freq(int ver)
{
switch ((ver >> 4) & 0xf) {
case 0:
return 40;
case 1:
return 54;
case 2:
return 66;
case 3:
return 83;
case 4:
return 104;
}
return -EINVAL;
}
static void wait_err(char *msg, int state, unsigned int ctrl, unsigned int intr)
{
printk(KERN_ERR "onenand_wait: %s! state %d ctrl 0x%04x intr 0x%04x\n",
@ -152,12 +209,12 @@ static int omap2_onenand_wait(struct mtd_info *mtd, int state)
}
reinit_completion(&c->irq_done);
result = gpio_get_value(c->gpio_irq);
result = gpiod_get_value(c->int_gpiod);
if (result < 0) {
ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
intr = read_reg(c, ONENAND_REG_INTERRUPT);
wait_err("gpio error", state, ctrl, intr);
return -EIO;
return result;
} else if (result == 0) {
int retry_cnt = 0;
retry:
@ -431,8 +488,6 @@ out_copy:
return 0;
}
static struct platform_driver omap2_onenand_driver;
static void omap2_onenand_shutdown(struct platform_device *pdev)
{
struct omap2_onenand *c = dev_get_drvdata(&pdev->dev);
@ -446,105 +501,117 @@ static void omap2_onenand_shutdown(struct platform_device *pdev)
static int omap2_onenand_probe(struct platform_device *pdev)
{
u32 val;
dma_cap_mask_t mask;
struct omap_onenand_platform_data *pdata;
struct omap2_onenand *c;
struct onenand_chip *this;
int r;
int freq, latency, r;
struct resource *res;
struct omap2_onenand *c;
struct gpmc_onenand_info info;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
pdata = dev_get_platdata(&pdev->dev);
if (pdata == NULL) {
dev_err(&pdev->dev, "platform data missing\n");
return -ENODEV;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "error getting memory resource\n");
return -EINVAL;
}
c = kzalloc(sizeof(struct omap2_onenand), GFP_KERNEL);
r = of_property_read_u32(np, "reg", &val);
if (r) {
dev_err(dev, "reg not found in DT\n");
return r;
}
c = devm_kzalloc(dev, sizeof(struct omap2_onenand), GFP_KERNEL);
if (!c)
return -ENOMEM;
init_completion(&c->irq_done);
init_completion(&c->dma_done);
c->gpmc_cs = pdata->cs;
c->gpio_irq = pdata->gpio_irq;
if (pdata->dma_channel < 0) {
/* if -1, don't use DMA */
c->gpio_irq = 0;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL) {
r = -EINVAL;
dev_err(&pdev->dev, "error getting memory resource\n");
goto err_kfree;
}
c->gpmc_cs = val;
c->phys_base = res->start;
c->mem_size = resource_size(res);
if (request_mem_region(c->phys_base, c->mem_size,
pdev->dev.driver->name) == NULL) {
dev_err(&pdev->dev, "Cannot reserve memory region at 0x%08lx, size: 0x%x\n",
c->phys_base, c->mem_size);
r = -EBUSY;
goto err_kfree;
}
c->onenand.base = ioremap(c->phys_base, c->mem_size);
if (c->onenand.base == NULL) {
r = -ENOMEM;
goto err_release_mem_region;
c->onenand.base = devm_ioremap_resource(dev, res);
if (IS_ERR(c->onenand.base)) {
dev_err(dev, "Cannot reserve memory region at 0x%08x, size: 0x%x\n",
res->start, resource_size(res));
return PTR_ERR(c->onenand.base);
}
if (pdata->onenand_setup != NULL) {
r = pdata->onenand_setup(c->onenand.base, &c->freq);
if (r < 0) {
dev_err(&pdev->dev, "Onenand platform setup failed: "
"%d\n", r);
goto err_iounmap;
}
c->setup = pdata->onenand_setup;
c->int_gpiod = devm_gpiod_get_optional(dev, "int", GPIOD_IN);
if (IS_ERR(c->int_gpiod)) {
r = PTR_ERR(c->int_gpiod);
/* Just try again if this happens */
if (r != -EPROBE_DEFER)
dev_err(dev, "error getting gpio: %d\n", r);
return r;
}
if (c->gpio_irq) {
if ((r = gpio_request(c->gpio_irq, "OneNAND irq")) < 0) {
dev_err(&pdev->dev, "Failed to request GPIO%d for "
"OneNAND\n", c->gpio_irq);
goto err_iounmap;
}
gpio_direction_input(c->gpio_irq);
if (c->int_gpiod) {
r = devm_request_irq(dev, gpiod_to_irq(c->int_gpiod),
omap2_onenand_interrupt,
IRQF_TRIGGER_RISING, "onenand", c);
if (r)
return r;
if ((r = request_irq(gpio_to_irq(c->gpio_irq),
omap2_onenand_interrupt, IRQF_TRIGGER_RISING,
pdev->dev.driver->name, c)) < 0)
goto err_release_gpio;
this->wait = omap2_onenand_wait;
c->onenand.wait = omap2_onenand_wait;
}
dma_cap_zero(mask);
dma_cap_set(DMA_MEMCPY, mask);
c->dma_chan = dma_request_channel(mask, NULL, NULL);
dev_info(&pdev->dev, "initializing on CS%d, phys base 0x%08lx, virtual "
"base %p, freq %d MHz, %s mode\n", c->gpmc_cs, c->phys_base,
c->onenand.base, c->freq, c->dma_chan ? "DMA" : "PIO");
if (c->dma_chan) {
c->onenand.read_bufferram = omap2_onenand_read_bufferram;
c->onenand.write_bufferram = omap2_onenand_write_bufferram;
}
c->pdev = pdev;
c->mtd.priv = &c->onenand;
c->mtd.dev.parent = dev;
mtd_set_of_node(&c->mtd, dev->of_node);
c->mtd.dev.parent = &pdev->dev;
mtd_set_of_node(&c->mtd, pdata->of_node);
this = &c->onenand;
if (c->dma_chan) {
this->read_bufferram = omap2_onenand_read_bufferram;
this->write_bufferram = omap2_onenand_write_bufferram;
}
dev_info(dev, "initializing on CS%d (0x%08lx), va %p, %s mode\n",
c->gpmc_cs, c->phys_base, c->onenand.base,
c->dma_chan ? "DMA" : "PIO");
if ((r = onenand_scan(&c->mtd, 1)) < 0)
goto err_release_dma;
freq = omap2_onenand_get_freq(c->onenand.version_id);
if (freq > 0) {
switch (freq) {
case 104:
latency = 7;
break;
case 83:
latency = 6;
break;
case 66:
latency = 5;
break;
case 56:
latency = 4;
break;
default: /* 40 MHz or lower */
latency = 3;
break;
}
r = gpmc_omap_onenand_set_timings(dev, c->gpmc_cs,
freq, latency, &info);
if (r)
goto err_release_onenand;
r = omap2_onenand_set_cfg(c, info.sync_read, info.sync_write,
latency, info.burst_len);
if (r)
goto err_release_onenand;
if (info.sync_read || info.sync_write)
dev_info(dev, "optimized timings for %d MHz\n", freq);
}
r = mtd_device_register(&c->mtd, NULL, 0);
if (r)
goto err_release_onenand;
@ -558,17 +625,6 @@ err_release_onenand:
err_release_dma:
if (c->dma_chan)
dma_release_channel(c->dma_chan);
if (c->gpio_irq)
free_irq(gpio_to_irq(c->gpio_irq), c);
err_release_gpio:
if (c->gpio_irq)
gpio_free(c->gpio_irq);
err_iounmap:
iounmap(c->onenand.base);
err_release_mem_region:
release_mem_region(c->phys_base, c->mem_size);
err_kfree:
kfree(c);
return r;
}
@ -581,23 +637,23 @@ static int omap2_onenand_remove(struct platform_device *pdev)
if (c->dma_chan)
dma_release_channel(c->dma_chan);
omap2_onenand_shutdown(pdev);
if (c->gpio_irq) {
free_irq(gpio_to_irq(c->gpio_irq), c);
gpio_free(c->gpio_irq);
}
iounmap(c->onenand.base);
release_mem_region(c->phys_base, c->mem_size);
kfree(c);
return 0;
}
static const struct of_device_id omap2_onenand_id_table[] = {
{ .compatible = "ti,omap2-onenand", },
{},
};
MODULE_DEVICE_TABLE(of, omap2_onenand_id_table);
static struct platform_driver omap2_onenand_driver = {
.probe = omap2_onenand_probe,
.remove = omap2_onenand_remove,
.shutdown = omap2_onenand_shutdown,
.driver = {
.name = DRIVER_NAME,
.of_match_table = omap2_onenand_id_table,
},
};

View File

@ -25,15 +25,43 @@ struct gpmc_nand_ops {
struct gpmc_nand_regs;
struct gpmc_onenand_info {
bool sync_read;
bool sync_write;
int burst_len;
};
#if IS_ENABLED(CONFIG_OMAP_GPMC)
struct gpmc_nand_ops *gpmc_omap_get_nand_ops(struct gpmc_nand_regs *regs,
int cs);
/**
* gpmc_omap_onenand_set_timings - set optimized sync timings.
* @cs: Chip Select Region
* @freq: Chip frequency
* @latency: Burst latency cycle count
* @info: Structure describing parameters used
*
* Sets optimized timings for the @cs region based on @freq and @latency.
* Updates the @info structure based on the GPMC settings.
*/
int gpmc_omap_onenand_set_timings(struct device *dev, int cs, int freq,
int latency,
struct gpmc_onenand_info *info);
#else
static inline struct gpmc_nand_ops *gpmc_omap_get_nand_ops(struct gpmc_nand_regs *regs,
int cs)
{
return NULL;
}
static inline
int gpmc_omap_onenand_set_timings(struct device *dev, int cs, int freq,
int latency,
struct gpmc_onenand_info *info)
{
return -EINVAL;
}
#endif /* CONFIG_OMAP_GPMC */
extern int gpmc_calc_timings(struct gpmc_timings *gpmc_t,