Merge branch 'korina-next'

Thomas Bogendoerfer says:

====================
net: Korina improvements

While converting Mikrotik RB532 support to use device tree I stumbled
over the korina ethernet driver, which used way too many MIPS specific
hacks. This series cleans this all up and adds support for device tree.

Changes in v6:
 - remove korina from resource names and adapt DT binding to it
 - removed superfluous braces around of_get_mac_address

Changes in v5:
  - fixed email address in binding document, which prevented sending it

Changes in v4:
  - improve error returns in mdio_read further
  - added clock name and improved clk handling
  - fixed binding errors

Changes in v3:
  - use readl_poll_timeout_atomic in mdio_wait
  - return -ETIMEDOUT, if mdio_wait failed
  - added DT binding and changed name to idt,3243x-emac
  - fixed usage of of_get_mac_address for net-next

Changes in v2:
  - added device tree support to get rid of idt_cpu_freq
  - fixed compile test on 64bit archs
  - fixed descriptor current address handling by storing/using mapped
    dma addresses (dma controller modifies current address)
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
David S. Miller 2021-04-19 15:58:15 -07:00
commit a2a12d3ae2
4 changed files with 516 additions and 190 deletions

View File

@ -0,0 +1,73 @@
# SPDX-License-Identifier: GPL-2.0-only OR BSD-2-Clause
%YAML 1.2
---
$id: http://devicetree.org/schemas/net/idt,3243x-emac.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: IDT 79rc3243x Ethernet controller
description: Ethernet controller integrated into IDT 79RC3243x family SoCs
maintainers:
- Thomas Bogendoerfer <tsbogend@alpha.franken.de>
allOf:
- $ref: ethernet-controller.yaml#
properties:
compatible:
const: idt,3243x-emac
reg:
maxItems: 3
reg-names:
items:
- const: emac
- const: dma_rx
- const: dma_tx
interrupts:
items:
- description: RX interrupt
- description: TX interrupt
interrupt-names:
items:
- const: rx
- const: tx
clocks:
maxItems: 1
clock-names:
items:
- const: mdioclk
required:
- compatible
- reg
- reg-names
- interrupts
- interrupt-names
additionalProperties: false
examples:
- |
ethernet@60000 {
compatible = "idt,3243x-emac";
reg = <0x60000 0x10000>,
<0x40000 0x14>,
<0x40014 0x14>;
reg-names = "emac", "dma_rx", "dma_tx";
interrupt-parent = <&rcpic3>;
interrupts = <0>, <1>;
interrupt-names = "rx", "tx";
clocks = <&iclk>;
clock-names = "mdioclk";
};

View File

@ -58,37 +58,27 @@ EXPORT_SYMBOL(get_latch_u5);
static struct resource korina_dev0_res[] = { static struct resource korina_dev0_res[] = {
{ {
.name = "korina_regs", .name = "emac",
.start = ETH0_BASE_ADDR, .start = ETH0_BASE_ADDR,
.end = ETH0_BASE_ADDR + sizeof(struct eth_regs), .end = ETH0_BASE_ADDR + sizeof(struct eth_regs),
.flags = IORESOURCE_MEM, .flags = IORESOURCE_MEM,
}, { }, {
.name = "korina_rx", .name = "rx",
.start = ETH0_DMA_RX_IRQ, .start = ETH0_DMA_RX_IRQ,
.end = ETH0_DMA_RX_IRQ, .end = ETH0_DMA_RX_IRQ,
.flags = IORESOURCE_IRQ .flags = IORESOURCE_IRQ
}, { }, {
.name = "korina_tx", .name = "tx",
.start = ETH0_DMA_TX_IRQ, .start = ETH0_DMA_TX_IRQ,
.end = ETH0_DMA_TX_IRQ, .end = ETH0_DMA_TX_IRQ,
.flags = IORESOURCE_IRQ .flags = IORESOURCE_IRQ
}, { }, {
.name = "korina_ovr", .name = "dma_rx",
.start = ETH0_RX_OVR_IRQ,
.end = ETH0_RX_OVR_IRQ,
.flags = IORESOURCE_IRQ
}, {
.name = "korina_und",
.start = ETH0_TX_UND_IRQ,
.end = ETH0_TX_UND_IRQ,
.flags = IORESOURCE_IRQ
}, {
.name = "korina_dma_rx",
.start = ETH0_RX_DMA_ADDR, .start = ETH0_RX_DMA_ADDR,
.end = ETH0_RX_DMA_ADDR + DMA_CHAN_OFFSET - 1, .end = ETH0_RX_DMA_ADDR + DMA_CHAN_OFFSET - 1,
.flags = IORESOURCE_MEM, .flags = IORESOURCE_MEM,
}, { }, {
.name = "korina_dma_tx", .name = "dma_tx",
.start = ETH0_TX_DMA_ADDR, .start = ETH0_TX_DMA_ADDR,
.end = ETH0_TX_DMA_ADDR + DMA_CHAN_OFFSET - 1, .end = ETH0_TX_DMA_ADDR + DMA_CHAN_OFFSET - 1,
.flags = IORESOURCE_MEM, .flags = IORESOURCE_MEM,
@ -105,6 +95,9 @@ static struct platform_device korina_dev0 = {
.name = "korina", .name = "korina",
.resource = korina_dev0_res, .resource = korina_dev0_res,
.num_resources = ARRAY_SIZE(korina_dev0_res), .num_resources = ARRAY_SIZE(korina_dev0_res),
.dev = {
.platform_data = &korina_dev0_data.mac,
}
}; };
static struct resource cf_slot0_res[] = { static struct resource cf_slot0_res[] = {
@ -299,8 +292,6 @@ static int __init plat_setup_devices(void)
/* set the uart clock to the current cpu frequency */ /* set the uart clock to the current cpu frequency */
rb532_uart_res[0].uartclk = idt_cpu_freq; rb532_uart_res[0].uartclk = idt_cpu_freq;
dev_set_drvdata(&korina_dev0.dev, &korina_dev0_data);
gpiod_add_lookup_table(&cf_slot0_gpio_table); gpiod_add_lookup_table(&cf_slot0_gpio_table);
return platform_add_devices(rb532_devs, ARRAY_SIZE(rb532_devs)); return platform_add_devices(rb532_devs, ARRAY_SIZE(rb532_devs));
} }

View File

@ -99,7 +99,8 @@ config JME
config KORINA config KORINA
tristate "Korina (IDT RC32434) Ethernet support" tristate "Korina (IDT RC32434) Ethernet support"
depends on MIKROTIK_RB532 depends on MIKROTIK_RB532 || COMPILE_TEST
select MII
help help
If you have a Mikrotik RouterBoard 500 or IDT RC32434 If you have a Mikrotik RouterBoard 500 or IDT RC32434
based system say Y. Otherwise say N. based system say Y. Otherwise say N.

View File

@ -41,7 +41,10 @@
#include <linux/types.h> #include <linux/types.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/ioport.h> #include <linux/ioport.h>
#include <linux/iopoll.h>
#include <linux/in.h> #include <linux/in.h>
#include <linux/of_device.h>
#include <linux/of_net.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/string.h> #include <linux/string.h>
#include <linux/delay.h> #include <linux/delay.h>
@ -54,21 +57,246 @@
#include <linux/ethtool.h> #include <linux/ethtool.h>
#include <linux/crc32.h> #include <linux/crc32.h>
#include <linux/pgtable.h> #include <linux/pgtable.h>
#include <linux/clk.h>
#include <asm/bootinfo.h>
#include <asm/bitops.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/mach-rc32434/rb.h>
#include <asm/mach-rc32434/rc32434.h>
#include <asm/mach-rc32434/eth.h>
#include <asm/mach-rc32434/dma_v.h>
#define DRV_NAME "korina" #define DRV_NAME "korina"
#define DRV_VERSION "0.20" #define DRV_VERSION "0.20"
#define DRV_RELDATE "15Sep2017" #define DRV_RELDATE "15Sep2017"
struct eth_regs {
u32 ethintfc;
u32 ethfifott;
u32 etharc;
u32 ethhash0;
u32 ethhash1;
u32 ethu0[4]; /* Reserved. */
u32 ethpfs;
u32 ethmcp;
u32 eth_u1[10]; /* Reserved. */
u32 ethspare;
u32 eth_u2[42]; /* Reserved. */
u32 ethsal0;
u32 ethsah0;
u32 ethsal1;
u32 ethsah1;
u32 ethsal2;
u32 ethsah2;
u32 ethsal3;
u32 ethsah3;
u32 ethrbc;
u32 ethrpc;
u32 ethrupc;
u32 ethrfc;
u32 ethtbc;
u32 ethgpf;
u32 eth_u9[50]; /* Reserved. */
u32 ethmac1;
u32 ethmac2;
u32 ethipgt;
u32 ethipgr;
u32 ethclrt;
u32 ethmaxf;
u32 eth_u10; /* Reserved. */
u32 ethmtest;
u32 miimcfg;
u32 miimcmd;
u32 miimaddr;
u32 miimwtd;
u32 miimrdd;
u32 miimind;
u32 eth_u11; /* Reserved. */
u32 eth_u12; /* Reserved. */
u32 ethcfsa0;
u32 ethcfsa1;
u32 ethcfsa2;
};
/* Ethernet interrupt registers */
#define ETH_INT_FC_EN BIT(0)
#define ETH_INT_FC_ITS BIT(1)
#define ETH_INT_FC_RIP BIT(2)
#define ETH_INT_FC_JAM BIT(3)
#define ETH_INT_FC_OVR BIT(4)
#define ETH_INT_FC_UND BIT(5)
#define ETH_INT_FC_IOC 0x000000c0
/* Ethernet FIFO registers */
#define ETH_FIFI_TT_TTH_BIT 0
#define ETH_FIFO_TT_TTH 0x0000007f
/* Ethernet ARC/multicast registers */
#define ETH_ARC_PRO BIT(0)
#define ETH_ARC_AM BIT(1)
#define ETH_ARC_AFM BIT(2)
#define ETH_ARC_AB BIT(3)
/* Ethernet SAL registers */
#define ETH_SAL_BYTE_5 0x000000ff
#define ETH_SAL_BYTE_4 0x0000ff00
#define ETH_SAL_BYTE_3 0x00ff0000
#define ETH_SAL_BYTE_2 0xff000000
/* Ethernet SAH registers */
#define ETH_SAH_BYTE1 0x000000ff
#define ETH_SAH_BYTE0 0x0000ff00
/* Ethernet GPF register */
#define ETH_GPF_PTV 0x0000ffff
/* Ethernet PFG register */
#define ETH_PFS_PFD BIT(0)
/* Ethernet CFSA[0-3] registers */
#define ETH_CFSA0_CFSA4 0x000000ff
#define ETH_CFSA0_CFSA5 0x0000ff00
#define ETH_CFSA1_CFSA2 0x000000ff
#define ETH_CFSA1_CFSA3 0x0000ff00
#define ETH_CFSA1_CFSA0 0x000000ff
#define ETH_CFSA1_CFSA1 0x0000ff00
/* Ethernet MAC1 registers */
#define ETH_MAC1_RE BIT(0)
#define ETH_MAC1_PAF BIT(1)
#define ETH_MAC1_RFC BIT(2)
#define ETH_MAC1_TFC BIT(3)
#define ETH_MAC1_LB BIT(4)
#define ETH_MAC1_MR BIT(31)
/* Ethernet MAC2 registers */
#define ETH_MAC2_FD BIT(0)
#define ETH_MAC2_FLC BIT(1)
#define ETH_MAC2_HFE BIT(2)
#define ETH_MAC2_DC BIT(3)
#define ETH_MAC2_CEN BIT(4)
#define ETH_MAC2_PE BIT(5)
#define ETH_MAC2_VPE BIT(6)
#define ETH_MAC2_APE BIT(7)
#define ETH_MAC2_PPE BIT(8)
#define ETH_MAC2_LPE BIT(9)
#define ETH_MAC2_NB BIT(12)
#define ETH_MAC2_BP BIT(13)
#define ETH_MAC2_ED BIT(14)
/* Ethernet IPGT register */
#define ETH_IPGT 0x0000007f
/* Ethernet IPGR registers */
#define ETH_IPGR_IPGR2 0x0000007f
#define ETH_IPGR_IPGR1 0x00007f00
/* Ethernet CLRT registers */
#define ETH_CLRT_MAX_RET 0x0000000f
#define ETH_CLRT_COL_WIN 0x00003f00
/* Ethernet MAXF register */
#define ETH_MAXF 0x0000ffff
/* Ethernet test registers */
#define ETH_TEST_REG BIT(2)
#define ETH_MCP_DIV 0x000000ff
/* MII registers */
#define ETH_MII_CFG_RSVD 0x0000000c
#define ETH_MII_CMD_RD BIT(0)
#define ETH_MII_CMD_SCN BIT(1)
#define ETH_MII_REG_ADDR 0x0000001f
#define ETH_MII_PHY_ADDR 0x00001f00
#define ETH_MII_WTD_DATA 0x0000ffff
#define ETH_MII_RDD_DATA 0x0000ffff
#define ETH_MII_IND_BSY BIT(0)
#define ETH_MII_IND_SCN BIT(1)
#define ETH_MII_IND_NV BIT(2)
/* Values for the DEVCS field of the Ethernet DMA Rx and Tx descriptors. */
#define ETH_RX_FD BIT(0)
#define ETH_RX_LD BIT(1)
#define ETH_RX_ROK BIT(2)
#define ETH_RX_FM BIT(3)
#define ETH_RX_MP BIT(4)
#define ETH_RX_BP BIT(5)
#define ETH_RX_VLT BIT(6)
#define ETH_RX_CF BIT(7)
#define ETH_RX_OVR BIT(8)
#define ETH_RX_CRC BIT(9)
#define ETH_RX_CV BIT(10)
#define ETH_RX_DB BIT(11)
#define ETH_RX_LE BIT(12)
#define ETH_RX_LOR BIT(13)
#define ETH_RX_CES BIT(14)
#define ETH_RX_LEN_BIT 16
#define ETH_RX_LEN 0xffff0000
#define ETH_TX_FD BIT(0)
#define ETH_TX_LD BIT(1)
#define ETH_TX_OEN BIT(2)
#define ETH_TX_PEN BIT(3)
#define ETH_TX_CEN BIT(4)
#define ETH_TX_HEN BIT(5)
#define ETH_TX_TOK BIT(6)
#define ETH_TX_MP BIT(7)
#define ETH_TX_BP BIT(8)
#define ETH_TX_UND BIT(9)
#define ETH_TX_OF BIT(10)
#define ETH_TX_ED BIT(11)
#define ETH_TX_EC BIT(12)
#define ETH_TX_LC BIT(13)
#define ETH_TX_TD BIT(14)
#define ETH_TX_CRC BIT(15)
#define ETH_TX_LE BIT(16)
#define ETH_TX_CC 0x001E0000
/* DMA descriptor (in physical memory). */
struct dma_desc {
u32 control; /* Control. use DMAD_* */
u32 ca; /* Current Address. */
u32 devcs; /* Device control and status. */
u32 link; /* Next descriptor in chain. */
};
#define DMA_DESC_COUNT_BIT 0
#define DMA_DESC_COUNT_MSK 0x0003ffff
#define DMA_DESC_DS_BIT 20
#define DMA_DESC_DS_MSK 0x00300000
#define DMA_DESC_DEV_CMD_BIT 22
#define DMA_DESC_DEV_CMD_MSK 0x01c00000
/* DMA descriptors interrupts */
#define DMA_DESC_COF BIT(25) /* Chain on finished */
#define DMA_DESC_COD BIT(26) /* Chain on done */
#define DMA_DESC_IOF BIT(27) /* Interrupt on finished */
#define DMA_DESC_IOD BIT(28) /* Interrupt on done */
#define DMA_DESC_TERM BIT(29) /* Terminated */
#define DMA_DESC_DONE BIT(30) /* Done */
#define DMA_DESC_FINI BIT(31) /* Finished */
/* DMA register (within Internal Register Map). */
struct dma_reg {
u32 dmac; /* Control. */
u32 dmas; /* Status. */
u32 dmasm; /* Mask. */
u32 dmadptr; /* Descriptor pointer. */
u32 dmandptr; /* Next descriptor pointer. */
};
/* DMA channels specific registers */
#define DMA_CHAN_RUN_BIT BIT(0)
#define DMA_CHAN_DONE_BIT BIT(1)
#define DMA_CHAN_MODE_BIT BIT(2)
#define DMA_CHAN_MODE_MSK 0x0000000c
#define DMA_CHAN_MODE_AUTO 0
#define DMA_CHAN_MODE_BURST 1
#define DMA_CHAN_MODE_XFRT 2
#define DMA_CHAN_MODE_RSVD 3
#define DMA_CHAN_ACT_BIT BIT(4)
/* DMA status registers */
#define DMA_STAT_FINI BIT(0)
#define DMA_STAT_DONE BIT(1)
#define DMA_STAT_CHAIN BIT(2)
#define DMA_STAT_ERR BIT(3)
#define DMA_STAT_HALT BIT(4)
#define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \ #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
((dev)->dev_addr[1])) ((dev)->dev_addr[1]))
#define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \ #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
@ -98,21 +326,27 @@ enum chain_status {
desc_empty desc_empty
}; };
#define DMA_COUNT(count) ((count) & DMA_DESC_COUNT_MSK)
#define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0) #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
#define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0) #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
#define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT) #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
/* Information that need to be kept for each board. */ /* Information that need to be kept for each board. */
struct korina_private { struct korina_private {
struct eth_regs *eth_regs; struct eth_regs __iomem *eth_regs;
struct dma_reg *rx_dma_regs; struct dma_reg __iomem *rx_dma_regs;
struct dma_reg *tx_dma_regs; struct dma_reg __iomem *tx_dma_regs;
struct dma_desc *td_ring; /* transmit descriptor ring */ struct dma_desc *td_ring; /* transmit descriptor ring */
struct dma_desc *rd_ring; /* receive descriptor ring */ struct dma_desc *rd_ring; /* receive descriptor ring */
dma_addr_t td_dma;
dma_addr_t rd_dma;
struct sk_buff *tx_skb[KORINA_NUM_TDS]; struct sk_buff *tx_skb[KORINA_NUM_TDS];
struct sk_buff *rx_skb[KORINA_NUM_RDS]; struct sk_buff *rx_skb[KORINA_NUM_RDS];
dma_addr_t rx_skb_dma[KORINA_NUM_RDS];
dma_addr_t tx_skb_dma[KORINA_NUM_TDS];
int rx_next_done; int rx_next_done;
int rx_chain_head; int rx_chain_head;
int rx_chain_tail; int rx_chain_tail;
@ -137,15 +371,18 @@ struct korina_private {
struct mii_if_info mii_if; struct mii_if_info mii_if;
struct work_struct restart_task; struct work_struct restart_task;
struct net_device *dev; struct net_device *dev;
int phy_addr; struct device *dmadev;
int mii_clock_freq;
}; };
extern unsigned int idt_cpu_freq; static dma_addr_t korina_tx_dma(struct korina_private *lp, int idx)
static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
{ {
writel(0, &ch->dmandptr); return lp->td_dma + (idx * sizeof(struct dma_desc));
writel(dma_addr, &ch->dmadptr); }
static dma_addr_t korina_rx_dma(struct korina_private *lp, int idx)
{
return lp->rd_dma + (idx * sizeof(struct dma_desc));
} }
static inline void korina_abort_dma(struct net_device *dev, static inline void korina_abort_dma(struct net_device *dev,
@ -164,11 +401,6 @@ static inline void korina_abort_dma(struct net_device *dev,
writel(0, &ch->dmandptr); writel(0, &ch->dmandptr);
} }
static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
{
writel(dma_addr, &ch->dmandptr);
}
static void korina_abort_tx(struct net_device *dev) static void korina_abort_tx(struct net_device *dev)
{ {
struct korina_private *lp = netdev_priv(dev); struct korina_private *lp = netdev_priv(dev);
@ -183,30 +415,21 @@ static void korina_abort_rx(struct net_device *dev)
korina_abort_dma(dev, lp->rx_dma_regs); korina_abort_dma(dev, lp->rx_dma_regs);
} }
static void korina_start_rx(struct korina_private *lp,
struct dma_desc *rd)
{
korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
}
static void korina_chain_rx(struct korina_private *lp,
struct dma_desc *rd)
{
korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
}
/* transmit packet */ /* transmit packet */
static int korina_send_packet(struct sk_buff *skb, struct net_device *dev) static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
{ {
struct korina_private *lp = netdev_priv(dev); struct korina_private *lp = netdev_priv(dev);
unsigned long flags;
u32 length;
u32 chain_prev, chain_next; u32 chain_prev, chain_next;
unsigned long flags;
struct dma_desc *td; struct dma_desc *td;
dma_addr_t ca;
u32 length;
int idx;
spin_lock_irqsave(&lp->lock, flags); spin_lock_irqsave(&lp->lock, flags);
td = &lp->td_ring[lp->tx_chain_tail]; idx = lp->tx_chain_tail;
td = &lp->td_ring[idx];
/* stop queue when full, drop pkts if queue already full */ /* stop queue when full, drop pkts if queue already full */
if (lp->tx_count >= (KORINA_NUM_TDS - 2)) { if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
@ -214,27 +437,26 @@ static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
if (lp->tx_count == (KORINA_NUM_TDS - 2)) if (lp->tx_count == (KORINA_NUM_TDS - 2))
netif_stop_queue(dev); netif_stop_queue(dev);
else { else
dev->stats.tx_dropped++; goto drop_packet;
dev_kfree_skb_any(skb);
spin_unlock_irqrestore(&lp->lock, flags);
return NETDEV_TX_OK;
}
} }
lp->tx_count++; lp->tx_count++;
lp->tx_skb[lp->tx_chain_tail] = skb; lp->tx_skb[idx] = skb;
length = skb->len; length = skb->len;
dma_cache_wback((u32)skb->data, skb->len);
/* Setup the transmit descriptor. */ /* Setup the transmit descriptor. */
dma_cache_inv((u32) td, sizeof(*td)); ca = dma_map_single(lp->dmadev, skb->data, length, DMA_TO_DEVICE);
td->ca = CPHYSADDR(skb->data); if (dma_mapping_error(lp->dmadev, ca))
chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK; goto drop_packet;
chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
lp->tx_skb_dma[idx] = ca;
td->ca = ca;
chain_prev = (idx - 1) & KORINA_TDS_MASK;
chain_next = (idx + 1) & KORINA_TDS_MASK;
if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) { if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
if (lp->tx_chain_status == desc_empty) { if (lp->tx_chain_status == desc_empty) {
@ -244,8 +466,8 @@ static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
/* Move tail */ /* Move tail */
lp->tx_chain_tail = chain_next; lp->tx_chain_tail = chain_next;
/* Write to NDPTR */ /* Write to NDPTR */
writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]), writel(korina_tx_dma(lp, lp->tx_chain_head),
&lp->tx_dma_regs->dmandptr); &lp->tx_dma_regs->dmandptr);
/* Move head to tail */ /* Move head to tail */
lp->tx_chain_head = lp->tx_chain_tail; lp->tx_chain_head = lp->tx_chain_tail;
} else { } else {
@ -256,12 +478,12 @@ static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
lp->td_ring[chain_prev].control &= lp->td_ring[chain_prev].control &=
~DMA_DESC_COF; ~DMA_DESC_COF;
/* Link to prev */ /* Link to prev */
lp->td_ring[chain_prev].link = CPHYSADDR(td); lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx);
/* Move tail */ /* Move tail */
lp->tx_chain_tail = chain_next; lp->tx_chain_tail = chain_next;
/* Write to NDPTR */ /* Write to NDPTR */
writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]), writel(korina_tx_dma(lp, lp->tx_chain_head),
&(lp->tx_dma_regs->dmandptr)); &lp->tx_dma_regs->dmandptr);
/* Move head to tail */ /* Move head to tail */
lp->tx_chain_head = lp->tx_chain_tail; lp->tx_chain_head = lp->tx_chain_tail;
lp->tx_chain_status = desc_empty; lp->tx_chain_status = desc_empty;
@ -280,44 +502,66 @@ static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
DMA_DESC_COF | DMA_DESC_IOF; DMA_DESC_COF | DMA_DESC_IOF;
lp->td_ring[chain_prev].control &= lp->td_ring[chain_prev].control &=
~DMA_DESC_COF; ~DMA_DESC_COF;
lp->td_ring[chain_prev].link = CPHYSADDR(td); lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx);
lp->tx_chain_tail = chain_next; lp->tx_chain_tail = chain_next;
} }
} }
dma_cache_wback((u32) td, sizeof(*td));
netif_trans_update(dev); netif_trans_update(dev);
spin_unlock_irqrestore(&lp->lock, flags); spin_unlock_irqrestore(&lp->lock, flags);
return NETDEV_TX_OK;
drop_packet:
dev->stats.tx_dropped++;
dev_kfree_skb_any(skb);
spin_unlock_irqrestore(&lp->lock, flags);
return NETDEV_TX_OK; return NETDEV_TX_OK;
} }
static int mdio_read(struct net_device *dev, int mii_id, int reg) static int korina_mdio_wait(struct korina_private *lp)
{
u32 value;
return readl_poll_timeout_atomic(&lp->eth_regs->miimind,
value, value & ETH_MII_IND_BSY,
1, 1000);
}
static int korina_mdio_read(struct net_device *dev, int phy, int reg)
{ {
struct korina_private *lp = netdev_priv(dev); struct korina_private *lp = netdev_priv(dev);
int ret; int ret;
mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8); ret = korina_mdio_wait(lp);
if (ret < 0)
return ret;
writel(0, &lp->eth_regs->miimcfg); writel(phy << 8 | reg, &lp->eth_regs->miimaddr);
writel(1, &lp->eth_regs->miimcmd);
ret = korina_mdio_wait(lp);
if (ret < 0)
return ret;
if (readl(&lp->eth_regs->miimind) & ETH_MII_IND_NV)
return -EINVAL;
ret = readl(&lp->eth_regs->miimrdd);
writel(0, &lp->eth_regs->miimcmd); writel(0, &lp->eth_regs->miimcmd);
writel(mii_id | reg, &lp->eth_regs->miimaddr);
writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
ret = (int)(readl(&lp->eth_regs->miimrdd));
return ret; return ret;
} }
static void mdio_write(struct net_device *dev, int mii_id, int reg, int val) static void korina_mdio_write(struct net_device *dev, int phy, int reg, int val)
{ {
struct korina_private *lp = netdev_priv(dev); struct korina_private *lp = netdev_priv(dev);
mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8); if (korina_mdio_wait(lp))
return;
writel(0, &lp->eth_regs->miimcfg); writel(0, &lp->eth_regs->miimcmd);
writel(1, &lp->eth_regs->miimcmd); writel(phy << 8 | reg, &lp->eth_regs->miimaddr);
writel(mii_id | reg, &lp->eth_regs->miimaddr);
writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
writel(val, &lp->eth_regs->miimwtd); writel(val, &lp->eth_regs->miimwtd);
} }
@ -353,12 +597,10 @@ static int korina_rx(struct net_device *dev, int limit)
struct korina_private *lp = netdev_priv(dev); struct korina_private *lp = netdev_priv(dev);
struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done]; struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
struct sk_buff *skb, *skb_new; struct sk_buff *skb, *skb_new;
u8 *pkt_buf;
u32 devcs, pkt_len, dmas; u32 devcs, pkt_len, dmas;
dma_addr_t ca;
int count; int count;
dma_cache_inv((u32)rd, sizeof(*rd));
for (count = 0; count < limit; count++) { for (count = 0; count < limit; count++) {
skb = lp->rx_skb[lp->rx_next_done]; skb = lp->rx_skb[lp->rx_next_done];
skb_new = NULL; skb_new = NULL;
@ -392,20 +634,22 @@ static int korina_rx(struct net_device *dev, int limit)
goto next; goto next;
} }
pkt_len = RCVPKT_LENGTH(devcs);
/* must be the (first and) last
* descriptor then */
pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
/* invalidate the cache */
dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
/* Malloc up new buffer. */ /* Malloc up new buffer. */
skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE); skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
if (!skb_new) if (!skb_new)
break; break;
ca = dma_map_single(lp->dmadev, skb_new->data, KORINA_RBSIZE,
DMA_FROM_DEVICE);
if (dma_mapping_error(lp->dmadev, ca)) {
dev_kfree_skb_any(skb_new);
break;
}
pkt_len = RCVPKT_LENGTH(devcs);
dma_unmap_single(lp->dmadev, lp->rx_skb_dma[lp->rx_next_done],
pkt_len, DMA_FROM_DEVICE);
/* Do not count the CRC */ /* Do not count the CRC */
skb_put(skb, pkt_len - 4); skb_put(skb, pkt_len - 4);
skb->protocol = eth_type_trans(skb, dev); skb->protocol = eth_type_trans(skb, dev);
@ -420,15 +664,13 @@ static int korina_rx(struct net_device *dev, int limit)
dev->stats.multicast++; dev->stats.multicast++;
lp->rx_skb[lp->rx_next_done] = skb_new; lp->rx_skb[lp->rx_next_done] = skb_new;
lp->rx_skb_dma[lp->rx_next_done] = ca;
next: next:
rd->devcs = 0; rd->devcs = 0;
/* Restore descriptor's curr_addr */ /* Restore descriptor's curr_addr */
if (skb_new) rd->ca = lp->rx_skb_dma[lp->rx_next_done];
rd->ca = CPHYSADDR(skb_new->data);
else
rd->ca = CPHYSADDR(skb->data);
rd->control = DMA_COUNT(KORINA_RBSIZE) | rd->control = DMA_COUNT(KORINA_RBSIZE) |
DMA_DESC_COD | DMA_DESC_IOD; DMA_DESC_COD | DMA_DESC_IOD;
@ -437,23 +679,21 @@ next:
~DMA_DESC_COD; ~DMA_DESC_COD;
lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK; lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
dma_cache_wback((u32)rd, sizeof(*rd));
rd = &lp->rd_ring[lp->rx_next_done]; rd = &lp->rd_ring[lp->rx_next_done];
writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas); writel((u32)~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
} }
dmas = readl(&lp->rx_dma_regs->dmas); dmas = readl(&lp->rx_dma_regs->dmas);
if (dmas & DMA_STAT_HALT) { if (dmas & DMA_STAT_HALT) {
writel(~(DMA_STAT_HALT | DMA_STAT_ERR), writel((u32)~(DMA_STAT_HALT | DMA_STAT_ERR),
&lp->rx_dma_regs->dmas); &lp->rx_dma_regs->dmas);
lp->dma_halt_cnt++; lp->dma_halt_cnt++;
rd->devcs = 0; rd->devcs = 0;
skb = lp->rx_skb[lp->rx_next_done]; rd->ca = lp->rx_skb_dma[lp->rx_next_done];
rd->ca = CPHYSADDR(skb->data); writel(korina_rx_dma(lp, rd - lp->rd_ring),
dma_cache_wback((u32)rd, sizeof(*rd)); &lp->rx_dma_regs->dmandptr);
korina_chain_rx(lp, rd);
} }
return count; return count;
@ -576,6 +816,10 @@ static void korina_tx(struct net_device *dev)
/* We must always free the original skb */ /* We must always free the original skb */
if (lp->tx_skb[lp->tx_next_done]) { if (lp->tx_skb[lp->tx_next_done]) {
dma_unmap_single(lp->dmadev,
lp->tx_skb_dma[lp->tx_next_done],
lp->tx_skb[lp->tx_next_done]->len,
DMA_TO_DEVICE);
dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]); dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
lp->tx_skb[lp->tx_next_done] = NULL; lp->tx_skb[lp->tx_next_done] = NULL;
} }
@ -622,8 +866,8 @@ korina_tx_dma_interrupt(int irq, void *dev_id)
if (lp->tx_chain_status == desc_filled && if (lp->tx_chain_status == desc_filled &&
(readl(&(lp->tx_dma_regs->dmandptr)) == 0)) { (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]), writel(korina_tx_dma(lp, lp->tx_chain_head),
&(lp->tx_dma_regs->dmandptr)); &lp->tx_dma_regs->dmandptr);
lp->tx_chain_status = desc_empty; lp->tx_chain_status = desc_empty;
lp->tx_chain_head = lp->tx_chain_tail; lp->tx_chain_head = lp->tx_chain_tail;
netif_trans_update(dev); netif_trans_update(dev);
@ -643,7 +887,7 @@ static void korina_check_media(struct net_device *dev, unsigned int init_media)
{ {
struct korina_private *lp = netdev_priv(dev); struct korina_private *lp = netdev_priv(dev);
mii_check_media(&lp->mii_if, 0, init_media); mii_check_media(&lp->mii_if, 1, init_media);
if (lp->mii_if.full_duplex) if (lp->mii_if.full_duplex)
writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD, writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
@ -743,6 +987,7 @@ static int korina_alloc_ring(struct net_device *dev)
{ {
struct korina_private *lp = netdev_priv(dev); struct korina_private *lp = netdev_priv(dev);
struct sk_buff *skb; struct sk_buff *skb;
dma_addr_t ca;
int i; int i;
/* Initialize the transmit descriptors */ /* Initialize the transmit descriptors */
@ -765,13 +1010,18 @@ static int korina_alloc_ring(struct net_device *dev)
lp->rd_ring[i].control = DMA_DESC_IOD | lp->rd_ring[i].control = DMA_DESC_IOD |
DMA_COUNT(KORINA_RBSIZE); DMA_COUNT(KORINA_RBSIZE);
lp->rd_ring[i].devcs = 0; lp->rd_ring[i].devcs = 0;
lp->rd_ring[i].ca = CPHYSADDR(skb->data); ca = dma_map_single(lp->dmadev, skb->data, KORINA_RBSIZE,
lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]); DMA_FROM_DEVICE);
if (dma_mapping_error(lp->dmadev, ca))
return -ENOMEM;
lp->rd_ring[i].ca = ca;
lp->rx_skb_dma[i] = ca;
lp->rd_ring[i].link = korina_rx_dma(lp, i + 1);
} }
/* loop back receive descriptors, so the last /* loop back receive descriptors, so the last
* descriptor points to the first one */ * descriptor points to the first one */
lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]); lp->rd_ring[i - 1].link = lp->rd_dma;
lp->rd_ring[i - 1].control |= DMA_DESC_COD; lp->rd_ring[i - 1].control |= DMA_DESC_COD;
lp->rx_next_done = 0; lp->rx_next_done = 0;
@ -789,16 +1039,22 @@ static void korina_free_ring(struct net_device *dev)
for (i = 0; i < KORINA_NUM_RDS; i++) { for (i = 0; i < KORINA_NUM_RDS; i++) {
lp->rd_ring[i].control = 0; lp->rd_ring[i].control = 0;
if (lp->rx_skb[i]) if (lp->rx_skb[i]) {
dma_unmap_single(lp->dmadev, lp->rx_skb_dma[i],
KORINA_RBSIZE, DMA_FROM_DEVICE);
dev_kfree_skb_any(lp->rx_skb[i]); dev_kfree_skb_any(lp->rx_skb[i]);
lp->rx_skb[i] = NULL; lp->rx_skb[i] = NULL;
}
} }
for (i = 0; i < KORINA_NUM_TDS; i++) { for (i = 0; i < KORINA_NUM_TDS; i++) {
lp->td_ring[i].control = 0; lp->td_ring[i].control = 0;
if (lp->tx_skb[i]) if (lp->tx_skb[i]) {
dma_unmap_single(lp->dmadev, lp->tx_skb_dma[i],
lp->tx_skb[i]->len, DMA_TO_DEVICE);
dev_kfree_skb_any(lp->tx_skb[i]); dev_kfree_skb_any(lp->tx_skb[i]);
lp->tx_skb[i] = NULL; lp->tx_skb[i] = NULL;
}
} }
} }
@ -830,7 +1086,8 @@ static int korina_init(struct net_device *dev)
writel(0, &lp->rx_dma_regs->dmas); writel(0, &lp->rx_dma_regs->dmas);
/* Start Rx DMA */ /* Start Rx DMA */
korina_start_rx(lp, &lp->rd_ring[0]); writel(0, &lp->rx_dma_regs->dmandptr);
writel(korina_rx_dma(lp, 0), &lp->rx_dma_regs->dmadptr);
writel(readl(&lp->tx_dma_regs->dmasm) & writel(readl(&lp->tx_dma_regs->dmasm) &
~(DMA_STAT_FINI | DMA_STAT_ERR), ~(DMA_STAT_FINI | DMA_STAT_ERR),
@ -867,14 +1124,17 @@ static int korina_init(struct net_device *dev)
/* Management Clock Prescaler Divisor /* Management Clock Prescaler Divisor
* Clock independent setting */ * Clock independent setting */
writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1, writel(((lp->mii_clock_freq) / MII_CLOCK + 1) & ~1,
&lp->eth_regs->ethmcp); &lp->eth_regs->ethmcp);
writel(0, &lp->eth_regs->miimcfg);
/* don't transmit until fifo contains 48b */ /* don't transmit until fifo contains 48b */
writel(48, &lp->eth_regs->ethfifott); writel(48, &lp->eth_regs->ethfifott);
writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1); writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
korina_check_media(dev, 1);
napi_enable(&lp->napi); napi_enable(&lp->napi);
netif_start_queue(dev); netif_start_queue(dev);
@ -1022,86 +1282,94 @@ static const struct net_device_ops korina_netdev_ops = {
static int korina_probe(struct platform_device *pdev) static int korina_probe(struct platform_device *pdev)
{ {
struct korina_device *bif = platform_get_drvdata(pdev); u8 *mac_addr = dev_get_platdata(&pdev->dev);
struct korina_private *lp; struct korina_private *lp;
struct net_device *dev; struct net_device *dev;
struct resource *r; struct clk *clk;
void __iomem *p;
int rc; int rc;
dev = alloc_etherdev(sizeof(struct korina_private)); dev = devm_alloc_etherdev(&pdev->dev, sizeof(struct korina_private));
if (!dev) if (!dev)
return -ENOMEM; return -ENOMEM;
SET_NETDEV_DEV(dev, &pdev->dev); SET_NETDEV_DEV(dev, &pdev->dev);
lp = netdev_priv(dev); lp = netdev_priv(dev);
bif->dev = dev; if (mac_addr)
memcpy(dev->dev_addr, bif->mac, ETH_ALEN); ether_addr_copy(dev->dev_addr, mac_addr);
else if (of_get_mac_address(pdev->dev.of_node, dev->dev_addr) < 0)
eth_hw_addr_random(dev);
lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx"); clk = devm_clk_get_optional(&pdev->dev, "mdioclk");
lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx"); if (IS_ERR(clk))
return PTR_ERR(clk);
if (clk) {
clk_prepare_enable(clk);
lp->mii_clock_freq = clk_get_rate(clk);
} else {
lp->mii_clock_freq = 200000000; /* max possible input clk */
}
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs"); lp->rx_irq = platform_get_irq_byname(pdev, "rx");
dev->base_addr = r->start; lp->tx_irq = platform_get_irq_byname(pdev, "tx");
lp->eth_regs = ioremap(r->start, resource_size(r));
if (!lp->eth_regs) { p = devm_platform_ioremap_resource_byname(pdev, "emac");
if (!p) {
printk(KERN_ERR DRV_NAME ": cannot remap registers\n"); printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
rc = -ENXIO; return -ENOMEM;
goto probe_err_out;
} }
lp->eth_regs = p;
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx"); p = devm_platform_ioremap_resource_byname(pdev, "dma_rx");
lp->rx_dma_regs = ioremap(r->start, resource_size(r)); if (!p) {
if (!lp->rx_dma_regs) {
printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n"); printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
rc = -ENXIO; return -ENOMEM;
goto probe_err_dma_rx;
} }
lp->rx_dma_regs = p;
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx"); p = devm_platform_ioremap_resource_byname(pdev, "dma_tx");
lp->tx_dma_regs = ioremap(r->start, resource_size(r)); if (!p) {
if (!lp->tx_dma_regs) {
printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n"); printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
rc = -ENXIO; return -ENOMEM;
goto probe_err_dma_tx;
} }
lp->tx_dma_regs = p;
lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL); lp->td_ring = dmam_alloc_coherent(&pdev->dev, TD_RING_SIZE,
if (!lp->td_ring) { &lp->td_dma, GFP_KERNEL);
rc = -ENXIO; if (!lp->td_ring)
goto probe_err_td_ring; return -ENOMEM;
}
dma_cache_inv((unsigned long)(lp->td_ring), lp->rd_ring = dmam_alloc_coherent(&pdev->dev, RD_RING_SIZE,
TD_RING_SIZE + RD_RING_SIZE); &lp->rd_dma, GFP_KERNEL);
if (!lp->rd_ring)
/* now convert TD_RING pointer to KSEG1 */ return -ENOMEM;
lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
spin_lock_init(&lp->lock); spin_lock_init(&lp->lock);
/* just use the rx dma irq */ /* just use the rx dma irq */
dev->irq = lp->rx_irq; dev->irq = lp->rx_irq;
lp->dev = dev; lp->dev = dev;
lp->dmadev = &pdev->dev;
dev->netdev_ops = &korina_netdev_ops; dev->netdev_ops = &korina_netdev_ops;
dev->ethtool_ops = &netdev_ethtool_ops; dev->ethtool_ops = &netdev_ethtool_ops;
dev->watchdog_timeo = TX_TIMEOUT; dev->watchdog_timeo = TX_TIMEOUT;
netif_napi_add(dev, &lp->napi, korina_poll, NAPI_POLL_WEIGHT); netif_napi_add(dev, &lp->napi, korina_poll, NAPI_POLL_WEIGHT);
lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
lp->mii_if.dev = dev; lp->mii_if.dev = dev;
lp->mii_if.mdio_read = mdio_read; lp->mii_if.mdio_read = korina_mdio_read;
lp->mii_if.mdio_write = mdio_write; lp->mii_if.mdio_write = korina_mdio_write;
lp->mii_if.phy_id = lp->phy_addr; lp->mii_if.phy_id = 1;
lp->mii_if.phy_id_mask = 0x1f; lp->mii_if.phy_id_mask = 0x1f;
lp->mii_if.reg_num_mask = 0x1f; lp->mii_if.reg_num_mask = 0x1f;
platform_set_drvdata(pdev, dev);
rc = register_netdev(dev); rc = register_netdev(dev);
if (rc < 0) { if (rc < 0) {
printk(KERN_ERR DRV_NAME printk(KERN_ERR DRV_NAME
": cannot register net device: %d\n", rc); ": cannot register net device: %d\n", rc);
goto probe_err_register; return rc;
} }
timer_setup(&lp->media_check_timer, korina_poll_media, 0); timer_setup(&lp->media_check_timer, korina_poll_media, 0);
@ -1109,40 +1377,33 @@ static int korina_probe(struct platform_device *pdev)
printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n", printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
dev->name); dev->name);
out:
return rc; return rc;
probe_err_register:
kfree((struct dma_desc *)KSEG0ADDR(lp->td_ring));
probe_err_td_ring:
iounmap(lp->tx_dma_regs);
probe_err_dma_tx:
iounmap(lp->rx_dma_regs);
probe_err_dma_rx:
iounmap(lp->eth_regs);
probe_err_out:
free_netdev(dev);
goto out;
} }
static int korina_remove(struct platform_device *pdev) static int korina_remove(struct platform_device *pdev)
{ {
struct korina_device *bif = platform_get_drvdata(pdev); struct net_device *dev = platform_get_drvdata(pdev);
struct korina_private *lp = netdev_priv(bif->dev);
iounmap(lp->eth_regs); unregister_netdev(dev);
iounmap(lp->rx_dma_regs);
iounmap(lp->tx_dma_regs);
kfree((struct dma_desc *)KSEG0ADDR(lp->td_ring));
unregister_netdev(bif->dev);
free_netdev(bif->dev);
return 0; return 0;
} }
#ifdef CONFIG_OF
static const struct of_device_id korina_match[] = {
{
.compatible = "idt,3243x-emac",
},
{ }
};
MODULE_DEVICE_TABLE(of, korina_match);
#endif
static struct platform_driver korina_driver = { static struct platform_driver korina_driver = {
.driver.name = "korina", .driver = {
.name = "korina",
.of_match_table = of_match_ptr(korina_match),
},
.probe = korina_probe, .probe = korina_probe,
.remove = korina_remove, .remove = korina_remove,
}; };