forked from Minki/linux
crypto: arm/chacha20 - faster 8-bit rotations and other optimizations
Optimize ChaCha20 NEON performance by: - Implementing the 8-bit rotations using the 'vtbl.8' instruction. - Streamlining the part that adds the original state and XORs the data. - Making some other small tweaks. On ARM Cortex-A7, these optimizations improve ChaCha20 performance from about 12.08 cycles per byte to about 11.37 -- a 5.9% improvement. There is a tradeoff involved with the 'vtbl.8' rotation method since there is at least one CPU (Cortex-A53) where it's not fastest. But it seems to be a better default; see the added comment. Overall, this patch reduces Cortex-A53 performance by less than 0.5%. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
parent
11dcb1037f
commit
a1b22a5f45
@ -18,6 +18,34 @@
|
||||
* (at your option) any later version.
|
||||
*/
|
||||
|
||||
/*
|
||||
* NEON doesn't have a rotate instruction. The alternatives are, more or less:
|
||||
*
|
||||
* (a) vshl.u32 + vsri.u32 (needs temporary register)
|
||||
* (b) vshl.u32 + vshr.u32 + vorr (needs temporary register)
|
||||
* (c) vrev32.16 (16-bit rotations only)
|
||||
* (d) vtbl.8 + vtbl.8 (multiple of 8 bits rotations only,
|
||||
* needs index vector)
|
||||
*
|
||||
* ChaCha20 has 16, 12, 8, and 7-bit rotations. For the 12 and 7-bit
|
||||
* rotations, the only choices are (a) and (b). We use (a) since it takes
|
||||
* two-thirds the cycles of (b) on both Cortex-A7 and Cortex-A53.
|
||||
*
|
||||
* For the 16-bit rotation, we use vrev32.16 since it's consistently fastest
|
||||
* and doesn't need a temporary register.
|
||||
*
|
||||
* For the 8-bit rotation, we use vtbl.8 + vtbl.8. On Cortex-A7, this sequence
|
||||
* is twice as fast as (a), even when doing (a) on multiple registers
|
||||
* simultaneously to eliminate the stall between vshl and vsri. Also, it
|
||||
* parallelizes better when temporary registers are scarce.
|
||||
*
|
||||
* A disadvantage is that on Cortex-A53, the vtbl sequence is the same speed as
|
||||
* (a), so the need to load the rotation table actually makes the vtbl method
|
||||
* slightly slower overall on that CPU (~1.3% slower ChaCha20). Still, it
|
||||
* seems to be a good compromise to get a more significant speed boost on some
|
||||
* CPUs, e.g. ~4.8% faster ChaCha20 on Cortex-A7.
|
||||
*/
|
||||
|
||||
#include <linux/linkage.h>
|
||||
|
||||
.text
|
||||
@ -46,7 +74,9 @@ ENTRY(chacha20_block_xor_neon)
|
||||
vmov q10, q2
|
||||
vmov q11, q3
|
||||
|
||||
adr ip, .Lrol8_table
|
||||
mov r3, #10
|
||||
vld1.8 {d10}, [ip, :64]
|
||||
|
||||
.Ldoubleround:
|
||||
// x0 += x1, x3 = rotl32(x3 ^ x0, 16)
|
||||
@ -62,9 +92,9 @@ ENTRY(chacha20_block_xor_neon)
|
||||
|
||||
// x0 += x1, x3 = rotl32(x3 ^ x0, 8)
|
||||
vadd.i32 q0, q0, q1
|
||||
veor q4, q3, q0
|
||||
vshl.u32 q3, q4, #8
|
||||
vsri.u32 q3, q4, #24
|
||||
veor q3, q3, q0
|
||||
vtbl.8 d6, {d6}, d10
|
||||
vtbl.8 d7, {d7}, d10
|
||||
|
||||
// x2 += x3, x1 = rotl32(x1 ^ x2, 7)
|
||||
vadd.i32 q2, q2, q3
|
||||
@ -92,9 +122,9 @@ ENTRY(chacha20_block_xor_neon)
|
||||
|
||||
// x0 += x1, x3 = rotl32(x3 ^ x0, 8)
|
||||
vadd.i32 q0, q0, q1
|
||||
veor q4, q3, q0
|
||||
vshl.u32 q3, q4, #8
|
||||
vsri.u32 q3, q4, #24
|
||||
veor q3, q3, q0
|
||||
vtbl.8 d6, {d6}, d10
|
||||
vtbl.8 d7, {d7}, d10
|
||||
|
||||
// x2 += x3, x1 = rotl32(x1 ^ x2, 7)
|
||||
vadd.i32 q2, q2, q3
|
||||
@ -139,13 +169,17 @@ ENTRY(chacha20_block_xor_neon)
|
||||
bx lr
|
||||
ENDPROC(chacha20_block_xor_neon)
|
||||
|
||||
.align 4
|
||||
.Lctrinc: .word 0, 1, 2, 3
|
||||
.Lrol8_table: .byte 3, 0, 1, 2, 7, 4, 5, 6
|
||||
|
||||
.align 5
|
||||
ENTRY(chacha20_4block_xor_neon)
|
||||
push {r4-r6, lr}
|
||||
mov ip, sp // preserve the stack pointer
|
||||
sub r3, sp, #0x20 // allocate a 32 byte buffer
|
||||
bic r3, r3, #0x1f // aligned to 32 bytes
|
||||
mov sp, r3
|
||||
push {r4-r5}
|
||||
mov r4, sp // preserve the stack pointer
|
||||
sub ip, sp, #0x20 // allocate a 32 byte buffer
|
||||
bic ip, ip, #0x1f // aligned to 32 bytes
|
||||
mov sp, ip
|
||||
|
||||
// r0: Input state matrix, s
|
||||
// r1: 4 data blocks output, o
|
||||
@ -155,25 +189,24 @@ ENTRY(chacha20_4block_xor_neon)
|
||||
// This function encrypts four consecutive ChaCha20 blocks by loading
|
||||
// the state matrix in NEON registers four times. The algorithm performs
|
||||
// each operation on the corresponding word of each state matrix, hence
|
||||
// requires no word shuffling. For final XORing step we transpose the
|
||||
// matrix by interleaving 32- and then 64-bit words, which allows us to
|
||||
// do XOR in NEON registers.
|
||||
// requires no word shuffling. The words are re-interleaved before the
|
||||
// final addition of the original state and the XORing step.
|
||||
//
|
||||
|
||||
// x0..15[0-3] = s0..3[0..3]
|
||||
add r3, r0, #0x20
|
||||
// x0..15[0-3] = s0..15[0-3]
|
||||
add ip, r0, #0x20
|
||||
vld1.32 {q0-q1}, [r0]
|
||||
vld1.32 {q2-q3}, [r3]
|
||||
vld1.32 {q2-q3}, [ip]
|
||||
|
||||
adr r3, CTRINC
|
||||
adr r5, .Lctrinc
|
||||
vdup.32 q15, d7[1]
|
||||
vdup.32 q14, d7[0]
|
||||
vld1.32 {q11}, [r3, :128]
|
||||
vld1.32 {q4}, [r5, :128]
|
||||
vdup.32 q13, d6[1]
|
||||
vdup.32 q12, d6[0]
|
||||
vadd.i32 q12, q12, q11 // x12 += counter values 0-3
|
||||
vdup.32 q11, d5[1]
|
||||
vdup.32 q10, d5[0]
|
||||
vadd.u32 q12, q12, q4 // x12 += counter values 0-3
|
||||
vdup.32 q9, d4[1]
|
||||
vdup.32 q8, d4[0]
|
||||
vdup.32 q7, d3[1]
|
||||
@ -185,9 +218,13 @@ ENTRY(chacha20_4block_xor_neon)
|
||||
vdup.32 q1, d0[1]
|
||||
vdup.32 q0, d0[0]
|
||||
|
||||
adr ip, .Lrol8_table
|
||||
mov r3, #10
|
||||
b 1f
|
||||
|
||||
.Ldoubleround4:
|
||||
vld1.32 {q8-q9}, [sp, :256]
|
||||
1:
|
||||
// x0 += x4, x12 = rotl32(x12 ^ x0, 16)
|
||||
// x1 += x5, x13 = rotl32(x13 ^ x1, 16)
|
||||
// x2 += x6, x14 = rotl32(x14 ^ x2, 16)
|
||||
@ -236,24 +273,25 @@ ENTRY(chacha20_4block_xor_neon)
|
||||
// x1 += x5, x13 = rotl32(x13 ^ x1, 8)
|
||||
// x2 += x6, x14 = rotl32(x14 ^ x2, 8)
|
||||
// x3 += x7, x15 = rotl32(x15 ^ x3, 8)
|
||||
vld1.8 {d16}, [ip, :64]
|
||||
vadd.i32 q0, q0, q4
|
||||
vadd.i32 q1, q1, q5
|
||||
vadd.i32 q2, q2, q6
|
||||
vadd.i32 q3, q3, q7
|
||||
|
||||
veor q8, q12, q0
|
||||
veor q9, q13, q1
|
||||
vshl.u32 q12, q8, #8
|
||||
vshl.u32 q13, q9, #8
|
||||
vsri.u32 q12, q8, #24
|
||||
vsri.u32 q13, q9, #24
|
||||
veor q12, q12, q0
|
||||
veor q13, q13, q1
|
||||
veor q14, q14, q2
|
||||
veor q15, q15, q3
|
||||
|
||||
veor q8, q14, q2
|
||||
veor q9, q15, q3
|
||||
vshl.u32 q14, q8, #8
|
||||
vshl.u32 q15, q9, #8
|
||||
vsri.u32 q14, q8, #24
|
||||
vsri.u32 q15, q9, #24
|
||||
vtbl.8 d24, {d24}, d16
|
||||
vtbl.8 d25, {d25}, d16
|
||||
vtbl.8 d26, {d26}, d16
|
||||
vtbl.8 d27, {d27}, d16
|
||||
vtbl.8 d28, {d28}, d16
|
||||
vtbl.8 d29, {d29}, d16
|
||||
vtbl.8 d30, {d30}, d16
|
||||
vtbl.8 d31, {d31}, d16
|
||||
|
||||
vld1.32 {q8-q9}, [sp, :256]
|
||||
|
||||
@ -332,24 +370,25 @@ ENTRY(chacha20_4block_xor_neon)
|
||||
// x1 += x6, x12 = rotl32(x12 ^ x1, 8)
|
||||
// x2 += x7, x13 = rotl32(x13 ^ x2, 8)
|
||||
// x3 += x4, x14 = rotl32(x14 ^ x3, 8)
|
||||
vld1.8 {d16}, [ip, :64]
|
||||
vadd.i32 q0, q0, q5
|
||||
vadd.i32 q1, q1, q6
|
||||
vadd.i32 q2, q2, q7
|
||||
vadd.i32 q3, q3, q4
|
||||
|
||||
veor q8, q15, q0
|
||||
veor q9, q12, q1
|
||||
vshl.u32 q15, q8, #8
|
||||
vshl.u32 q12, q9, #8
|
||||
vsri.u32 q15, q8, #24
|
||||
vsri.u32 q12, q9, #24
|
||||
veor q15, q15, q0
|
||||
veor q12, q12, q1
|
||||
veor q13, q13, q2
|
||||
veor q14, q14, q3
|
||||
|
||||
veor q8, q13, q2
|
||||
veor q9, q14, q3
|
||||
vshl.u32 q13, q8, #8
|
||||
vshl.u32 q14, q9, #8
|
||||
vsri.u32 q13, q8, #24
|
||||
vsri.u32 q14, q9, #24
|
||||
vtbl.8 d30, {d30}, d16
|
||||
vtbl.8 d31, {d31}, d16
|
||||
vtbl.8 d24, {d24}, d16
|
||||
vtbl.8 d25, {d25}, d16
|
||||
vtbl.8 d26, {d26}, d16
|
||||
vtbl.8 d27, {d27}, d16
|
||||
vtbl.8 d28, {d28}, d16
|
||||
vtbl.8 d29, {d29}, d16
|
||||
|
||||
vld1.32 {q8-q9}, [sp, :256]
|
||||
|
||||
@ -379,104 +418,76 @@ ENTRY(chacha20_4block_xor_neon)
|
||||
vsri.u32 q6, q9, #25
|
||||
|
||||
subs r3, r3, #1
|
||||
beq 0f
|
||||
bne .Ldoubleround4
|
||||
|
||||
vld1.32 {q8-q9}, [sp, :256]
|
||||
b .Ldoubleround4
|
||||
// x0..7[0-3] are in q0-q7, x10..15[0-3] are in q10-q15.
|
||||
// x8..9[0-3] are on the stack.
|
||||
|
||||
// x0[0-3] += s0[0]
|
||||
// x1[0-3] += s0[1]
|
||||
// x2[0-3] += s0[2]
|
||||
// x3[0-3] += s0[3]
|
||||
0: ldmia r0!, {r3-r6}
|
||||
vdup.32 q8, r3
|
||||
vdup.32 q9, r4
|
||||
vadd.i32 q0, q0, q8
|
||||
vadd.i32 q1, q1, q9
|
||||
vdup.32 q8, r5
|
||||
vdup.32 q9, r6
|
||||
vadd.i32 q2, q2, q8
|
||||
vadd.i32 q3, q3, q9
|
||||
|
||||
// x4[0-3] += s1[0]
|
||||
// x5[0-3] += s1[1]
|
||||
// x6[0-3] += s1[2]
|
||||
// x7[0-3] += s1[3]
|
||||
ldmia r0!, {r3-r6}
|
||||
vdup.32 q8, r3
|
||||
vdup.32 q9, r4
|
||||
vadd.i32 q4, q4, q8
|
||||
vadd.i32 q5, q5, q9
|
||||
vdup.32 q8, r5
|
||||
vdup.32 q9, r6
|
||||
vadd.i32 q6, q6, q8
|
||||
vadd.i32 q7, q7, q9
|
||||
|
||||
// interleave 32-bit words in state n, n+1
|
||||
vzip.32 q0, q1
|
||||
vzip.32 q2, q3
|
||||
vzip.32 q4, q5
|
||||
vzip.32 q6, q7
|
||||
|
||||
// interleave 64-bit words in state n, n+2
|
||||
// Re-interleave the words in the first two rows of each block (x0..7).
|
||||
// Also add the counter values 0-3 to x12[0-3].
|
||||
vld1.32 {q8}, [r5, :128] // load counter values 0-3
|
||||
vzip.32 q0, q1 // => (0 1 0 1) (0 1 0 1)
|
||||
vzip.32 q2, q3 // => (2 3 2 3) (2 3 2 3)
|
||||
vzip.32 q4, q5 // => (4 5 4 5) (4 5 4 5)
|
||||
vzip.32 q6, q7 // => (6 7 6 7) (6 7 6 7)
|
||||
vadd.u32 q12, q8 // x12 += counter values 0-3
|
||||
vswp d1, d4
|
||||
vswp d3, d6
|
||||
vld1.32 {q8-q9}, [r0]! // load s0..7
|
||||
vswp d9, d12
|
||||
vswp d11, d14
|
||||
|
||||
// xor with corresponding input, write to output
|
||||
// Swap q1 and q4 so that we'll free up consecutive registers (q0-q1)
|
||||
// after XORing the first 32 bytes.
|
||||
vswp q1, q4
|
||||
|
||||
// First two rows of each block are (q0 q1) (q2 q6) (q4 q5) (q3 q7)
|
||||
|
||||
// x0..3[0-3] += s0..3[0-3] (add orig state to 1st row of each block)
|
||||
vadd.u32 q0, q0, q8
|
||||
vadd.u32 q2, q2, q8
|
||||
vadd.u32 q4, q4, q8
|
||||
vadd.u32 q3, q3, q8
|
||||
|
||||
// x4..7[0-3] += s4..7[0-3] (add orig state to 2nd row of each block)
|
||||
vadd.u32 q1, q1, q9
|
||||
vadd.u32 q6, q6, q9
|
||||
vadd.u32 q5, q5, q9
|
||||
vadd.u32 q7, q7, q9
|
||||
|
||||
// XOR first 32 bytes using keystream from first two rows of first block
|
||||
vld1.8 {q8-q9}, [r2]!
|
||||
veor q8, q8, q0
|
||||
veor q9, q9, q4
|
||||
veor q9, q9, q1
|
||||
vst1.8 {q8-q9}, [r1]!
|
||||
|
||||
// Re-interleave the words in the last two rows of each block (x8..15).
|
||||
vld1.32 {q8-q9}, [sp, :256]
|
||||
|
||||
// x8[0-3] += s2[0]
|
||||
// x9[0-3] += s2[1]
|
||||
// x10[0-3] += s2[2]
|
||||
// x11[0-3] += s2[3]
|
||||
ldmia r0!, {r3-r6}
|
||||
vdup.32 q0, r3
|
||||
vdup.32 q4, r4
|
||||
vadd.i32 q8, q8, q0
|
||||
vadd.i32 q9, q9, q4
|
||||
vdup.32 q0, r5
|
||||
vdup.32 q4, r6
|
||||
vadd.i32 q10, q10, q0
|
||||
vadd.i32 q11, q11, q4
|
||||
|
||||
// x12[0-3] += s3[0]
|
||||
// x13[0-3] += s3[1]
|
||||
// x14[0-3] += s3[2]
|
||||
// x15[0-3] += s3[3]
|
||||
ldmia r0!, {r3-r6}
|
||||
vdup.32 q0, r3
|
||||
vdup.32 q4, r4
|
||||
adr r3, CTRINC
|
||||
vadd.i32 q12, q12, q0
|
||||
vld1.32 {q0}, [r3, :128]
|
||||
vadd.i32 q13, q13, q4
|
||||
vadd.i32 q12, q12, q0 // x12 += counter values 0-3
|
||||
|
||||
vdup.32 q0, r5
|
||||
vdup.32 q4, r6
|
||||
vadd.i32 q14, q14, q0
|
||||
vadd.i32 q15, q15, q4
|
||||
|
||||
// interleave 32-bit words in state n, n+1
|
||||
vzip.32 q8, q9
|
||||
vzip.32 q10, q11
|
||||
vzip.32 q12, q13
|
||||
vzip.32 q14, q15
|
||||
|
||||
// interleave 64-bit words in state n, n+2
|
||||
vswp d17, d20
|
||||
vswp d19, d22
|
||||
vzip.32 q12, q13 // => (12 13 12 13) (12 13 12 13)
|
||||
vzip.32 q14, q15 // => (14 15 14 15) (14 15 14 15)
|
||||
vzip.32 q8, q9 // => (8 9 8 9) (8 9 8 9)
|
||||
vzip.32 q10, q11 // => (10 11 10 11) (10 11 10 11)
|
||||
vld1.32 {q0-q1}, [r0] // load s8..15
|
||||
vswp d25, d28
|
||||
vswp d27, d30
|
||||
vswp d17, d20
|
||||
vswp d19, d22
|
||||
|
||||
vmov q4, q1
|
||||
// Last two rows of each block are (q8 q12) (q10 q14) (q9 q13) (q11 q15)
|
||||
|
||||
// x8..11[0-3] += s8..11[0-3] (add orig state to 3rd row of each block)
|
||||
vadd.u32 q8, q8, q0
|
||||
vadd.u32 q10, q10, q0
|
||||
vadd.u32 q9, q9, q0
|
||||
vadd.u32 q11, q11, q0
|
||||
|
||||
// x12..15[0-3] += s12..15[0-3] (add orig state to 4th row of each block)
|
||||
vadd.u32 q12, q12, q1
|
||||
vadd.u32 q14, q14, q1
|
||||
vadd.u32 q13, q13, q1
|
||||
vadd.u32 q15, q15, q1
|
||||
|
||||
// XOR the rest of the data with the keystream
|
||||
|
||||
vld1.8 {q0-q1}, [r2]!
|
||||
veor q0, q0, q8
|
||||
@ -509,13 +520,11 @@ ENTRY(chacha20_4block_xor_neon)
|
||||
vst1.8 {q0-q1}, [r1]!
|
||||
|
||||
vld1.8 {q0-q1}, [r2]
|
||||
mov sp, r4 // restore original stack pointer
|
||||
veor q0, q0, q11
|
||||
veor q1, q1, q15
|
||||
vst1.8 {q0-q1}, [r1]
|
||||
|
||||
mov sp, ip
|
||||
pop {r4-r6, pc}
|
||||
pop {r4-r5}
|
||||
bx lr
|
||||
ENDPROC(chacha20_4block_xor_neon)
|
||||
|
||||
.align 4
|
||||
CTRINC: .word 0, 1, 2, 3
|
||||
|
Loading…
Reference in New Issue
Block a user