[CPUFREQ] EXYNOS: Make EXYNOS common cpufreq driver

To support various EXYNOS series SoCs commonly,
added exynos common structure.
exynos-cpufreq.c => EXYNOS series common cpufreq driver
exynos4210-cpufreq.c => EXYNOS4210 support cpufreq driver

Signed-off-by: Jaecheol Lee <jc.lee@samsung.com>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
Signed-off-by: Dave Jones <davej@redhat.com>
This commit is contained in:
Jaecheol Lee 2012-01-07 20:18:35 +09:00 committed by Dave Jones
parent b2bd68e1d5
commit a125a17fa6
5 changed files with 415 additions and 318 deletions

View File

@ -0,0 +1,34 @@
/* linux/arch/arm/mach-exynos/include/mach/cpufreq.h
*
* Copyright (c) 2010 Samsung Electronics Co., Ltd.
* http://www.samsung.com
*
* EXYNOS - CPUFreq support
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
enum cpufreq_level_index {
L0, L1, L2, L3, L4,
L5, L6, L7, L8, L9,
L10, L11, L12, L13, L14,
L15, L16, L17, L18, L19,
L20,
};
struct exynos_dvfs_info {
unsigned long mpll_freq_khz;
unsigned int pll_safe_idx;
unsigned int pm_lock_idx;
unsigned int max_support_idx;
unsigned int min_support_idx;
struct clk *cpu_clk;
unsigned int *volt_table;
struct cpufreq_frequency_table *freq_table;
void (*set_freq)(unsigned int, unsigned int);
bool (*need_apll_change)(unsigned int, unsigned int);
};
extern int exynos4210_cpufreq_init(struct exynos_dvfs_info *);

View File

@ -21,12 +21,19 @@ config ARM_S5PV210_CPUFREQ
If in doubt, say N.
config ARM_EXYNOS_CPUFREQ
bool "SAMSUNG EXYNOS SoCs"
depends on ARCH_EXYNOS
select ARM_EXYNOS4210_CPUFREQ if CPU_EXYNOS4210
default y
help
This adds the CPUFreq driver common part for Samsung
EXYNOS SoCs.
If in doubt, say N.
config ARM_EXYNOS4210_CPUFREQ
bool "Samsung EXYNOS4210"
depends on CPU_EXYNOS4210
default y
help
This adds the CPUFreq driver for Samsung EXYNOS4210
SoC (S5PV310 or S5PC210).
If in doubt, say N.

View File

@ -42,6 +42,7 @@ obj-$(CONFIG_X86_CPUFREQ_NFORCE2) += cpufreq-nforce2.o
obj-$(CONFIG_UX500_SOC_DB8500) += db8500-cpufreq.o
obj-$(CONFIG_ARM_S3C64XX_CPUFREQ) += s3c64xx-cpufreq.o
obj-$(CONFIG_ARM_S5PV210_CPUFREQ) += s5pv210-cpufreq.o
obj-$(CONFIG_ARM_EXYNOS_CPUFREQ) += exynos-cpufreq.o
obj-$(CONFIG_ARM_EXYNOS4210_CPUFREQ) += exynos4210-cpufreq.o
obj-$(CONFIG_ARCH_OMAP2PLUS) += omap-cpufreq.o

View File

@ -0,0 +1,296 @@
/*
* Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
* http://www.samsung.com
*
* EXYNOS - CPU frequency scaling support for EXYNOS series
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/regulator/consumer.h>
#include <linux/cpufreq.h>
#include <linux/suspend.h>
#include <linux/reboot.h>
#include <mach/map.h>
#include <mach/regs-clock.h>
#include <mach/regs-mem.h>
#include <mach/cpufreq.h>
#include <plat/clock.h>
#include <plat/pm.h>
static struct exynos_dvfs_info *exynos_info;
static struct regulator *arm_regulator;
static struct cpufreq_freqs freqs;
static unsigned int locking_frequency;
static bool frequency_locked;
static DEFINE_MUTEX(cpufreq_lock);
int exynos_verify_speed(struct cpufreq_policy *policy)
{
return cpufreq_frequency_table_verify(policy,
exynos_info->freq_table);
}
unsigned int exynos_getspeed(unsigned int cpu)
{
return clk_get_rate(exynos_info->cpu_clk) / 1000;
}
static int exynos_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
unsigned int index, old_index;
unsigned int arm_volt, safe_arm_volt = 0;
int ret = 0;
struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
unsigned int *volt_table = exynos_info->volt_table;
unsigned int mpll_freq_khz = exynos_info->mpll_freq_khz;
mutex_lock(&cpufreq_lock);
freqs.old = policy->cur;
if (frequency_locked && target_freq != locking_frequency) {
ret = -EAGAIN;
goto out;
}
if (cpufreq_frequency_table_target(policy, freq_table,
freqs.old, relation, &old_index)) {
ret = -EINVAL;
goto out;
}
if (cpufreq_frequency_table_target(policy, freq_table,
target_freq, relation, &index)) {
ret = -EINVAL;
goto out;
}
freqs.new = freq_table[index].frequency;
freqs.cpu = policy->cpu;
/*
* ARM clock source will be changed APLL to MPLL temporary
* To support this level, need to control regulator for
* required voltage level
*/
if (exynos_info->need_apll_change != NULL) {
if (exynos_info->need_apll_change(old_index, index) &&
(freq_table[index].frequency < mpll_freq_khz) &&
(freq_table[old_index].frequency < mpll_freq_khz))
safe_arm_volt = volt_table[exynos_info->pll_safe_idx];
}
arm_volt = volt_table[index];
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
/* When the new frequency is higher than current frequency */
if ((freqs.new > freqs.old) && !safe_arm_volt) {
/* Firstly, voltage up to increase frequency */
regulator_set_voltage(arm_regulator, arm_volt,
arm_volt);
}
if (safe_arm_volt)
regulator_set_voltage(arm_regulator, safe_arm_volt,
safe_arm_volt);
if (freqs.new != freqs.old)
exynos_info->set_freq(old_index, index);
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
/* When the new frequency is lower than current frequency */
if ((freqs.new < freqs.old) ||
((freqs.new > freqs.old) && safe_arm_volt)) {
/* down the voltage after frequency change */
regulator_set_voltage(arm_regulator, arm_volt,
arm_volt);
}
out:
mutex_unlock(&cpufreq_lock);
return ret;
}
#ifdef CONFIG_PM
static int exynos_cpufreq_suspend(struct cpufreq_policy *policy)
{
return 0;
}
static int exynos_cpufreq_resume(struct cpufreq_policy *policy)
{
return 0;
}
#endif
/**
* exynos_cpufreq_pm_notifier - block CPUFREQ's activities in suspend-resume
* context
* @notifier
* @pm_event
* @v
*
* While frequency_locked == true, target() ignores every frequency but
* locking_frequency. The locking_frequency value is the initial frequency,
* which is set by the bootloader. In order to eliminate possible
* inconsistency in clock values, we save and restore frequencies during
* suspend and resume and block CPUFREQ activities. Note that the standard
* suspend/resume cannot be used as they are too deep (syscore_ops) for
* regulator actions.
*/
static int exynos_cpufreq_pm_notifier(struct notifier_block *notifier,
unsigned long pm_event, void *v)
{
struct cpufreq_policy *policy = cpufreq_cpu_get(0); /* boot CPU */
static unsigned int saved_frequency;
unsigned int temp;
mutex_lock(&cpufreq_lock);
switch (pm_event) {
case PM_SUSPEND_PREPARE:
if (frequency_locked)
goto out;
frequency_locked = true;
if (locking_frequency) {
saved_frequency = exynos_getspeed(0);
mutex_unlock(&cpufreq_lock);
exynos_target(policy, locking_frequency,
CPUFREQ_RELATION_H);
mutex_lock(&cpufreq_lock);
}
break;
case PM_POST_SUSPEND:
if (saved_frequency) {
/*
* While frequency_locked, only locking_frequency
* is valid for target(). In order to use
* saved_frequency while keeping frequency_locked,
* we temporarly overwrite locking_frequency.
*/
temp = locking_frequency;
locking_frequency = saved_frequency;
mutex_unlock(&cpufreq_lock);
exynos_target(policy, locking_frequency,
CPUFREQ_RELATION_H);
mutex_lock(&cpufreq_lock);
locking_frequency = temp;
}
frequency_locked = false;
break;
}
out:
mutex_unlock(&cpufreq_lock);
return NOTIFY_OK;
}
static struct notifier_block exynos_cpufreq_nb = {
.notifier_call = exynos_cpufreq_pm_notifier,
};
static int exynos_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
policy->cur = policy->min = policy->max = exynos_getspeed(policy->cpu);
cpufreq_frequency_table_get_attr(exynos_info->freq_table, policy->cpu);
/* set the transition latency value */
policy->cpuinfo.transition_latency = 100000;
/*
* EXYNOS4 multi-core processors has 2 cores
* that the frequency cannot be set independently.
* Each cpu is bound to the same speed.
* So the affected cpu is all of the cpus.
*/
if (num_online_cpus() == 1) {
cpumask_copy(policy->related_cpus, cpu_possible_mask);
cpumask_copy(policy->cpus, cpu_online_mask);
} else {
cpumask_setall(policy->cpus);
}
return cpufreq_frequency_table_cpuinfo(policy, exynos_info->freq_table);
}
static struct cpufreq_driver exynos_driver = {
.flags = CPUFREQ_STICKY,
.verify = exynos_verify_speed,
.target = exynos_target,
.get = exynos_getspeed,
.init = exynos_cpufreq_cpu_init,
.name = "exynos_cpufreq",
#ifdef CONFIG_PM
.suspend = exynos_cpufreq_suspend,
.resume = exynos_cpufreq_resume,
#endif
};
static int __init exynos_cpufreq_init(void)
{
int ret = -EINVAL;
exynos_info = kzalloc(sizeof(struct exynos_dvfs_info), GFP_KERNEL);
if (!exynos_info)
return -ENOMEM;
if (soc_is_exynos4210())
ret = exynos4210_cpufreq_init(exynos_info);
else
pr_err("%s: CPU type not found\n", __func__);
if (ret)
goto err_vdd_arm;
if (exynos_info->set_freq == NULL) {
pr_err("%s: No set_freq function (ERR)\n", __func__);
goto err_vdd_arm;
}
arm_regulator = regulator_get(NULL, "vdd_arm");
if (IS_ERR(arm_regulator)) {
pr_err("%s: failed to get resource vdd_arm\n", __func__);
goto err_vdd_arm;
}
register_pm_notifier(&exynos_cpufreq_nb);
if (cpufreq_register_driver(&exynos_driver)) {
pr_err("%s: failed to register cpufreq driver\n", __func__);
goto err_cpufreq;
}
return 0;
err_cpufreq:
unregister_pm_notifier(&exynos_cpufreq_nb);
if (!IS_ERR(arm_regulator))
regulator_put(arm_regulator);
err_vdd_arm:
kfree(exynos_info);
pr_debug("%s: failed initialization\n", __func__);
return -EINVAL;
}
late_initcall(exynos_cpufreq_init);

View File

@ -2,7 +2,7 @@
* Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
* http://www.samsung.com
*
* EXYNOS4 - CPU frequency scaling support
* EXYNOS4210 - CPU frequency scaling support
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@ -23,10 +23,16 @@
#include <mach/map.h>
#include <mach/regs-clock.h>
#include <mach/regs-mem.h>
#include <mach/cpufreq.h>
#include <plat/clock.h>
#include <plat/pm.h>
#define CPUFREQ_LEVEL_END L5
static int max_support_idx = L0;
static int min_support_idx = (CPUFREQ_LEVEL_END - 1);
static struct clk *cpu_clk;
static struct clk *moutcore;
static struct clk *mout_mpll;
@ -37,20 +43,18 @@ static struct regulator *arm_regulator;
static struct cpufreq_freqs freqs;
struct cpufreq_clkdiv {
unsigned int index;
unsigned int clkdiv;
};
static unsigned int locking_frequency;
static bool frequency_locked;
static DEFINE_MUTEX(cpufreq_lock);
enum cpufreq_level_index {
L0, L1, L2, L3, L4, CPUFREQ_LEVEL_END,
static unsigned int exynos4210_volt_table[CPUFREQ_LEVEL_END] = {
1250000, 1150000, 1050000, 975000, 950000,
};
static struct cpufreq_clkdiv exynos4_clkdiv_table[CPUFREQ_LEVEL_END];
static struct cpufreq_frequency_table exynos4_freq_table[] = {
static struct cpufreq_clkdiv exynos4210_clkdiv_table[CPUFREQ_LEVEL_END];
static struct cpufreq_frequency_table exynos4210_freq_table[] = {
{L0, 1200*1000},
{L1, 1000*1000},
{L2, 800*1000},
@ -104,31 +108,7 @@ static unsigned int clkdiv_cpu1[CPUFREQ_LEVEL_END][2] = {
{ 3, 0 },
};
struct cpufreq_voltage_table {
unsigned int index; /* any */
unsigned int arm_volt; /* uV */
};
static struct cpufreq_voltage_table exynos4_volt_table[CPUFREQ_LEVEL_END] = {
{
.index = L0,
.arm_volt = 1350000,
}, {
.index = L1,
.arm_volt = 1300000,
}, {
.index = L2,
.arm_volt = 1200000,
}, {
.index = L3,
.arm_volt = 1100000,
}, {
.index = L4,
.arm_volt = 1050000,
},
};
static unsigned int exynos4_apll_pms_table[CPUFREQ_LEVEL_END] = {
static unsigned int exynos4210_apll_pms_table[CPUFREQ_LEVEL_END] = {
/* APLL FOUT L0: 1200MHz */
((150 << 16) | (3 << 8) | 1),
@ -145,23 +125,13 @@ static unsigned int exynos4_apll_pms_table[CPUFREQ_LEVEL_END] = {
((200 << 16) | (6 << 8) | 3),
};
static int exynos4_verify_speed(struct cpufreq_policy *policy)
{
return cpufreq_frequency_table_verify(policy, exynos4_freq_table);
}
static unsigned int exynos4_getspeed(unsigned int cpu)
{
return clk_get_rate(cpu_clk) / 1000;
}
static void exynos4_set_clkdiv(unsigned int div_index)
static void exynos4210_set_clkdiv(unsigned int div_index)
{
unsigned int tmp;
/* Change Divider - CPU0 */
tmp = exynos4_clkdiv_table[div_index].clkdiv;
tmp = exynos4210_clkdiv_table[div_index].clkdiv;
__raw_writel(tmp, S5P_CLKDIV_CPU);
@ -185,7 +155,7 @@ static void exynos4_set_clkdiv(unsigned int div_index)
} while (tmp & 0x11);
}
static void exynos4_set_apll(unsigned int index)
static void exynos4210_set_apll(unsigned int index)
{
unsigned int tmp;
@ -204,7 +174,7 @@ static void exynos4_set_apll(unsigned int index)
/* 3. Change PLL PMS values */
tmp = __raw_readl(S5P_APLL_CON0);
tmp &= ~((0x3ff << 16) | (0x3f << 8) | (0x7 << 0));
tmp |= exynos4_apll_pms_table[index];
tmp |= exynos4210_apll_pms_table[index];
__raw_writel(tmp, S5P_APLL_CON0);
/* 4. wait_lock_time */
@ -221,305 +191,90 @@ static void exynos4_set_apll(unsigned int index)
} while (tmp != (0x1 << S5P_CLKSRC_CPU_MUXCORE_SHIFT));
}
static void exynos4_set_frequency(unsigned int old_index, unsigned int new_index)
bool exynos4210_pms_change(unsigned int old_index, unsigned int new_index)
{
unsigned int old_pm = (exynos4210_apll_pms_table[old_index] >> 8);
unsigned int new_pm = (exynos4210_apll_pms_table[new_index] >> 8);
return (old_pm == new_pm) ? 0 : 1;
}
static void exynos4210_set_frequency(unsigned int old_index,
unsigned int new_index)
{
unsigned int tmp;
if (old_index > new_index) {
/*
* L1/L3, L2/L4 Level change require
* to only change s divider value
*/
if (((old_index == L3) && (new_index == L1)) ||
((old_index == L4) && (new_index == L2))) {
if (!exynos4210_pms_change(old_index, new_index)) {
/* 1. Change the system clock divider values */
exynos4_set_clkdiv(new_index);
exynos4210_set_clkdiv(new_index);
/* 2. Change just s value in apll m,p,s value */
tmp = __raw_readl(S5P_APLL_CON0);
tmp &= ~(0x7 << 0);
tmp |= (exynos4_apll_pms_table[new_index] & 0x7);
tmp |= (exynos4210_apll_pms_table[new_index] & 0x7);
__raw_writel(tmp, S5P_APLL_CON0);
} else {
/* Clock Configuration Procedure */
/* 1. Change the system clock divider values */
exynos4_set_clkdiv(new_index);
exynos4210_set_clkdiv(new_index);
/* 2. Change the apll m,p,s value */
exynos4_set_apll(new_index);
exynos4210_set_apll(new_index);
}
} else if (old_index < new_index) {
/*
* L1/L3, L2/L4 Level change require
* to only change s divider value
*/
if (((old_index == L1) && (new_index == L3)) ||
((old_index == L2) && (new_index == L4))) {
if (!exynos4210_pms_change(old_index, new_index)) {
/* 1. Change just s value in apll m,p,s value */
tmp = __raw_readl(S5P_APLL_CON0);
tmp &= ~(0x7 << 0);
tmp |= (exynos4_apll_pms_table[new_index] & 0x7);
tmp |= (exynos4210_apll_pms_table[new_index] & 0x7);
__raw_writel(tmp, S5P_APLL_CON0);
/* 2. Change the system clock divider values */
exynos4_set_clkdiv(new_index);
exynos4210_set_clkdiv(new_index);
} else {
/* Clock Configuration Procedure */
/* 1. Change the apll m,p,s value */
exynos4_set_apll(new_index);
exynos4210_set_apll(new_index);
/* 2. Change the system clock divider values */
exynos4_set_clkdiv(new_index);
exynos4210_set_clkdiv(new_index);
}
}
}
static int exynos4_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
unsigned int index, old_index;
unsigned int arm_volt;
int err = -EINVAL;
freqs.old = exynos4_getspeed(policy->cpu);
mutex_lock(&cpufreq_lock);
if (frequency_locked && target_freq != locking_frequency) {
err = -EAGAIN;
goto out;
}
if (cpufreq_frequency_table_target(policy, exynos4_freq_table,
freqs.old, relation, &old_index))
goto out;
if (cpufreq_frequency_table_target(policy, exynos4_freq_table,
target_freq, relation, &index))
goto out;
err = 0;
freqs.new = exynos4_freq_table[index].frequency;
freqs.cpu = policy->cpu;
if (freqs.new == freqs.old)
goto out;
/* get the voltage value */
arm_volt = exynos4_volt_table[index].arm_volt;
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
/* control regulator */
if (freqs.new > freqs.old) {
/* Voltage up */
regulator_set_voltage(arm_regulator, arm_volt, arm_volt);
}
/* Clock Configuration Procedure */
exynos4_set_frequency(old_index, index);
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
/* control regulator */
if (freqs.new < freqs.old) {
/* Voltage down */
regulator_set_voltage(arm_regulator, arm_volt, arm_volt);
}
out:
mutex_unlock(&cpufreq_lock);
return err;
}
#ifdef CONFIG_PM
/*
* These suspend/resume are used as syscore_ops, it is already too
* late to set regulator voltages at this stage.
*/
static int exynos4_cpufreq_suspend(struct cpufreq_policy *policy)
{
return 0;
}
static int exynos4_cpufreq_resume(struct cpufreq_policy *policy)
{
return 0;
}
#endif
/**
* exynos4_cpufreq_pm_notifier - block CPUFREQ's activities in suspend-resume
* context
* @notifier
* @pm_event
* @v
*
* While frequency_locked == true, target() ignores every frequency but
* locking_frequency. The locking_frequency value is the initial frequency,
* which is set by the bootloader. In order to eliminate possible
* inconsistency in clock values, we save and restore frequencies during
* suspend and resume and block CPUFREQ activities. Note that the standard
* suspend/resume cannot be used as they are too deep (syscore_ops) for
* regulator actions.
*/
static int exynos4_cpufreq_pm_notifier(struct notifier_block *notifier,
unsigned long pm_event, void *v)
{
struct cpufreq_policy *policy = cpufreq_cpu_get(0); /* boot CPU */
static unsigned int saved_frequency;
unsigned int temp;
mutex_lock(&cpufreq_lock);
switch (pm_event) {
case PM_SUSPEND_PREPARE:
if (frequency_locked)
goto out;
frequency_locked = true;
if (locking_frequency) {
saved_frequency = exynos4_getspeed(0);
mutex_unlock(&cpufreq_lock);
exynos4_target(policy, locking_frequency,
CPUFREQ_RELATION_H);
mutex_lock(&cpufreq_lock);
}
break;
case PM_POST_SUSPEND:
if (saved_frequency) {
/*
* While frequency_locked, only locking_frequency
* is valid for target(). In order to use
* saved_frequency while keeping frequency_locked,
* we temporarly overwrite locking_frequency.
*/
temp = locking_frequency;
locking_frequency = saved_frequency;
mutex_unlock(&cpufreq_lock);
exynos4_target(policy, locking_frequency,
CPUFREQ_RELATION_H);
mutex_lock(&cpufreq_lock);
locking_frequency = temp;
}
frequency_locked = false;
break;
}
out:
mutex_unlock(&cpufreq_lock);
return NOTIFY_OK;
}
static struct notifier_block exynos4_cpufreq_nb = {
.notifier_call = exynos4_cpufreq_pm_notifier,
};
static int exynos4_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
int ret;
policy->cur = policy->min = policy->max = exynos4_getspeed(policy->cpu);
cpufreq_frequency_table_get_attr(exynos4_freq_table, policy->cpu);
/* set the transition latency value */
policy->cpuinfo.transition_latency = 100000;
/*
* EXYNOS4 multi-core processors has 2 cores
* that the frequency cannot be set independently.
* Each cpu is bound to the same speed.
* So the affected cpu is all of the cpus.
*/
if (!cpu_online(1)) {
cpumask_copy(policy->related_cpus, cpu_possible_mask);
cpumask_copy(policy->cpus, cpu_online_mask);
} else {
cpumask_setall(policy->cpus);
}
ret = cpufreq_frequency_table_cpuinfo(policy, exynos4_freq_table);
if (ret)
return ret;
cpufreq_frequency_table_get_attr(exynos4_freq_table, policy->cpu);
return 0;
}
static int exynos4_cpufreq_cpu_exit(struct cpufreq_policy *policy)
{
cpufreq_frequency_table_put_attr(policy->cpu);
return 0;
}
static struct freq_attr *exynos4_cpufreq_attr[] = {
&cpufreq_freq_attr_scaling_available_freqs,
NULL,
};
static struct cpufreq_driver exynos4_driver = {
.flags = CPUFREQ_STICKY,
.verify = exynos4_verify_speed,
.target = exynos4_target,
.get = exynos4_getspeed,
.init = exynos4_cpufreq_cpu_init,
.exit = exynos4_cpufreq_cpu_exit,
.name = "exynos4_cpufreq",
.attr = exynos4_cpufreq_attr,
#ifdef CONFIG_PM
.suspend = exynos4_cpufreq_suspend,
.resume = exynos4_cpufreq_resume,
#endif
};
static int __init exynos4_cpufreq_init(void)
int exynos4210_cpufreq_init(struct exynos_dvfs_info *info)
{
int i;
unsigned int tmp;
unsigned long rate;
cpu_clk = clk_get(NULL, "armclk");
if (IS_ERR(cpu_clk))
return PTR_ERR(cpu_clk);
locking_frequency = exynos4_getspeed(0);
moutcore = clk_get(NULL, "moutcore");
if (IS_ERR(moutcore))
goto out;
goto err_moutcore;
mout_mpll = clk_get(NULL, "mout_mpll");
if (IS_ERR(mout_mpll))
goto out;
goto err_mout_mpll;
rate = clk_get_rate(mout_mpll) / 1000;
mout_apll = clk_get(NULL, "mout_apll");
if (IS_ERR(mout_apll))
goto out;
arm_regulator = regulator_get(NULL, "vdd_arm");
if (IS_ERR(arm_regulator)) {
printk(KERN_ERR "failed to get resource %s\n", "vdd_arm");
goto out;
}
register_pm_notifier(&exynos4_cpufreq_nb);
goto err_mout_apll;
tmp = __raw_readl(S5P_CLKDIV_CPU);
for (i = L0; i < CPUFREQ_LEVEL_END; i++) {
tmp &= ~(S5P_CLKDIV_CPU0_CORE_MASK |
S5P_CLKDIV_CPU0_COREM0_MASK |
S5P_CLKDIV_CPU0_COREM1_MASK |
S5P_CLKDIV_CPU0_PERIPH_MASK |
S5P_CLKDIV_CPU0_ATB_MASK |
S5P_CLKDIV_CPU0_PCLKDBG_MASK |
S5P_CLKDIV_CPU0_APLL_MASK);
S5P_CLKDIV_CPU0_COREM0_MASK |
S5P_CLKDIV_CPU0_COREM1_MASK |
S5P_CLKDIV_CPU0_PERIPH_MASK |
S5P_CLKDIV_CPU0_ATB_MASK |
S5P_CLKDIV_CPU0_PCLKDBG_MASK |
S5P_CLKDIV_CPU0_APLL_MASK);
tmp |= ((clkdiv_cpu0[i][0] << S5P_CLKDIV_CPU0_CORE_SHIFT) |
(clkdiv_cpu0[i][1] << S5P_CLKDIV_CPU0_COREM0_SHIFT) |
@ -529,29 +284,33 @@ static int __init exynos4_cpufreq_init(void)
(clkdiv_cpu0[i][5] << S5P_CLKDIV_CPU0_PCLKDBG_SHIFT) |
(clkdiv_cpu0[i][6] << S5P_CLKDIV_CPU0_APLL_SHIFT));
exynos4_clkdiv_table[i].clkdiv = tmp;
exynos4210_clkdiv_table[i].clkdiv = tmp;
}
return cpufreq_register_driver(&exynos4_driver);
info->mpll_freq_khz = rate;
info->pm_lock_idx = L2;
info->pll_safe_idx = L2;
info->max_support_idx = max_support_idx;
info->min_support_idx = min_support_idx;
info->cpu_clk = cpu_clk;
info->volt_table = exynos4210_volt_table;
info->freq_table = exynos4210_freq_table;
info->set_freq = exynos4210_set_frequency;
info->need_apll_change = exynos4210_pms_change;
out:
return 0;
err_mout_apll:
if (!IS_ERR(mout_mpll))
clk_put(mout_mpll);
err_mout_mpll:
if (!IS_ERR(moutcore))
clk_put(moutcore);
err_moutcore:
if (!IS_ERR(cpu_clk))
clk_put(cpu_clk);
if (!IS_ERR(moutcore))
clk_put(moutcore);
if (!IS_ERR(mout_mpll))
clk_put(mout_mpll);
if (!IS_ERR(mout_apll))
clk_put(mout_apll);
if (!IS_ERR(arm_regulator))
regulator_put(arm_regulator);
printk(KERN_ERR "%s: failed initialization\n", __func__);
pr_debug("%s: failed initialization\n", __func__);
return -EINVAL;
}
late_initcall(exynos4_cpufreq_init);
EXPORT_SYMBOL(exynos4210_cpufreq_init);