Merge branch 'akpm' (Andrew's patch-bomb)

Merge patches from Andrew Morton:
 "A few misc things and very nearly all of the MM tree.  A tremendous
  amount of stuff (again), including a significant rbtree library
  rework."

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (160 commits)
  sparc64: Support transparent huge pages.
  mm: thp: Use more portable PMD clearing sequenece in zap_huge_pmd().
  mm: Add and use update_mmu_cache_pmd() in transparent huge page code.
  sparc64: Document PGD and PMD layout.
  sparc64: Eliminate PTE table memory wastage.
  sparc64: Halve the size of PTE tables
  sparc64: Only support 4MB huge pages and 8KB base pages.
  memory-hotplug: suppress "Trying to free nonexistent resource <XXXXXXXXXXXXXXXX-YYYYYYYYYYYYYYYY>" warning
  mm: memcg: clean up mm_match_cgroup() signature
  mm: document PageHuge somewhat
  mm: use %pK for /proc/vmallocinfo
  mm, thp: fix mlock statistics
  mm, thp: fix mapped pages avoiding unevictable list on mlock
  memory-hotplug: update memory block's state and notify userspace
  memory-hotplug: preparation to notify memory block's state at memory hot remove
  mm: avoid section mismatch warning for memblock_type_name
  make GFP_NOTRACK definition unconditional
  cma: decrease cc.nr_migratepages after reclaiming pagelist
  CMA: migrate mlocked pages
  kpageflags: fix wrong KPF_THP on non-huge compound pages
  ...
This commit is contained in:
Linus Torvalds
2012-10-09 16:23:15 +09:00
255 changed files with 5013 additions and 3577 deletions

View File

@@ -10,7 +10,10 @@ void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
pte_t *ptep);
void hugetlb_prefault_arch_hook(struct mm_struct *mm);
static inline void hugetlb_prefault_arch_hook(struct mm_struct *mm)
{
hugetlb_setup(mm);
}
static inline int is_hugepage_only_range(struct mm_struct *mm,
unsigned long addr,
@@ -82,4 +85,8 @@ static inline void arch_release_hugepage(struct page *page)
{
}
static inline void arch_clear_hugepage_flags(struct page *page)
{
}
#endif /* _ASM_SPARC64_HUGETLB_H */

View File

@@ -30,22 +30,8 @@
#define CTX_PGSZ_MASK ((CTX_PGSZ_BITS << CTX_PGSZ0_SHIFT) | \
(CTX_PGSZ_BITS << CTX_PGSZ1_SHIFT))
#if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
#define CTX_PGSZ_BASE CTX_PGSZ_8KB
#elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
#define CTX_PGSZ_BASE CTX_PGSZ_64KB
#else
#error No page size specified in kernel configuration
#endif
#if defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
#define CTX_PGSZ_HUGE CTX_PGSZ_4MB
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
#define CTX_PGSZ_HUGE CTX_PGSZ_512KB
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
#define CTX_PGSZ_HUGE CTX_PGSZ_64KB
#endif
#define CTX_PGSZ_HUGE CTX_PGSZ_4MB
#define CTX_PGSZ_KERN CTX_PGSZ_4MB
/* Thus, when running on UltraSPARC-III+ and later, we use the following
@@ -96,7 +82,7 @@ struct tsb_config {
#define MM_TSB_BASE 0
#ifdef CONFIG_HUGETLB_PAGE
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
#define MM_TSB_HUGE 1
#define MM_NUM_TSBS 2
#else
@@ -107,6 +93,7 @@ typedef struct {
spinlock_t lock;
unsigned long sparc64_ctx_val;
unsigned long huge_pte_count;
struct page *pgtable_page;
struct tsb_config tsb_block[MM_NUM_TSBS];
struct hv_tsb_descr tsb_descr[MM_NUM_TSBS];
} mm_context_t;

View File

@@ -36,7 +36,7 @@ static inline void tsb_context_switch(struct mm_struct *mm)
{
__tsb_context_switch(__pa(mm->pgd),
&mm->context.tsb_block[0],
#ifdef CONFIG_HUGETLB_PAGE
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
(mm->context.tsb_block[1].tsb ?
&mm->context.tsb_block[1] :
NULL)

View File

@@ -3,13 +3,7 @@
#include <linux/const.h>
#if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
#define PAGE_SHIFT 13
#elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
#define PAGE_SHIFT 16
#else
#error No page size specified in kernel configuration
#endif
#define PAGE_SIZE (_AC(1,UL) << PAGE_SHIFT)
#define PAGE_MASK (~(PAGE_SIZE-1))
@@ -21,15 +15,9 @@
#define DCACHE_ALIASING_POSSIBLE
#endif
#if defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
#define HPAGE_SHIFT 22
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
#define HPAGE_SHIFT 19
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
#define HPAGE_SHIFT 16
#endif
#ifdef CONFIG_HUGETLB_PAGE
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
#define HPAGE_SIZE (_AC(1,UL) << HPAGE_SHIFT)
#define HPAGE_MASK (~(HPAGE_SIZE - 1UL))
#define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
@@ -38,6 +26,11 @@
#ifndef __ASSEMBLY__
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
struct mm_struct;
extern void hugetlb_setup(struct mm_struct *mm);
#endif
#define WANT_PAGE_VIRTUAL
extern void _clear_page(void *page);
@@ -98,7 +91,7 @@ typedef unsigned long pgprot_t;
#endif /* (STRICT_MM_TYPECHECKS) */
typedef struct page *pgtable_t;
typedef pte_t *pgtable_t;
#define TASK_UNMAPPED_BASE (test_thread_flag(TIF_32BIT) ? \
(_AC(0x0000000070000000,UL)) : \

View File

@@ -38,51 +38,20 @@ static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
kmem_cache_free(pgtable_cache, pmd);
}
static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long address)
{
return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_REPEAT | __GFP_ZERO);
}
extern pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long address);
extern pgtable_t pte_alloc_one(struct mm_struct *mm,
unsigned long address);
extern void pte_free_kernel(struct mm_struct *mm, pte_t *pte);
extern void pte_free(struct mm_struct *mm, pgtable_t ptepage);
static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
unsigned long address)
{
struct page *page;
pte_t *pte;
pte = pte_alloc_one_kernel(mm, address);
if (!pte)
return NULL;
page = virt_to_page(pte);
pgtable_page_ctor(page);
return page;
}
static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
{
free_page((unsigned long)pte);
}
static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage)
{
pgtable_page_dtor(ptepage);
__free_page(ptepage);
}
#define pmd_populate_kernel(MM, PMD, PTE) pmd_set(PMD, PTE)
#define pmd_populate(MM,PMD,PTE_PAGE) \
pmd_populate_kernel(MM,PMD,page_address(PTE_PAGE))
#define pmd_pgtable(pmd) pmd_page(pmd)
#define pmd_populate_kernel(MM, PMD, PTE) pmd_set(MM, PMD, PTE)
#define pmd_populate(MM, PMD, PTE) pmd_set(MM, PMD, PTE)
#define pmd_pgtable(PMD) ((pte_t *)__pmd_page(PMD))
#define check_pgt_cache() do { } while (0)
static inline void pgtable_free(void *table, bool is_page)
{
if (is_page)
free_page((unsigned long)table);
else
kmem_cache_free(pgtable_cache, table);
}
extern void pgtable_free(void *table, bool is_page);
#ifdef CONFIG_SMP
@@ -113,11 +82,10 @@ static inline void pgtable_free_tlb(struct mmu_gather *tlb, void *table, bool is
}
#endif /* !CONFIG_SMP */
static inline void __pte_free_tlb(struct mmu_gather *tlb, struct page *ptepage,
static inline void __pte_free_tlb(struct mmu_gather *tlb, pte_t *pte,
unsigned long address)
{
pgtable_page_dtor(ptepage);
pgtable_free_tlb(tlb, page_address(ptepage), true);
pgtable_free_tlb(tlb, pte, true);
}
#define __pmd_free_tlb(tlb, pmd, addr) \

View File

@@ -45,40 +45,59 @@
#define vmemmap ((struct page *)VMEMMAP_BASE)
/* XXX All of this needs to be rethought so we can take advantage
* XXX cheetah's full 64-bit virtual address space, ie. no more hole
* XXX in the middle like on spitfire. -DaveM
*/
/*
* Given a virtual address, the lowest PAGE_SHIFT bits determine offset
* into the page; the next higher PAGE_SHIFT-3 bits determine the pte#
* in the proper pagetable (the -3 is from the 8 byte ptes, and each page
* table is a single page long). The next higher PMD_BITS determine pmd#
* in the proper pmdtable (where we must have PMD_BITS <= (PAGE_SHIFT-2)
* since the pmd entries are 4 bytes, and each pmd page is a single page
* long). Finally, the higher few bits determine pgde#.
*/
/* PMD_SHIFT determines the size of the area a second-level page
* table can map
*/
#define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3))
#define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-4))
#define PMD_SIZE (_AC(1,UL) << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
#define PMD_BITS (PAGE_SHIFT - 2)
/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3) + PMD_BITS)
#define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-4) + PMD_BITS)
#define PGDIR_SIZE (_AC(1,UL) << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
#define PGDIR_BITS (PAGE_SHIFT - 2)
#if (PGDIR_SHIFT + PGDIR_BITS) != 44
#error Page table parameters do not cover virtual address space properly.
#endif
#if (PMD_SHIFT != HPAGE_SHIFT)
#error PMD_SHIFT must equal HPAGE_SHIFT for transparent huge pages.
#endif
/* PMDs point to PTE tables which are 4K aligned. */
#define PMD_PADDR _AC(0xfffffffe,UL)
#define PMD_PADDR_SHIFT _AC(11,UL)
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define PMD_ISHUGE _AC(0x00000001,UL)
/* This is the PMD layout when PMD_ISHUGE is set. With 4MB huge
* pages, this frees up a bunch of bits in the layout that we can
* use for the protection settings and software metadata.
*/
#define PMD_HUGE_PADDR _AC(0xfffff800,UL)
#define PMD_HUGE_PROTBITS _AC(0x000007ff,UL)
#define PMD_HUGE_PRESENT _AC(0x00000400,UL)
#define PMD_HUGE_WRITE _AC(0x00000200,UL)
#define PMD_HUGE_DIRTY _AC(0x00000100,UL)
#define PMD_HUGE_ACCESSED _AC(0x00000080,UL)
#define PMD_HUGE_EXEC _AC(0x00000040,UL)
#define PMD_HUGE_SPLITTING _AC(0x00000020,UL)
#endif
/* PGDs point to PMD tables which are 8K aligned. */
#define PGD_PADDR _AC(0xfffffffc,UL)
#define PGD_PADDR_SHIFT _AC(11,UL)
#ifndef __ASSEMBLY__
#include <linux/sched.h>
/* Entries per page directory level. */
#define PTRS_PER_PTE (1UL << (PAGE_SHIFT-3))
#define PTRS_PER_PTE (1UL << (PAGE_SHIFT-4))
#define PTRS_PER_PMD (1UL << PMD_BITS)
#define PTRS_PER_PGD (1UL << PGDIR_BITS)
@@ -160,26 +179,11 @@
#define _PAGE_SZ8K_4V _AC(0x0000000000000000,UL) /* 8K Page */
#define _PAGE_SZALL_4V _AC(0x0000000000000007,UL) /* All pgsz bits */
#if PAGE_SHIFT == 13
#define _PAGE_SZBITS_4U _PAGE_SZ8K_4U
#define _PAGE_SZBITS_4V _PAGE_SZ8K_4V
#elif PAGE_SHIFT == 16
#define _PAGE_SZBITS_4U _PAGE_SZ64K_4U
#define _PAGE_SZBITS_4V _PAGE_SZ64K_4V
#else
#error Wrong PAGE_SHIFT specified
#endif
#if defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
#define _PAGE_SZHUGE_4U _PAGE_SZ4MB_4U
#define _PAGE_SZHUGE_4V _PAGE_SZ4MB_4V
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
#define _PAGE_SZHUGE_4U _PAGE_SZ512K_4U
#define _PAGE_SZHUGE_4V _PAGE_SZ512K_4V
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
#define _PAGE_SZHUGE_4U _PAGE_SZ64K_4U
#define _PAGE_SZHUGE_4V _PAGE_SZ64K_4V
#endif
/* These are actually filled in at boot time by sun4{u,v}_pgprot_init() */
#define __P000 __pgprot(0)
@@ -218,7 +222,6 @@ extern unsigned long _PAGE_CACHE;
extern unsigned long pg_iobits;
extern unsigned long _PAGE_ALL_SZ_BITS;
extern unsigned long _PAGE_SZBITS;
extern struct page *mem_map_zero;
#define ZERO_PAGE(vaddr) (mem_map_zero)
@@ -231,25 +234,25 @@ extern struct page *mem_map_zero;
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
{
unsigned long paddr = pfn << PAGE_SHIFT;
unsigned long sz_bits;
sz_bits = 0UL;
if (_PAGE_SZBITS_4U != 0UL || _PAGE_SZBITS_4V != 0UL) {
__asm__ __volatile__(
"\n661: sethi %%uhi(%1), %0\n"
" sllx %0, 32, %0\n"
" .section .sun4v_2insn_patch, \"ax\"\n"
" .word 661b\n"
" mov %2, %0\n"
" nop\n"
" .previous\n"
: "=r" (sz_bits)
: "i" (_PAGE_SZBITS_4U), "i" (_PAGE_SZBITS_4V));
}
return __pte(paddr | sz_bits | pgprot_val(prot));
BUILD_BUG_ON(_PAGE_SZBITS_4U != 0UL || _PAGE_SZBITS_4V != 0UL);
return __pte(paddr | pgprot_val(prot));
}
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot);
#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
static inline pmd_t pmd_mkhuge(pmd_t pmd)
{
/* Do nothing, mk_pmd() does this part. */
return pmd;
}
#endif
/* This one can be done with two shifts. */
static inline unsigned long pte_pfn(pte_t pte)
{
@@ -286,6 +289,7 @@ static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
* Note: We encode this into 3 sun4v 2-insn patch sequences.
*/
BUILD_BUG_ON(_PAGE_SZBITS_4U != 0UL || _PAGE_SZBITS_4V != 0UL);
__asm__ __volatile__(
"\n661: sethi %%uhi(%2), %1\n"
" sethi %%hi(%2), %0\n"
@@ -307,10 +311,10 @@ static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
: "=r" (mask), "=r" (tmp)
: "i" (_PAGE_PADDR_4U | _PAGE_MODIFIED_4U | _PAGE_ACCESSED_4U |
_PAGE_CP_4U | _PAGE_CV_4U | _PAGE_E_4U | _PAGE_PRESENT_4U |
_PAGE_SZBITS_4U | _PAGE_SPECIAL),
_PAGE_SPECIAL),
"i" (_PAGE_PADDR_4V | _PAGE_MODIFIED_4V | _PAGE_ACCESSED_4V |
_PAGE_CP_4V | _PAGE_CV_4V | _PAGE_E_4V | _PAGE_PRESENT_4V |
_PAGE_SZBITS_4V | _PAGE_SPECIAL));
_PAGE_SPECIAL));
return __pte((pte_val(pte) & mask) | (pgprot_val(prot) & ~mask));
}
@@ -618,19 +622,130 @@ static inline unsigned long pte_special(pte_t pte)
return pte_val(pte) & _PAGE_SPECIAL;
}
#define pmd_set(pmdp, ptep) \
(pmd_val(*(pmdp)) = (__pa((unsigned long) (ptep)) >> 11UL))
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_young(pmd_t pmd)
{
return pmd_val(pmd) & PMD_HUGE_ACCESSED;
}
static inline int pmd_write(pmd_t pmd)
{
return pmd_val(pmd) & PMD_HUGE_WRITE;
}
static inline unsigned long pmd_pfn(pmd_t pmd)
{
unsigned long val = pmd_val(pmd) & PMD_HUGE_PADDR;
return val >> (PAGE_SHIFT - PMD_PADDR_SHIFT);
}
static inline int pmd_large(pmd_t pmd)
{
return (pmd_val(pmd) & (PMD_ISHUGE | PMD_HUGE_PRESENT)) ==
(PMD_ISHUGE | PMD_HUGE_PRESENT);
}
static inline int pmd_trans_splitting(pmd_t pmd)
{
return (pmd_val(pmd) & (PMD_ISHUGE|PMD_HUGE_SPLITTING)) ==
(PMD_ISHUGE|PMD_HUGE_SPLITTING);
}
static inline int pmd_trans_huge(pmd_t pmd)
{
return pmd_val(pmd) & PMD_ISHUGE;
}
#define has_transparent_hugepage() 1
static inline pmd_t pmd_mkold(pmd_t pmd)
{
pmd_val(pmd) &= ~PMD_HUGE_ACCESSED;
return pmd;
}
static inline pmd_t pmd_wrprotect(pmd_t pmd)
{
pmd_val(pmd) &= ~PMD_HUGE_WRITE;
return pmd;
}
static inline pmd_t pmd_mkdirty(pmd_t pmd)
{
pmd_val(pmd) |= PMD_HUGE_DIRTY;
return pmd;
}
static inline pmd_t pmd_mkyoung(pmd_t pmd)
{
pmd_val(pmd) |= PMD_HUGE_ACCESSED;
return pmd;
}
static inline pmd_t pmd_mkwrite(pmd_t pmd)
{
pmd_val(pmd) |= PMD_HUGE_WRITE;
return pmd;
}
static inline pmd_t pmd_mknotpresent(pmd_t pmd)
{
pmd_val(pmd) &= ~PMD_HUGE_PRESENT;
return pmd;
}
static inline pmd_t pmd_mksplitting(pmd_t pmd)
{
pmd_val(pmd) |= PMD_HUGE_SPLITTING;
return pmd;
}
extern pgprot_t pmd_pgprot(pmd_t entry);
#endif
static inline int pmd_present(pmd_t pmd)
{
return pmd_val(pmd) != 0U;
}
#define pmd_none(pmd) (!pmd_val(pmd))
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t pmd);
#else
static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t pmd)
{
*pmdp = pmd;
}
#endif
static inline void pmd_set(struct mm_struct *mm, pmd_t *pmdp, pte_t *ptep)
{
unsigned long val = __pa((unsigned long) (ptep)) >> PMD_PADDR_SHIFT;
pmd_val(*pmdp) = val;
}
#define pud_set(pudp, pmdp) \
(pud_val(*(pudp)) = (__pa((unsigned long) (pmdp)) >> 11UL))
#define __pmd_page(pmd) \
((unsigned long) __va((((unsigned long)pmd_val(pmd))<<11UL)))
(pud_val(*(pudp)) = (__pa((unsigned long) (pmdp)) >> PGD_PADDR_SHIFT))
static inline unsigned long __pmd_page(pmd_t pmd)
{
unsigned long paddr = (unsigned long) pmd_val(pmd);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
if (pmd_val(pmd) & PMD_ISHUGE)
paddr &= PMD_HUGE_PADDR;
#endif
paddr <<= PMD_PADDR_SHIFT;
return ((unsigned long) __va(paddr));
}
#define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd))
#define pud_page_vaddr(pud) \
((unsigned long) __va((((unsigned long)pud_val(pud))<<11UL)))
((unsigned long) __va((((unsigned long)pud_val(pud))<<PGD_PADDR_SHIFT)))
#define pud_page(pud) virt_to_page((void *)pud_page_vaddr(pud))
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_bad(pmd) (0)
#define pmd_present(pmd) (pmd_val(pmd) != 0U)
#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0U)
#define pud_none(pud) (!pud_val(pud))
#define pud_bad(pud) (0)
@@ -664,6 +779,16 @@ static inline unsigned long pte_special(pte_t pte)
extern void tlb_batch_add(struct mm_struct *mm, unsigned long vaddr,
pte_t *ptep, pte_t orig, int fullmm);
#define __HAVE_ARCH_PMDP_GET_AND_CLEAR
static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
unsigned long addr,
pmd_t *pmdp)
{
pmd_t pmd = *pmdp;
set_pmd_at(mm, addr, pmdp, __pmd(0U));
return pmd;
}
static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte, int fullmm)
{
@@ -719,6 +844,16 @@ extern void mmu_info(struct seq_file *);
struct vm_area_struct;
extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmd);
#define __HAVE_ARCH_PGTABLE_DEPOSIT
extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable);
#define __HAVE_ARCH_PGTABLE_WITHDRAW
extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm);
#endif
/* Encode and de-code a swap entry */
#define __swp_type(entry) (((entry).val >> PAGE_SHIFT) & 0xffUL)

View File

@@ -147,20 +147,96 @@ extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
brz,pn REG1, FAIL_LABEL; \
sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
srlx REG2, 64 - PAGE_SHIFT, REG2; \
sllx REG1, 11, REG1; \
sllx REG1, PGD_PADDR_SHIFT, REG1; \
andn REG2, 0x3, REG2; \
lduwa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
brz,pn REG1, FAIL_LABEL; \
sllx VADDR, 64 - PMD_SHIFT, REG2; \
srlx REG2, 64 - PAGE_SHIFT, REG2; \
sllx REG1, 11, REG1; \
srlx REG2, 64 - (PAGE_SHIFT - 1), REG2; \
sllx REG1, PMD_PADDR_SHIFT, REG1; \
andn REG2, 0x7, REG2; \
add REG1, REG2, REG1;
/* Do a user page table walk in MMU globals. Leaves physical PTE
* pointer in REG1. Jumps to FAIL_LABEL on early page table walk
* termination. Physical base of page tables is in PHYS_PGD which
* will not be modified.
/* This macro exists only to make the PMD translator below easier
* to read. It hides the ELF section switch for the sun4v code
* patching.
*/
#define OR_PTE_BIT(REG, NAME) \
661: or REG, _PAGE_##NAME##_4U, REG; \
.section .sun4v_1insn_patch, "ax"; \
.word 661b; \
or REG, _PAGE_##NAME##_4V, REG; \
.previous;
/* Load into REG the PTE value for VALID, CACHE, and SZHUGE. */
#define BUILD_PTE_VALID_SZHUGE_CACHE(REG) \
661: sethi %uhi(_PAGE_VALID|_PAGE_SZHUGE_4U), REG; \
.section .sun4v_1insn_patch, "ax"; \
.word 661b; \
sethi %uhi(_PAGE_VALID), REG; \
.previous; \
sllx REG, 32, REG; \
661: or REG, _PAGE_CP_4U|_PAGE_CV_4U, REG; \
.section .sun4v_1insn_patch, "ax"; \
.word 661b; \
or REG, _PAGE_CP_4V|_PAGE_CV_4V|_PAGE_SZHUGE_4V, REG; \
.previous;
/* PMD has been loaded into REG1, interpret the value, seeing
* if it is a HUGE PMD or a normal one. If it is not valid
* then jump to FAIL_LABEL. If it is a HUGE PMD, and it
* translates to a valid PTE, branch to PTE_LABEL.
*
* We translate the PMD by hand, one bit at a time,
* constructing the huge PTE.
*
* So we construct the PTE in REG2 as follows:
*
* 1) Extract the PMD PFN from REG1 and place it into REG2.
*
* 2) Translate PMD protection bits in REG1 into REG2, one bit
* at a time using andcc tests on REG1 and OR's into REG2.
*
* Only two bits to be concerned with here, EXEC and WRITE.
* Now REG1 is freed up and we can use it as a temporary.
*
* 3) Construct the VALID, CACHE, and page size PTE bits in
* REG1, OR with REG2 to form final PTE.
*/
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
brz,pn REG1, FAIL_LABEL; \
andcc REG1, PMD_ISHUGE, %g0; \
be,pt %xcc, 700f; \
and REG1, PMD_HUGE_PRESENT|PMD_HUGE_ACCESSED, REG2; \
cmp REG2, PMD_HUGE_PRESENT|PMD_HUGE_ACCESSED; \
bne,pn %xcc, FAIL_LABEL; \
andn REG1, PMD_HUGE_PROTBITS, REG2; \
sllx REG2, PMD_PADDR_SHIFT, REG2; \
/* REG2 now holds PFN << PAGE_SHIFT */ \
andcc REG1, PMD_HUGE_EXEC, %g0; \
bne,a,pt %xcc, 1f; \
OR_PTE_BIT(REG2, EXEC); \
1: andcc REG1, PMD_HUGE_WRITE, %g0; \
bne,a,pt %xcc, 1f; \
OR_PTE_BIT(REG2, W); \
/* REG1 can now be clobbered, build final PTE */ \
1: BUILD_PTE_VALID_SZHUGE_CACHE(REG1); \
ba,pt %xcc, PTE_LABEL; \
or REG1, REG2, REG1; \
700:
#else
#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
brz,pn REG1, FAIL_LABEL; \
nop;
#endif
/* Do a user page table walk in MMU globals. Leaves final,
* valid, PTE value in REG1. Jumps to FAIL_LABEL on early
* page table walk termination or if the PTE is not valid.
*
* Physical base of page tables is in PHYS_PGD which will not
* be modified.
*
* VADDR will not be clobbered, but REG1 and REG2 will.
*/
@@ -172,15 +248,19 @@ extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
brz,pn REG1, FAIL_LABEL; \
sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
srlx REG2, 64 - PAGE_SHIFT, REG2; \
sllx REG1, 11, REG1; \
sllx REG1, PGD_PADDR_SHIFT, REG1; \
andn REG2, 0x3, REG2; \
lduwa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
brz,pn REG1, FAIL_LABEL; \
sllx VADDR, 64 - PMD_SHIFT, REG2; \
srlx REG2, 64 - PAGE_SHIFT, REG2; \
sllx REG1, 11, REG1; \
USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
sllx VADDR, 64 - PMD_SHIFT, REG2; \
srlx REG2, 64 - (PAGE_SHIFT - 1), REG2; \
sllx REG1, PMD_PADDR_SHIFT, REG1; \
andn REG2, 0x7, REG2; \
add REG1, REG2, REG1;
add REG1, REG2, REG1; \
ldxa [REG1] ASI_PHYS_USE_EC, REG1; \
brgez,pn REG1, FAIL_LABEL; \
nop; \
800:
/* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
* If no entry is found, FAIL_LABEL will be branched to. On success