xfs: add version 3 inode format with CRCs

Add a new inode version with a larger core.  The primary objective is
to allow for a crc of the inode, and location information (uuid and ino)
to verify it was written in the right place.  We also extend it by:

	a creation time (for Samba);
	a changecount (for NFSv4);
	a flush sequence (in LSN format for recovery);
	an additional inode flags field; and
	some additional padding.

These additional fields are not implemented yet, but already laid
out in the structure.

[dchinner@redhat.com] Added LSN and flags field, some factoring and rework to
capture all the necessary information in the crc calculation.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
This commit is contained in:
Christoph Hellwig
2013-04-03 16:11:17 +11:00
committed by Ben Myers
parent 3fe58f30b4
commit 93848a999c
8 changed files with 254 additions and 77 deletions

View File

@@ -167,6 +167,7 @@ xfs_ialloc_inode_init(
int version;
int i, j;
xfs_daddr_t d;
xfs_ino_t ino = 0;
/*
* Loop over the new block(s), filling in the inodes.
@@ -185,13 +186,29 @@ xfs_ialloc_inode_init(
}
/*
* Figure out what version number to use in the inodes we create.
* If the superblock version has caught up to the one that supports
* the new inode format, then use the new inode version. Otherwise
* use the old version so that old kernels will continue to be
* able to use the file system.
* Figure out what version number to use in the inodes we create. If
* the superblock version has caught up to the one that supports the new
* inode format, then use the new inode version. Otherwise use the old
* version so that old kernels will continue to be able to use the file
* system.
*
* For v3 inodes, we also need to write the inode number into the inode,
* so calculate the first inode number of the chunk here as
* XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
* across multiple filesystem blocks (such as a cluster) and so cannot
* be used in the cluster buffer loop below.
*
* Further, because we are writing the inode directly into the buffer
* and calculating a CRC on the entire inode, we have ot log the entire
* inode so that the entire range the CRC covers is present in the log.
* That means for v3 inode we log the entire buffer rather than just the
* inode cores.
*/
if (xfs_sb_version_hasnlink(&mp->m_sb))
if (xfs_sb_version_hascrc(&mp->m_sb)) {
version = 3;
ino = XFS_AGINO_TO_INO(mp, agno,
XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
} else if (xfs_sb_version_hasnlink(&mp->m_sb))
version = 2;
else
version = 1;
@@ -214,17 +231,32 @@ xfs_ialloc_inode_init(
* individual transactions causing a lot of log traffic.
*/
fbuf->b_ops = &xfs_inode_buf_ops;
xfs_buf_zero(fbuf, 0, ninodes << mp->m_sb.sb_inodelog);
xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
for (i = 0; i < ninodes; i++) {
int ioffset = i << mp->m_sb.sb_inodelog;
uint isize = sizeof(struct xfs_dinode);
uint isize = xfs_dinode_size(version);
free = xfs_make_iptr(mp, fbuf, i);
free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
free->di_version = version;
free->di_gen = cpu_to_be32(gen);
free->di_next_unlinked = cpu_to_be32(NULLAGINO);
xfs_trans_log_buf(tp, fbuf, ioffset, ioffset + isize - 1);
if (version == 3) {
free->di_ino = cpu_to_be64(ino);
ino++;
uuid_copy(&free->di_uuid, &mp->m_sb.sb_uuid);
xfs_dinode_calc_crc(mp, free);
} else {
/* just log the inode core */
xfs_trans_log_buf(tp, fbuf, ioffset,
ioffset + isize - 1);
}
}
if (version == 3) {
/* need to log the entire buffer */
xfs_trans_log_buf(tp, fbuf, 0,
BBTOB(fbuf->b_length) - 1);
}
xfs_trans_inode_alloc_buf(tp, fbuf);
}