V4L/DVB (13253): cx23885: CodingStyle fix

Add whitespace around binary operators in cx23888-ir.c

Signed-off-by: Andy Walls <awalls@radix.net>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
This commit is contained in:
Andy Walls 2009-10-29 22:24:34 -03:00 committed by Mauro Carvalho Chehab
parent 7fb101ae25
commit 928213aad7

View File

@ -108,7 +108,7 @@ MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
#define CX23888_IR_LEARN_REG 0x170044 #define CX23888_IR_LEARN_REG 0x170044
#define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */ #define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
#define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ/2) #define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ / 2)
#define CX23888_IR_RX_KFIFO_SIZE (512 * sizeof(u32)) #define CX23888_IR_RX_KFIFO_SIZE (512 * sizeof(u32))
#define CX23888_IR_TX_KFIFO_SIZE (512 * sizeof(u32)) #define CX23888_IR_TX_KFIFO_SIZE (512 * sizeof(u32))
@ -171,7 +171,7 @@ static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
*/ */
static inline u16 count_to_clock_divider(unsigned int d) static inline u16 count_to_clock_divider(unsigned int d)
{ {
if (d > RXCLK_RCD+1) if (d > RXCLK_RCD + 1)
d = RXCLK_RCD; d = RXCLK_RCD;
else if (d < 2) else if (d < 2)
d = 1; d = 1;
@ -183,14 +183,14 @@ static inline u16 count_to_clock_divider(unsigned int d)
static inline u16 ns_to_clock_divider(unsigned int ns) static inline u16 ns_to_clock_divider(unsigned int ns)
{ {
return count_to_clock_divider( return count_to_clock_divider(
DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ/1000000 * ns, 1000)); DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
} }
static inline unsigned int clock_divider_to_ns(unsigned int divider) static inline unsigned int clock_divider_to_ns(unsigned int divider)
{ {
/* Period of the Rx or Tx clock in ns */ /* Period of the Rx or Tx clock in ns */
return DIV_ROUND_CLOSEST((divider + 1) * 1000, return DIV_ROUND_CLOSEST((divider + 1) * 1000,
CX23888_IR_REFCLK_FREQ/1000000); CX23888_IR_REFCLK_FREQ / 1000000);
} }
static inline u16 carrier_freq_to_clock_divider(unsigned int freq) static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
@ -237,19 +237,20 @@ static inline u16 count_to_lpf_count(unsigned int d)
static inline u16 ns_to_lpf_count(unsigned int ns) static inline u16 ns_to_lpf_count(unsigned int ns)
{ {
return count_to_lpf_count( return count_to_lpf_count(
DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ/1000000 * ns, 1000)); DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
} }
static inline unsigned int lpf_count_to_ns(unsigned int count) static inline unsigned int lpf_count_to_ns(unsigned int count)
{ {
/* Duration of the Low Pass Filter rejection window in ns */ /* Duration of the Low Pass Filter rejection window in ns */
return DIV_ROUND_CLOSEST(count * 1000, CX23888_IR_REFCLK_FREQ/1000000); return DIV_ROUND_CLOSEST(count * 1000,
CX23888_IR_REFCLK_FREQ / 1000000);
} }
static inline unsigned int lpf_count_to_us(unsigned int count) static inline unsigned int lpf_count_to_us(unsigned int count)
{ {
/* Duration of the Low Pass Filter rejection window in us */ /* Duration of the Low Pass Filter rejection window in us */
return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ/1000000); return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
} }
/* /*
@ -263,7 +264,7 @@ static u32 clock_divider_to_resolution(u16 divider)
* not readable, hence the << 2. This function returns ns. * not readable, hence the << 2. This function returns ns.
*/ */
return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000, return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000,
CX23888_IR_REFCLK_FREQ/1000000); CX23888_IR_REFCLK_FREQ / 1000000);
} }
static u64 pulse_width_count_to_ns(u16 count, u16 divider) static u64 pulse_width_count_to_ns(u16 count, u16 divider)
@ -276,8 +277,8 @@ static u64 pulse_width_count_to_ns(u16 count, u16 divider)
* the (count << 2) | 0x3 * the (count << 2) | 0x3
*/ */
n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */ n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
rem = do_div(n, CX23888_IR_REFCLK_FREQ/1000000); /* / MHz => ns */ rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */
if (rem >= CX23888_IR_REFCLK_FREQ/1000000/2) if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
n++; n++;
return n; return n;
} }
@ -291,9 +292,9 @@ static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
* The 2 lsb's of the pulse width timer count are not readable, hence * The 2 lsb's of the pulse width timer count are not readable, hence
* the (count << 2) | 0x3 * the (count << 2) | 0x3
*/ */
n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */ n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */
rem = do_div(n, CX23888_IR_REFCLK_FREQ/1000000); /* / MHz => us */ rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
if (rem >= CX23888_IR_REFCLK_FREQ/1000000/2) if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
n++; n++;
return (unsigned int) n; return (unsigned int) n;
} }
@ -310,9 +311,9 @@ static u64 ns_to_pulse_clocks(u32 ns)
{ {
u64 clocks; u64 clocks;
u32 rem; u32 rem;
clocks = CX23888_IR_REFCLK_FREQ/1000000 * (u64) ns; /* millicycles */ clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */
rem = do_div(clocks, 1000); /* /1000 = cycles */ rem = do_div(clocks, 1000); /* /1000 = cycles */
if (rem >= 1000/2) if (rem >= 1000 / 2)
clocks++; clocks++;
return clocks; return clocks;
} }
@ -324,7 +325,7 @@ static u16 pulse_clocks_to_clock_divider(u64 count)
rem = do_div(count, (FIFO_RXTX << 2) | 0x3); rem = do_div(count, (FIFO_RXTX << 2) | 0x3);
/* net result needs to be rounded down and decremented by 1 */ /* net result needs to be rounded down and decremented by 1 */
if (count > RXCLK_RCD+1) if (count > RXCLK_RCD + 1)
count = RXCLK_RCD; count = RXCLK_RCD;
else if (count < 2) else if (count < 2)
count = 1; count = 1;
@ -484,7 +485,7 @@ static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
if (n > 15) if (n > 15)
n = 15; n = 15;
cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n); cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
return DIV_ROUND_CLOSEST((n+1) * 100, 16); return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
} }
/* /*
@ -630,7 +631,7 @@ static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl); cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
*handled = true; *handled = true;
} }
if (kfifo_len(state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE/2) if (kfifo_len(state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ; events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
if (events) if (events)