forked from Minki/linux
Blackfin arch: SMP supporting patchset: Blackfin kernel and memory management code
Blackfin dual core BF561 processor can support SMP like features. https://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:smp-like In this patch, we provide SMP extend to Blackfin kernel and memory management code Singed-off-by: Graf Yang <graf.yang@analog.com> Signed-off-by: Mike Frysinger <vapier.adi@gmail.com> Signed-off-by: Bryan Wu <cooloney@kernel.org>
This commit is contained in:
parent
b8a989893c
commit
8f65873e47
@ -56,6 +56,9 @@ int main(void)
|
||||
/* offsets into the thread struct */
|
||||
DEFINE(THREAD_KSP, offsetof(struct thread_struct, ksp));
|
||||
DEFINE(THREAD_USP, offsetof(struct thread_struct, usp));
|
||||
DEFINE(THREAD_SR, offsetof(struct thread_struct, seqstat));
|
||||
DEFINE(PT_SR, offsetof(struct thread_struct, seqstat));
|
||||
DEFINE(THREAD_ESP0, offsetof(struct thread_struct, esp0));
|
||||
DEFINE(THREAD_PC, offsetof(struct thread_struct, pc));
|
||||
DEFINE(KERNEL_STACK_SIZE, THREAD_SIZE);
|
||||
|
||||
@ -128,5 +131,31 @@ int main(void)
|
||||
DEFINE(SIGSEGV, SIGSEGV);
|
||||
DEFINE(SIGTRAP, SIGTRAP);
|
||||
|
||||
/* PDA management (in L1 scratchpad) */
|
||||
DEFINE(PDA_SYSCFG, offsetof(struct blackfin_pda, syscfg));
|
||||
#ifdef CONFIG_SMP
|
||||
DEFINE(PDA_IRQFLAGS, offsetof(struct blackfin_pda, imask));
|
||||
#endif
|
||||
DEFINE(PDA_IPDT, offsetof(struct blackfin_pda, ipdt));
|
||||
DEFINE(PDA_IPDT_SWAPCOUNT, offsetof(struct blackfin_pda, ipdt_swapcount));
|
||||
DEFINE(PDA_DPDT, offsetof(struct blackfin_pda, dpdt));
|
||||
DEFINE(PDA_DPDT_SWAPCOUNT, offsetof(struct blackfin_pda, dpdt_swapcount));
|
||||
DEFINE(PDA_EXIPTR, offsetof(struct blackfin_pda, ex_iptr));
|
||||
DEFINE(PDA_EXOPTR, offsetof(struct blackfin_pda, ex_optr));
|
||||
DEFINE(PDA_EXBUF, offsetof(struct blackfin_pda, ex_buf));
|
||||
DEFINE(PDA_EXIMASK, offsetof(struct blackfin_pda, ex_imask));
|
||||
DEFINE(PDA_EXSTACK, offsetof(struct blackfin_pda, ex_stack));
|
||||
#ifdef ANOMALY_05000261
|
||||
DEFINE(PDA_LFRETX, offsetof(struct blackfin_pda, last_cplb_fault_retx));
|
||||
#endif
|
||||
DEFINE(PDA_DCPLB, offsetof(struct blackfin_pda, dcplb_fault_addr));
|
||||
DEFINE(PDA_ICPLB, offsetof(struct blackfin_pda, icplb_fault_addr));
|
||||
DEFINE(PDA_RETX, offsetof(struct blackfin_pda, retx));
|
||||
DEFINE(PDA_SEQSTAT, offsetof(struct blackfin_pda, seqstat));
|
||||
#ifdef CONFIG_SMP
|
||||
/* Inter-core lock (in L2 SRAM) */
|
||||
DEFINE(SIZEOF_CORELOCK, sizeof(struct corelock_slot));
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -68,3 +68,37 @@ EXPORT_SYMBOL(insw_8);
|
||||
EXPORT_SYMBOL(outsl);
|
||||
EXPORT_SYMBOL(insl);
|
||||
EXPORT_SYMBOL(insl_16);
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
EXPORT_SYMBOL(__raw_atomic_update_asm);
|
||||
EXPORT_SYMBOL(__raw_atomic_clear_asm);
|
||||
EXPORT_SYMBOL(__raw_atomic_set_asm);
|
||||
EXPORT_SYMBOL(__raw_atomic_xor_asm);
|
||||
EXPORT_SYMBOL(__raw_atomic_test_asm);
|
||||
EXPORT_SYMBOL(__raw_xchg_1_asm);
|
||||
EXPORT_SYMBOL(__raw_xchg_2_asm);
|
||||
EXPORT_SYMBOL(__raw_xchg_4_asm);
|
||||
EXPORT_SYMBOL(__raw_cmpxchg_1_asm);
|
||||
EXPORT_SYMBOL(__raw_cmpxchg_2_asm);
|
||||
EXPORT_SYMBOL(__raw_cmpxchg_4_asm);
|
||||
EXPORT_SYMBOL(__raw_spin_is_locked_asm);
|
||||
EXPORT_SYMBOL(__raw_spin_lock_asm);
|
||||
EXPORT_SYMBOL(__raw_spin_trylock_asm);
|
||||
EXPORT_SYMBOL(__raw_spin_unlock_asm);
|
||||
EXPORT_SYMBOL(__raw_read_lock_asm);
|
||||
EXPORT_SYMBOL(__raw_read_trylock_asm);
|
||||
EXPORT_SYMBOL(__raw_read_unlock_asm);
|
||||
EXPORT_SYMBOL(__raw_write_lock_asm);
|
||||
EXPORT_SYMBOL(__raw_write_trylock_asm);
|
||||
EXPORT_SYMBOL(__raw_write_unlock_asm);
|
||||
EXPORT_SYMBOL(__raw_bit_set_asm);
|
||||
EXPORT_SYMBOL(__raw_bit_clear_asm);
|
||||
EXPORT_SYMBOL(__raw_bit_toggle_asm);
|
||||
EXPORT_SYMBOL(__raw_bit_test_asm);
|
||||
EXPORT_SYMBOL(__raw_bit_test_set_asm);
|
||||
EXPORT_SYMBOL(__raw_bit_test_clear_asm);
|
||||
EXPORT_SYMBOL(__raw_bit_test_toggle_asm);
|
||||
EXPORT_SYMBOL(__raw_uncached_fetch_asm);
|
||||
EXPORT_SYMBOL(__raw_smp_mark_barrier_asm);
|
||||
EXPORT_SYMBOL(__raw_smp_check_barrier_asm);
|
||||
#endif
|
||||
|
@ -30,6 +30,7 @@
|
||||
#include <linux/linkage.h>
|
||||
#include <asm/thread_info.h>
|
||||
#include <asm/errno.h>
|
||||
#include <asm/blackfin.h>
|
||||
#include <asm/asm-offsets.h>
|
||||
|
||||
#include <asm/context.S>
|
||||
|
@ -36,7 +36,7 @@
|
||||
#include <linux/irq.h>
|
||||
#include <asm/trace.h>
|
||||
|
||||
static unsigned long irq_err_count;
|
||||
static atomic_t irq_err_count;
|
||||
static spinlock_t irq_controller_lock;
|
||||
|
||||
/*
|
||||
@ -48,7 +48,7 @@ void dummy_mask_unmask_irq(unsigned int irq)
|
||||
|
||||
void ack_bad_irq(unsigned int irq)
|
||||
{
|
||||
irq_err_count += 1;
|
||||
atomic_inc(&irq_err_count);
|
||||
printk(KERN_ERR "IRQ: spurious interrupt %d\n", irq);
|
||||
}
|
||||
EXPORT_SYMBOL(ack_bad_irq);
|
||||
@ -72,7 +72,7 @@ static struct irq_desc bad_irq_desc = {
|
||||
|
||||
int show_interrupts(struct seq_file *p, void *v)
|
||||
{
|
||||
int i = *(loff_t *) v;
|
||||
int i = *(loff_t *) v, j;
|
||||
struct irqaction *action;
|
||||
unsigned long flags;
|
||||
|
||||
@ -80,19 +80,20 @@ int show_interrupts(struct seq_file *p, void *v)
|
||||
spin_lock_irqsave(&irq_desc[i].lock, flags);
|
||||
action = irq_desc[i].action;
|
||||
if (!action)
|
||||
goto unlock;
|
||||
|
||||
seq_printf(p, "%3d: %10u ", i, kstat_irqs(i));
|
||||
goto skip;
|
||||
seq_printf(p, "%3d: ", i);
|
||||
for_each_online_cpu(j)
|
||||
seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
|
||||
seq_printf(p, " %8s", irq_desc[i].chip->name);
|
||||
seq_printf(p, " %s", action->name);
|
||||
for (action = action->next; action; action = action->next)
|
||||
seq_printf(p, ", %s", action->name);
|
||||
seq_printf(p, " %s", action->name);
|
||||
|
||||
seq_putc(p, '\n');
|
||||
unlock:
|
||||
skip:
|
||||
spin_unlock_irqrestore(&irq_desc[i].lock, flags);
|
||||
} else if (i == NR_IRQS) {
|
||||
seq_printf(p, "Err: %10lu\n", irq_err_count);
|
||||
}
|
||||
} else if (i == NR_IRQS)
|
||||
seq_printf(p, "Err: %10u\n", atomic_read(&irq_err_count));
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -101,7 +102,6 @@ int show_interrupts(struct seq_file *p, void *v)
|
||||
* come via this function. Instead, they should provide their
|
||||
* own 'handler'
|
||||
*/
|
||||
|
||||
#ifdef CONFIG_DO_IRQ_L1
|
||||
__attribute__((l1_text))
|
||||
#endif
|
||||
|
@ -363,12 +363,12 @@ void kgdb_passive_cpu_callback(void *info)
|
||||
|
||||
void kgdb_roundup_cpus(unsigned long flags)
|
||||
{
|
||||
smp_call_function(kgdb_passive_cpu_callback, NULL, 0, 0);
|
||||
smp_call_function(kgdb_passive_cpu_callback, NULL, 0);
|
||||
}
|
||||
|
||||
void kgdb_roundup_cpu(int cpu, unsigned long flags)
|
||||
{
|
||||
smp_call_function_single(cpu, kgdb_passive_cpu_callback, NULL, 0, 0);
|
||||
smp_call_function_single(cpu, kgdb_passive_cpu_callback, NULL, 0);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -343,7 +343,13 @@ apply_relocate_add(Elf_Shdr * sechdrs, const char *strtab,
|
||||
pr_debug("location is %x, value is %x type is %d \n",
|
||||
(unsigned int) location32, value,
|
||||
ELF32_R_TYPE(rel[i].r_info));
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
if ((unsigned long)location16 >= COREB_L1_DATA_A_START) {
|
||||
printk(KERN_ERR "module %s: cannot relocate in L1: %u (SMP kernel)",
|
||||
mod->name, ELF32_R_TYPE(rel[i].r_info));
|
||||
return -ENOEXEC;
|
||||
}
|
||||
#endif
|
||||
switch (ELF32_R_TYPE(rel[i].r_info)) {
|
||||
|
||||
case R_pcrel24:
|
||||
@ -436,6 +442,7 @@ module_finalize(const Elf_Ehdr * hdr,
|
||||
{
|
||||
unsigned int i, strindex = 0, symindex = 0;
|
||||
char *secstrings;
|
||||
long err = 0;
|
||||
|
||||
secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
|
||||
|
||||
@ -460,8 +467,10 @@ module_finalize(const Elf_Ehdr * hdr,
|
||||
(strcmp(".rela.l1.text", secstrings + sechdrs[i].sh_name) == 0) ||
|
||||
((strcmp(".rela.text", secstrings + sechdrs[i].sh_name) == 0) &&
|
||||
(hdr->e_flags & (EF_BFIN_CODE_IN_L1|EF_BFIN_CODE_IN_L2))))) {
|
||||
apply_relocate_add((Elf_Shdr *) sechdrs, strtab,
|
||||
err = apply_relocate_add((Elf_Shdr *) sechdrs, strtab,
|
||||
symindex, i, mod);
|
||||
if (err < 0)
|
||||
return -ENOEXEC;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
|
@ -171,6 +171,13 @@ asmlinkage int bfin_clone(struct pt_regs *regs)
|
||||
unsigned long clone_flags;
|
||||
unsigned long newsp;
|
||||
|
||||
#ifdef __ARCH_SYNC_CORE_DCACHE
|
||||
if (current->rt.nr_cpus_allowed == num_possible_cpus()) {
|
||||
current->cpus_allowed = cpumask_of_cpu(smp_processor_id());
|
||||
current->rt.nr_cpus_allowed = 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* syscall2 puts clone_flags in r0 and usp in r1 */
|
||||
clone_flags = regs->r0;
|
||||
newsp = regs->r1;
|
||||
@ -338,22 +345,22 @@ int _access_ok(unsigned long addr, unsigned long size)
|
||||
if (addr >= (unsigned long)__init_begin &&
|
||||
addr + size <= (unsigned long)__init_end)
|
||||
return 1;
|
||||
if (addr >= L1_SCRATCH_START
|
||||
&& addr + size <= L1_SCRATCH_START + L1_SCRATCH_LENGTH)
|
||||
if (addr >= get_l1_scratch_start()
|
||||
&& addr + size <= get_l1_scratch_start() + L1_SCRATCH_LENGTH)
|
||||
return 1;
|
||||
#if L1_CODE_LENGTH != 0
|
||||
if (addr >= L1_CODE_START + (_etext_l1 - _stext_l1)
|
||||
&& addr + size <= L1_CODE_START + L1_CODE_LENGTH)
|
||||
if (addr >= get_l1_code_start() + (_etext_l1 - _stext_l1)
|
||||
&& addr + size <= get_l1_code_start() + L1_CODE_LENGTH)
|
||||
return 1;
|
||||
#endif
|
||||
#if L1_DATA_A_LENGTH != 0
|
||||
if (addr >= L1_DATA_A_START + (_ebss_l1 - _sdata_l1)
|
||||
&& addr + size <= L1_DATA_A_START + L1_DATA_A_LENGTH)
|
||||
if (addr >= get_l1_data_a_start() + (_ebss_l1 - _sdata_l1)
|
||||
&& addr + size <= get_l1_data_a_start() + L1_DATA_A_LENGTH)
|
||||
return 1;
|
||||
#endif
|
||||
#if L1_DATA_B_LENGTH != 0
|
||||
if (addr >= L1_DATA_B_START + (_ebss_b_l1 - _sdata_b_l1)
|
||||
&& addr + size <= L1_DATA_B_START + L1_DATA_B_LENGTH)
|
||||
if (addr >= get_l1_data_b_start() + (_ebss_b_l1 - _sdata_b_l1)
|
||||
&& addr + size <= get_l1_data_b_start() + L1_DATA_B_LENGTH)
|
||||
return 1;
|
||||
#endif
|
||||
#if L2_LENGTH != 0
|
||||
|
@ -220,8 +220,8 @@ long arch_ptrace(struct task_struct *child, long request, long addr, long data)
|
||||
break;
|
||||
pr_debug("ptrace: user address is valid\n");
|
||||
|
||||
if (L1_CODE_LENGTH != 0 && addr >= L1_CODE_START
|
||||
&& addr + sizeof(tmp) <= L1_CODE_START + L1_CODE_LENGTH) {
|
||||
if (L1_CODE_LENGTH != 0 && addr >= get_l1_code_start()
|
||||
&& addr + sizeof(tmp) <= get_l1_code_start() + L1_CODE_LENGTH) {
|
||||
safe_dma_memcpy (&tmp, (const void *)(addr), sizeof(tmp));
|
||||
copied = sizeof(tmp);
|
||||
|
||||
@ -300,8 +300,8 @@ long arch_ptrace(struct task_struct *child, long request, long addr, long data)
|
||||
break;
|
||||
pr_debug("ptrace: user address is valid\n");
|
||||
|
||||
if (L1_CODE_LENGTH != 0 && addr >= L1_CODE_START
|
||||
&& addr + sizeof(data) <= L1_CODE_START + L1_CODE_LENGTH) {
|
||||
if (L1_CODE_LENGTH != 0 && addr >= get_l1_code_start()
|
||||
&& addr + sizeof(data) <= get_l1_code_start() + L1_CODE_LENGTH) {
|
||||
safe_dma_memcpy ((void *)(addr), &data, sizeof(data));
|
||||
copied = sizeof(data);
|
||||
|
||||
|
@ -21,7 +21,7 @@
|
||||
* the core reset.
|
||||
*/
|
||||
__attribute__((l1_text))
|
||||
static void bfin_reset(void)
|
||||
static void _bfin_reset(void)
|
||||
{
|
||||
/* Wait for completion of "system" events such as cache line
|
||||
* line fills so that we avoid infinite stalls later on as
|
||||
@ -66,6 +66,18 @@ static void bfin_reset(void)
|
||||
}
|
||||
}
|
||||
|
||||
static void bfin_reset(void)
|
||||
{
|
||||
if (ANOMALY_05000353 || ANOMALY_05000386)
|
||||
_bfin_reset();
|
||||
else
|
||||
/* the bootrom checks to see how it was reset and will
|
||||
* automatically perform a software reset for us when
|
||||
* it starts executing boot
|
||||
*/
|
||||
asm("raise 1;");
|
||||
}
|
||||
|
||||
__attribute__((weak))
|
||||
void native_machine_restart(char *cmd)
|
||||
{
|
||||
@ -75,14 +87,10 @@ void machine_restart(char *cmd)
|
||||
{
|
||||
native_machine_restart(cmd);
|
||||
local_irq_disable();
|
||||
if (ANOMALY_05000353 || ANOMALY_05000386)
|
||||
bfin_reset();
|
||||
if (smp_processor_id())
|
||||
smp_call_function((void *)bfin_reset, 0, 1);
|
||||
else
|
||||
/* the bootrom checks to see how it was reset and will
|
||||
* automatically perform a software reset for us when
|
||||
* it starts executing boot
|
||||
*/
|
||||
asm("raise 1;");
|
||||
bfin_reset();
|
||||
}
|
||||
|
||||
__attribute__((weak))
|
||||
|
@ -26,11 +26,10 @@
|
||||
#include <asm/blackfin.h>
|
||||
#include <asm/cplbinit.h>
|
||||
#include <asm/div64.h>
|
||||
#include <asm/cpu.h>
|
||||
#include <asm/fixed_code.h>
|
||||
#include <asm/early_printk.h>
|
||||
|
||||
static DEFINE_PER_CPU(struct cpu, cpu_devices);
|
||||
|
||||
u16 _bfin_swrst;
|
||||
EXPORT_SYMBOL(_bfin_swrst);
|
||||
|
||||
@ -79,29 +78,76 @@ static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
|
||||
static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
|
||||
static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
|
||||
|
||||
void __init bfin_cache_init(void)
|
||||
{
|
||||
DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
|
||||
|
||||
#if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
|
||||
generate_cplb_tables();
|
||||
void __init generate_cplb_tables(void)
|
||||
{
|
||||
unsigned int cpu;
|
||||
|
||||
/* Generate per-CPU I&D CPLB tables */
|
||||
for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
|
||||
generate_cplb_tables_cpu(cpu);
|
||||
}
|
||||
#endif
|
||||
|
||||
void __cpuinit bfin_setup_caches(unsigned int cpu)
|
||||
{
|
||||
#ifdef CONFIG_BFIN_ICACHE
|
||||
bfin_icache_init();
|
||||
printk(KERN_INFO "Instruction Cache Enabled\n");
|
||||
#ifdef CONFIG_MPU
|
||||
bfin_icache_init(icplb_tbl[cpu]);
|
||||
#else
|
||||
bfin_icache_init(icplb_tables[cpu]);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_BFIN_DCACHE
|
||||
bfin_dcache_init();
|
||||
printk(KERN_INFO "Data Cache Enabled"
|
||||
#ifdef CONFIG_MPU
|
||||
bfin_dcache_init(dcplb_tbl[cpu]);
|
||||
#else
|
||||
bfin_dcache_init(dcplb_tables[cpu]);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/*
|
||||
* In cache coherence emulation mode, we need to have the
|
||||
* D-cache enabled before running any atomic operation which
|
||||
* might invove cache invalidation (i.e. spinlock, rwlock).
|
||||
* So printk's are deferred until then.
|
||||
*/
|
||||
#ifdef CONFIG_BFIN_ICACHE
|
||||
printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
|
||||
#endif
|
||||
#ifdef CONFIG_BFIN_DCACHE
|
||||
printk(KERN_INFO "Data Cache Enabled for CPU%u"
|
||||
# if defined CONFIG_BFIN_WB
|
||||
" (write-back)"
|
||||
# elif defined CONFIG_BFIN_WT
|
||||
" (write-through)"
|
||||
# endif
|
||||
"\n");
|
||||
"\n", cpu);
|
||||
#endif
|
||||
}
|
||||
|
||||
void __cpuinit bfin_setup_cpudata(unsigned int cpu)
|
||||
{
|
||||
struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
|
||||
|
||||
cpudata->idle = current;
|
||||
cpudata->loops_per_jiffy = loops_per_jiffy;
|
||||
cpudata->cclk = get_cclk();
|
||||
cpudata->imemctl = bfin_read_IMEM_CONTROL();
|
||||
cpudata->dmemctl = bfin_read_DMEM_CONTROL();
|
||||
}
|
||||
|
||||
void __init bfin_cache_init(void)
|
||||
{
|
||||
#if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
|
||||
generate_cplb_tables();
|
||||
#endif
|
||||
bfin_setup_caches(0);
|
||||
}
|
||||
|
||||
void __init bfin_relocate_l1_mem(void)
|
||||
{
|
||||
unsigned long l1_code_length;
|
||||
@ -230,7 +276,7 @@ static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
|
||||
/* record all known change-points (starting and ending addresses),
|
||||
omitting those that are for empty memory regions */
|
||||
chgidx = 0;
|
||||
for (i = 0; i < old_nr; i++) {
|
||||
for (i = 0; i < old_nr; i++) {
|
||||
if (map[i].size != 0) {
|
||||
change_point[chgidx]->addr = map[i].addr;
|
||||
change_point[chgidx++]->pentry = &map[i];
|
||||
@ -238,13 +284,13 @@ static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
|
||||
change_point[chgidx++]->pentry = &map[i];
|
||||
}
|
||||
}
|
||||
chg_nr = chgidx; /* true number of change-points */
|
||||
chg_nr = chgidx; /* true number of change-points */
|
||||
|
||||
/* sort change-point list by memory addresses (low -> high) */
|
||||
still_changing = 1;
|
||||
while (still_changing) {
|
||||
while (still_changing) {
|
||||
still_changing = 0;
|
||||
for (i = 1; i < chg_nr; i++) {
|
||||
for (i = 1; i < chg_nr; i++) {
|
||||
/* if <current_addr> > <last_addr>, swap */
|
||||
/* or, if current=<start_addr> & last=<end_addr>, swap */
|
||||
if ((change_point[i]->addr < change_point[i-1]->addr) ||
|
||||
@ -261,10 +307,10 @@ static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
|
||||
}
|
||||
|
||||
/* create a new memmap, removing overlaps */
|
||||
overlap_entries = 0; /* number of entries in the overlap table */
|
||||
new_entry = 0; /* index for creating new memmap entries */
|
||||
last_type = 0; /* start with undefined memory type */
|
||||
last_addr = 0; /* start with 0 as last starting address */
|
||||
overlap_entries = 0; /* number of entries in the overlap table */
|
||||
new_entry = 0; /* index for creating new memmap entries */
|
||||
last_type = 0; /* start with undefined memory type */
|
||||
last_addr = 0; /* start with 0 as last starting address */
|
||||
/* loop through change-points, determining affect on the new memmap */
|
||||
for (chgidx = 0; chgidx < chg_nr; chgidx++) {
|
||||
/* keep track of all overlapping memmap entries */
|
||||
@ -286,14 +332,14 @@ static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
|
||||
if (overlap_list[i]->type > current_type)
|
||||
current_type = overlap_list[i]->type;
|
||||
/* continue building up new memmap based on this information */
|
||||
if (current_type != last_type) {
|
||||
if (current_type != last_type) {
|
||||
if (last_type != 0) {
|
||||
new_map[new_entry].size =
|
||||
change_point[chgidx]->addr - last_addr;
|
||||
/* move forward only if the new size was non-zero */
|
||||
if (new_map[new_entry].size != 0)
|
||||
if (++new_entry >= BFIN_MEMMAP_MAX)
|
||||
break; /* no more space left for new entries */
|
||||
break; /* no more space left for new entries */
|
||||
}
|
||||
if (current_type != 0) {
|
||||
new_map[new_entry].addr = change_point[chgidx]->addr;
|
||||
@ -303,9 +349,9 @@ static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
|
||||
last_type = current_type;
|
||||
}
|
||||
}
|
||||
new_nr = new_entry; /* retain count for new entries */
|
||||
new_nr = new_entry; /* retain count for new entries */
|
||||
|
||||
/* copy new mapping into original location */
|
||||
/* copy new mapping into original location */
|
||||
memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
|
||||
*pnr_map = new_nr;
|
||||
|
||||
@ -361,7 +407,6 @@ static __init int parse_memmap(char *arg)
|
||||
* - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
|
||||
* @ from <start> to <start>+<mem>, type RAM
|
||||
* $ from <start> to <start>+<mem>, type RESERVED
|
||||
*
|
||||
*/
|
||||
static __init void parse_cmdline_early(char *cmdline_p)
|
||||
{
|
||||
@ -383,12 +428,10 @@ static __init void parse_cmdline_early(char *cmdline_p)
|
||||
if (*to != ' ') {
|
||||
if (*to == '$'
|
||||
|| *(to + 1) == '$')
|
||||
reserved_mem_dcache_on =
|
||||
1;
|
||||
reserved_mem_dcache_on = 1;
|
||||
if (*to == '#'
|
||||
|| *(to + 1) == '#')
|
||||
reserved_mem_icache_on =
|
||||
1;
|
||||
reserved_mem_icache_on = 1;
|
||||
}
|
||||
}
|
||||
} else if (!memcmp(to, "earlyprintk=", 12)) {
|
||||
@ -417,9 +460,8 @@ static __init void parse_cmdline_early(char *cmdline_p)
|
||||
* [_ramend - DMA_UNCACHED_REGION,
|
||||
* _ramend]: uncached DMA region
|
||||
* [_ramend, physical_mem_end]: memory not managed by kernel
|
||||
*
|
||||
*/
|
||||
static __init void memory_setup(void)
|
||||
static __init void memory_setup(void)
|
||||
{
|
||||
#ifdef CONFIG_MTD_UCLINUX
|
||||
unsigned long mtd_phys = 0;
|
||||
@ -436,7 +478,7 @@ static __init void memory_setup(void)
|
||||
memory_end = _ramend - DMA_UNCACHED_REGION;
|
||||
|
||||
#ifdef CONFIG_MPU
|
||||
/* Round up to multiple of 4MB. */
|
||||
/* Round up to multiple of 4MB */
|
||||
memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
|
||||
#else
|
||||
memory_start = PAGE_ALIGN(_ramstart);
|
||||
@ -616,7 +658,7 @@ static __init void setup_bootmem_allocator(void)
|
||||
end_pfn = memory_end >> PAGE_SHIFT;
|
||||
|
||||
/*
|
||||
* give all the memory to the bootmap allocator, tell it to put the
|
||||
* give all the memory to the bootmap allocator, tell it to put the
|
||||
* boot mem_map at the start of memory.
|
||||
*/
|
||||
bootmap_size = init_bootmem_node(NODE_DATA(0),
|
||||
@ -791,7 +833,11 @@ void __init setup_arch(char **cmdline_p)
|
||||
bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
if (_bfin_swrst & SWRST_DBL_FAULT_A) {
|
||||
#else
|
||||
if (_bfin_swrst & RESET_DOUBLE) {
|
||||
#endif
|
||||
printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
|
||||
#ifdef CONFIG_DEBUG_DOUBLEFAULT
|
||||
/* We assume the crashing kernel, and the current symbol table match */
|
||||
@ -835,7 +881,7 @@ void __init setup_arch(char **cmdline_p)
|
||||
printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
|
||||
|
||||
printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
|
||||
cclk / 1000000, sclk / 1000000);
|
||||
cclk / 1000000, sclk / 1000000);
|
||||
|
||||
if (ANOMALY_05000273 && (cclk >> 1) <= sclk)
|
||||
printk("\n\n\nANOMALY_05000273: CCLK must be >= 2*SCLK !!!\n\n\n");
|
||||
@ -867,18 +913,21 @@ void __init setup_arch(char **cmdline_p)
|
||||
BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
|
||||
!= SAFE_USER_INSTRUCTION - FIXED_CODE_START);
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
platform_init_cpus();
|
||||
#endif
|
||||
init_exception_vectors();
|
||||
bfin_cache_init();
|
||||
bfin_cache_init(); /* Initialize caches for the boot CPU */
|
||||
}
|
||||
|
||||
static int __init topology_init(void)
|
||||
{
|
||||
int cpu;
|
||||
unsigned int cpu;
|
||||
/* Record CPU-private information for the boot processor. */
|
||||
bfin_setup_cpudata(0);
|
||||
|
||||
for_each_possible_cpu(cpu) {
|
||||
struct cpu *c = &per_cpu(cpu_devices, cpu);
|
||||
|
||||
register_cpu(c, cpu);
|
||||
register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
|
||||
}
|
||||
|
||||
return 0;
|
||||
@ -983,15 +1032,15 @@ static int show_cpuinfo(struct seq_file *m, void *v)
|
||||
char *cpu, *mmu, *fpu, *vendor, *cache;
|
||||
uint32_t revid;
|
||||
|
||||
u_long cclk = 0, sclk = 0;
|
||||
u_long sclk = 0;
|
||||
u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
|
||||
struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, *(unsigned int *)v);
|
||||
|
||||
cpu = CPU;
|
||||
mmu = "none";
|
||||
fpu = "none";
|
||||
revid = bfin_revid();
|
||||
|
||||
cclk = get_cclk();
|
||||
sclk = get_sclk();
|
||||
|
||||
switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
|
||||
@ -1003,10 +1052,8 @@ static int show_cpuinfo(struct seq_file *m, void *v)
|
||||
break;
|
||||
}
|
||||
|
||||
seq_printf(m, "processor\t: %d\n"
|
||||
"vendor_id\t: %s\n",
|
||||
*(unsigned int *)v,
|
||||
vendor);
|
||||
seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n",
|
||||
*(unsigned int *)v, vendor);
|
||||
|
||||
if (CPUID == bfin_cpuid())
|
||||
seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
|
||||
@ -1016,7 +1063,7 @@ static int show_cpuinfo(struct seq_file *m, void *v)
|
||||
|
||||
seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
|
||||
"stepping\t: %d\n",
|
||||
cpu, cclk/1000000, sclk/1000000,
|
||||
cpu, cpudata->cclk/1000000, sclk/1000000,
|
||||
#ifdef CONFIG_MPU
|
||||
"mpu on",
|
||||
#else
|
||||
@ -1025,16 +1072,16 @@ static int show_cpuinfo(struct seq_file *m, void *v)
|
||||
revid);
|
||||
|
||||
seq_printf(m, "cpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
|
||||
cclk/1000000, cclk%1000000,
|
||||
cpudata->cclk/1000000, cpudata->cclk%1000000,
|
||||
sclk/1000000, sclk%1000000);
|
||||
seq_printf(m, "bogomips\t: %lu.%02lu\n"
|
||||
"Calibration\t: %lu loops\n",
|
||||
(loops_per_jiffy * HZ) / 500000,
|
||||
((loops_per_jiffy * HZ) / 5000) % 100,
|
||||
(loops_per_jiffy * HZ));
|
||||
(cpudata->loops_per_jiffy * HZ) / 500000,
|
||||
((cpudata->loops_per_jiffy * HZ) / 5000) % 100,
|
||||
(cpudata->loops_per_jiffy * HZ));
|
||||
|
||||
/* Check Cache configutation */
|
||||
switch (bfin_read_DMEM_CONTROL() & (1 << DMC0_P | 1 << DMC1_P)) {
|
||||
switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
|
||||
case ACACHE_BSRAM:
|
||||
cache = "dbank-A/B\t: cache/sram";
|
||||
dcache_size = 16;
|
||||
@ -1058,10 +1105,10 @@ static int show_cpuinfo(struct seq_file *m, void *v)
|
||||
}
|
||||
|
||||
/* Is it turned on? */
|
||||
if ((bfin_read_DMEM_CONTROL() & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
|
||||
if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
|
||||
dcache_size = 0;
|
||||
|
||||
if ((bfin_read_IMEM_CONTROL() & (IMC | ENICPLB)) != (IMC | ENICPLB))
|
||||
if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
|
||||
icache_size = 0;
|
||||
|
||||
seq_printf(m, "cache size\t: %d KB(L1 icache) "
|
||||
@ -1086,8 +1133,13 @@ static int show_cpuinfo(struct seq_file *m, void *v)
|
||||
"dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
|
||||
dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
|
||||
BFIN_DLINES);
|
||||
#ifdef __ARCH_SYNC_CORE_DCACHE
|
||||
seq_printf(m,
|
||||
"SMP Dcache Flushes\t: %lu\n\n",
|
||||
per_cpu(cpu_data, *(unsigned int *)v).dcache_invld_count);
|
||||
#endif
|
||||
#ifdef CONFIG_BFIN_ICACHE_LOCK
|
||||
switch ((bfin_read_IMEM_CONTROL() >> 3) & WAYALL_L) {
|
||||
switch ((cpudata->imemctl >> 3) & WAYALL_L) {
|
||||
case WAY0_L:
|
||||
seq_printf(m, "Way0 Locked-Down\n");
|
||||
break;
|
||||
@ -1136,6 +1188,12 @@ static int show_cpuinfo(struct seq_file *m, void *v)
|
||||
default:
|
||||
seq_printf(m, "No Ways are locked\n");
|
||||
}
|
||||
#endif
|
||||
if (*(unsigned int *)v != NR_CPUS-1)
|
||||
return 0;
|
||||
|
||||
#if L2_LENGTH
|
||||
seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
|
||||
#endif
|
||||
seq_printf(m, "board name\t: %s\n", bfin_board_name);
|
||||
seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
|
||||
@ -1144,6 +1202,7 @@ static int show_cpuinfo(struct seq_file *m, void *v)
|
||||
((int)memory_end - (int)_stext) >> 10,
|
||||
_stext,
|
||||
(void *)memory_end);
|
||||
seq_printf(m, "\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -34,9 +34,11 @@
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/time.h>
|
||||
#include <linux/irq.h>
|
||||
#include <linux/delay.h>
|
||||
|
||||
#include <asm/blackfin.h>
|
||||
#include <asm/time.h>
|
||||
#include <asm/gptimers.h>
|
||||
|
||||
/* This is an NTP setting */
|
||||
#define TICK_SIZE (tick_nsec / 1000)
|
||||
@ -46,11 +48,14 @@ static unsigned long gettimeoffset(void);
|
||||
|
||||
static struct irqaction bfin_timer_irq = {
|
||||
.name = "BFIN Timer Tick",
|
||||
#ifdef CONFIG_IRQ_PER_CPU
|
||||
.flags = IRQF_DISABLED | IRQF_PERCPU,
|
||||
#else
|
||||
.flags = IRQF_DISABLED
|
||||
#endif
|
||||
};
|
||||
|
||||
static void
|
||||
time_sched_init(irq_handler_t timer_routine)
|
||||
void setup_core_timer(void)
|
||||
{
|
||||
u32 tcount;
|
||||
|
||||
@ -71,12 +76,41 @@ time_sched_init(irq_handler_t timer_routine)
|
||||
CSYNC();
|
||||
|
||||
bfin_write_TCNTL(7);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_TICK_SOURCE_SYSTMR0
|
||||
void setup_system_timer0(void)
|
||||
{
|
||||
/* Power down the core timer, just to play safe. */
|
||||
bfin_write_TCNTL(0);
|
||||
|
||||
disable_gptimers(TIMER0bit);
|
||||
set_gptimer_status(0, TIMER_STATUS_TRUN0);
|
||||
while (get_gptimer_status(0) & TIMER_STATUS_TRUN0)
|
||||
udelay(10);
|
||||
|
||||
set_gptimer_config(0, 0x59); /* IRQ enable, periodic, PWM_OUT, SCLKed, OUT PAD disabled */
|
||||
set_gptimer_period(TIMER0_id, get_sclk() / HZ);
|
||||
set_gptimer_pwidth(TIMER0_id, 1);
|
||||
SSYNC();
|
||||
enable_gptimers(TIMER0bit);
|
||||
}
|
||||
#endif
|
||||
|
||||
static void
|
||||
time_sched_init(irqreturn_t(*timer_routine) (int, void *))
|
||||
{
|
||||
#ifdef CONFIG_TICK_SOURCE_SYSTMR0
|
||||
setup_system_timer0();
|
||||
#else
|
||||
setup_core_timer();
|
||||
#endif
|
||||
bfin_timer_irq.handler = (irq_handler_t)timer_routine;
|
||||
/* call setup_irq instead of request_irq because request_irq calls
|
||||
* kmalloc which has not been initialized yet
|
||||
*/
|
||||
#ifdef CONFIG_TICK_SOURCE_SYSTMR0
|
||||
setup_irq(IRQ_TIMER0, &bfin_timer_irq);
|
||||
#else
|
||||
setup_irq(IRQ_CORETMR, &bfin_timer_irq);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
@ -87,17 +121,23 @@ static unsigned long gettimeoffset(void)
|
||||
unsigned long offset;
|
||||
unsigned long clocks_per_jiffy;
|
||||
|
||||
#ifdef CONFIG_TICK_SOURCE_SYSTMR0
|
||||
clocks_per_jiffy = bfin_read_TIMER0_PERIOD();
|
||||
offset = bfin_read_TIMER0_COUNTER() / \
|
||||
(((clocks_per_jiffy + 1) * HZ) / USEC_PER_SEC);
|
||||
|
||||
if ((get_gptimer_status(0) & TIMER_STATUS_TIMIL0) && offset < (100000 / HZ / 2))
|
||||
offset += (USEC_PER_SEC / HZ);
|
||||
#else
|
||||
clocks_per_jiffy = bfin_read_TPERIOD();
|
||||
offset =
|
||||
(clocks_per_jiffy -
|
||||
bfin_read_TCOUNT()) / (((clocks_per_jiffy + 1) * HZ) /
|
||||
USEC_PER_SEC);
|
||||
offset = (clocks_per_jiffy - bfin_read_TCOUNT()) / \
|
||||
(((clocks_per_jiffy + 1) * HZ) / USEC_PER_SEC);
|
||||
|
||||
/* Check if we just wrapped the counters and maybe missed a tick */
|
||||
if ((bfin_read_ILAT() & (1 << IRQ_CORETMR))
|
||||
&& (offset < (100000 / HZ / 2)))
|
||||
&& (offset < (100000 / HZ / 2)))
|
||||
offset += (USEC_PER_SEC / HZ);
|
||||
|
||||
#endif
|
||||
return offset;
|
||||
}
|
||||
|
||||
@ -120,34 +160,38 @@ irqreturn_t timer_interrupt(int irq, void *dummy)
|
||||
static long last_rtc_update;
|
||||
|
||||
write_seqlock(&xtime_lock);
|
||||
#ifdef CONFIG_TICK_SOURCE_SYSTMR0
|
||||
if (get_gptimer_status(0) & TIMER_STATUS_TIMIL0) {
|
||||
#endif
|
||||
do_timer(1);
|
||||
|
||||
do_timer(1);
|
||||
|
||||
profile_tick(CPU_PROFILING);
|
||||
/*
|
||||
* If we have an externally synchronized Linux clock, then update
|
||||
* CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
|
||||
* called as close as possible to 500 ms before the new second starts.
|
||||
*/
|
||||
|
||||
/*
|
||||
* If we have an externally synchronized Linux clock, then update
|
||||
* CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
|
||||
* called as close as possible to 500 ms before the new second starts.
|
||||
*/
|
||||
|
||||
if (ntp_synced() &&
|
||||
xtime.tv_sec > last_rtc_update + 660 &&
|
||||
(xtime.tv_nsec / NSEC_PER_USEC) >=
|
||||
500000 - ((unsigned)TICK_SIZE) / 2
|
||||
&& (xtime.tv_nsec / NSEC_PER_USEC) <=
|
||||
500000 + ((unsigned)TICK_SIZE) / 2) {
|
||||
if (set_rtc_mmss(xtime.tv_sec) == 0)
|
||||
last_rtc_update = xtime.tv_sec;
|
||||
else
|
||||
/* Do it again in 60s. */
|
||||
last_rtc_update = xtime.tv_sec - 600;
|
||||
if (ntp_synced() &&
|
||||
xtime.tv_sec > last_rtc_update + 660 &&
|
||||
(xtime.tv_nsec / NSEC_PER_USEC) >=
|
||||
500000 - ((unsigned)TICK_SIZE) / 2
|
||||
&& (xtime.tv_nsec / NSEC_PER_USEC) <=
|
||||
500000 + ((unsigned)TICK_SIZE) / 2) {
|
||||
if (set_rtc_mmss(xtime.tv_sec) == 0)
|
||||
last_rtc_update = xtime.tv_sec;
|
||||
else
|
||||
/* Do it again in 60s. */
|
||||
last_rtc_update = xtime.tv_sec - 600;
|
||||
}
|
||||
#ifdef CONFIG_TICK_SOURCE_SYSTMR0
|
||||
set_gptimer_status(0, TIMER_STATUS_TIMIL0);
|
||||
}
|
||||
#endif
|
||||
write_sequnlock(&xtime_lock);
|
||||
|
||||
#ifndef CONFIG_SMP
|
||||
update_process_times(user_mode(get_irq_regs()));
|
||||
#endif
|
||||
profile_tick(CPU_PROFILING);
|
||||
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
@ -75,16 +75,6 @@ void __init trap_init(void)
|
||||
CSYNC();
|
||||
}
|
||||
|
||||
/*
|
||||
* Used to save the RETX, SEQSTAT, I/D CPLB FAULT ADDR
|
||||
* values across the transition from exception to IRQ5.
|
||||
* We put these in L1, so they are going to be in a valid
|
||||
* location during exception context
|
||||
*/
|
||||
__attribute__((l1_data))
|
||||
unsigned long saved_retx, saved_seqstat,
|
||||
saved_icplb_fault_addr, saved_dcplb_fault_addr;
|
||||
|
||||
static void decode_address(char *buf, unsigned long address)
|
||||
{
|
||||
#ifdef CONFIG_DEBUG_VERBOSE
|
||||
@ -211,18 +201,18 @@ asmlinkage void double_fault_c(struct pt_regs *fp)
|
||||
printk(KERN_EMERG "\n" KERN_EMERG "Double Fault\n");
|
||||
#ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
|
||||
if (((long)fp->seqstat & SEQSTAT_EXCAUSE) == VEC_UNCOV) {
|
||||
unsigned int cpu = smp_processor_id();
|
||||
char buf[150];
|
||||
decode_address(buf, saved_retx);
|
||||
decode_address(buf, cpu_pda[cpu].retx);
|
||||
printk(KERN_EMERG "While handling exception (EXCAUSE = 0x%x) at %s:\n",
|
||||
(int)saved_seqstat & SEQSTAT_EXCAUSE, buf);
|
||||
decode_address(buf, saved_dcplb_fault_addr);
|
||||
(unsigned int)cpu_pda[cpu].seqstat & SEQSTAT_EXCAUSE, buf);
|
||||
decode_address(buf, cpu_pda[cpu].dcplb_fault_addr);
|
||||
printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %s\n", buf);
|
||||
decode_address(buf, saved_icplb_fault_addr);
|
||||
decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
|
||||
printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %s\n", buf);
|
||||
|
||||
decode_address(buf, fp->retx);
|
||||
printk(KERN_NOTICE "The instruction at %s caused a double exception\n",
|
||||
buf);
|
||||
printk(KERN_NOTICE "The instruction at %s caused a double exception\n", buf);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
@ -239,6 +229,9 @@ asmlinkage void trap_c(struct pt_regs *fp)
|
||||
{
|
||||
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
|
||||
int j;
|
||||
#endif
|
||||
#ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
|
||||
unsigned int cpu = smp_processor_id();
|
||||
#endif
|
||||
int sig = 0;
|
||||
siginfo_t info;
|
||||
@ -417,7 +410,7 @@ asmlinkage void trap_c(struct pt_regs *fp)
|
||||
info.si_code = ILL_CPLB_MULHIT;
|
||||
sig = SIGSEGV;
|
||||
#ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
|
||||
if (saved_dcplb_fault_addr < FIXED_CODE_START)
|
||||
if (cpu_pda[cpu].dcplb_fault_addr < FIXED_CODE_START)
|
||||
verbose_printk(KERN_NOTICE "NULL pointer access\n");
|
||||
else
|
||||
#endif
|
||||
@ -471,7 +464,7 @@ asmlinkage void trap_c(struct pt_regs *fp)
|
||||
info.si_code = ILL_CPLB_MULHIT;
|
||||
sig = SIGSEGV;
|
||||
#ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
|
||||
if (saved_icplb_fault_addr < FIXED_CODE_START)
|
||||
if (cpu_pda[cpu].icplb_fault_addr < FIXED_CODE_START)
|
||||
verbose_printk(KERN_NOTICE "Jump to NULL address\n");
|
||||
else
|
||||
#endif
|
||||
@ -960,6 +953,7 @@ void dump_bfin_process(struct pt_regs *fp)
|
||||
else
|
||||
verbose_printk(KERN_NOTICE "COMM= invalid\n");
|
||||
|
||||
printk(KERN_NOTICE "CPU = %d\n", current_thread_info()->cpu);
|
||||
if (!((unsigned long)current->mm & 0x3) && (unsigned long)current->mm >= FIXED_CODE_START)
|
||||
verbose_printk(KERN_NOTICE "TEXT = 0x%p-0x%p DATA = 0x%p-0x%p\n"
|
||||
KERN_NOTICE " BSS = 0x%p-0x%p USER-STACK = 0x%p\n"
|
||||
@ -1053,6 +1047,7 @@ void show_regs(struct pt_regs *fp)
|
||||
struct irqaction *action;
|
||||
unsigned int i;
|
||||
unsigned long flags;
|
||||
unsigned int cpu = smp_processor_id();
|
||||
|
||||
verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "SEQUENCER STATUS:\t\t%s\n", print_tainted());
|
||||
verbose_printk(KERN_NOTICE " SEQSTAT: %08lx IPEND: %04lx SYSCFG: %04lx\n",
|
||||
@ -1112,9 +1107,9 @@ unlock:
|
||||
|
||||
if (((long)fp->seqstat & SEQSTAT_EXCAUSE) &&
|
||||
(((long)fp->seqstat & SEQSTAT_EXCAUSE) != VEC_HWERR)) {
|
||||
decode_address(buf, saved_dcplb_fault_addr);
|
||||
decode_address(buf, cpu_pda[cpu].dcplb_fault_addr);
|
||||
verbose_printk(KERN_NOTICE "DCPLB_FAULT_ADDR: %s\n", buf);
|
||||
decode_address(buf, saved_icplb_fault_addr);
|
||||
decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
|
||||
verbose_printk(KERN_NOTICE "ICPLB_FAULT_ADDR: %s\n", buf);
|
||||
}
|
||||
|
||||
@ -1153,20 +1148,21 @@ unlock:
|
||||
asmlinkage int sys_bfin_spinlock(int *spinlock)__attribute__((l1_text));
|
||||
#endif
|
||||
|
||||
asmlinkage int sys_bfin_spinlock(int *spinlock)
|
||||
{
|
||||
int ret = 0;
|
||||
int tmp = 0;
|
||||
static DEFINE_SPINLOCK(bfin_spinlock_lock);
|
||||
|
||||
local_irq_disable();
|
||||
ret = get_user(tmp, spinlock);
|
||||
if (ret == 0) {
|
||||
if (tmp)
|
||||
asmlinkage int sys_bfin_spinlock(int *p)
|
||||
{
|
||||
int ret, tmp = 0;
|
||||
|
||||
spin_lock(&bfin_spinlock_lock); /* This would also hold kernel preemption. */
|
||||
ret = get_user(tmp, p);
|
||||
if (likely(ret == 0)) {
|
||||
if (unlikely(tmp))
|
||||
ret = 1;
|
||||
tmp = 1;
|
||||
put_user(tmp, spinlock);
|
||||
else
|
||||
put_user(1, p);
|
||||
}
|
||||
local_irq_enable();
|
||||
spin_unlock(&bfin_spinlock_lock);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
@ -31,7 +31,8 @@
|
||||
#include <linux/bootmem.h>
|
||||
#include <linux/uaccess.h>
|
||||
#include <asm/bfin-global.h>
|
||||
#include <asm/l1layout.h>
|
||||
#include <asm/pda.h>
|
||||
#include <asm/cplbinit.h>
|
||||
#include "blackfin_sram.h"
|
||||
|
||||
/*
|
||||
@ -53,6 +54,11 @@ static unsigned long empty_bad_page;
|
||||
|
||||
unsigned long empty_zero_page;
|
||||
|
||||
extern unsigned long exception_stack[NR_CPUS][1024];
|
||||
|
||||
struct blackfin_pda cpu_pda[NR_CPUS];
|
||||
EXPORT_SYMBOL(cpu_pda);
|
||||
|
||||
/*
|
||||
* paging_init() continues the virtual memory environment setup which
|
||||
* was begun by the code in arch/head.S.
|
||||
@ -98,6 +104,42 @@ void __init paging_init(void)
|
||||
}
|
||||
}
|
||||
|
||||
asmlinkage void init_pda(void)
|
||||
{
|
||||
unsigned int cpu = raw_smp_processor_id();
|
||||
|
||||
/* Initialize the PDA fields holding references to other parts
|
||||
of the memory. The content of such memory is still
|
||||
undefined at the time of the call, we are only setting up
|
||||
valid pointers to it. */
|
||||
memset(&cpu_pda[cpu], 0, sizeof(cpu_pda[cpu]));
|
||||
|
||||
cpu_pda[0].next = &cpu_pda[1];
|
||||
cpu_pda[1].next = &cpu_pda[0];
|
||||
|
||||
cpu_pda[cpu].ex_stack = exception_stack[cpu + 1];
|
||||
|
||||
#ifdef CONFIG_MPU
|
||||
#else
|
||||
cpu_pda[cpu].ipdt = ipdt_tables[cpu];
|
||||
cpu_pda[cpu].dpdt = dpdt_tables[cpu];
|
||||
#ifdef CONFIG_CPLB_INFO
|
||||
cpu_pda[cpu].ipdt_swapcount = ipdt_swapcount_tables[cpu];
|
||||
cpu_pda[cpu].dpdt_swapcount = dpdt_swapcount_tables[cpu];
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
cpu_pda[cpu].imask = 0x1f;
|
||||
#endif
|
||||
}
|
||||
|
||||
void __cpuinit reserve_pda(void)
|
||||
{
|
||||
printk(KERN_INFO "PDA for CPU%u reserved at %p\n", smp_processor_id(),
|
||||
&cpu_pda[smp_processor_id()]);
|
||||
}
|
||||
|
||||
void __init mem_init(void)
|
||||
{
|
||||
unsigned int codek = 0, datak = 0, initk = 0;
|
||||
@ -141,21 +183,13 @@ void __init mem_init(void)
|
||||
|
||||
static int __init sram_init(void)
|
||||
{
|
||||
unsigned long tmp;
|
||||
|
||||
/* Initialize the blackfin L1 Memory. */
|
||||
bfin_sram_init();
|
||||
|
||||
/* Allocate this once; never free it. We assume this gives us a
|
||||
pointer to the start of L1 scratchpad memory; panic if it
|
||||
doesn't. */
|
||||
tmp = (unsigned long)l1sram_alloc(sizeof(struct l1_scratch_task_info));
|
||||
if (tmp != (unsigned long)L1_SCRATCH_TASK_INFO) {
|
||||
printk(KERN_EMERG "mem_init(): Did not get the right address from l1sram_alloc: %08lx != %08lx\n",
|
||||
tmp, (unsigned long)L1_SCRATCH_TASK_INFO);
|
||||
panic("No L1, time to give up\n");
|
||||
}
|
||||
|
||||
/* Reserve the PDA space for the boot CPU right after we
|
||||
* initialized the scratch memory allocator.
|
||||
*/
|
||||
reserve_pda();
|
||||
return 0;
|
||||
}
|
||||
pure_initcall(sram_init);
|
||||
|
@ -41,8 +41,10 @@
|
||||
#include <asm/blackfin.h>
|
||||
#include "blackfin_sram.h"
|
||||
|
||||
static spinlock_t l1sram_lock, l1_data_sram_lock, l1_inst_sram_lock;
|
||||
static spinlock_t l2_sram_lock;
|
||||
static DEFINE_PER_CPU(spinlock_t, l1sram_lock) ____cacheline_aligned_in_smp;
|
||||
static DEFINE_PER_CPU(spinlock_t, l1_data_sram_lock) ____cacheline_aligned_in_smp;
|
||||
static DEFINE_PER_CPU(spinlock_t, l1_inst_sram_lock) ____cacheline_aligned_in_smp;
|
||||
static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
|
||||
|
||||
/* the data structure for L1 scratchpad and DATA SRAM */
|
||||
struct sram_piece {
|
||||
@ -52,18 +54,22 @@ struct sram_piece {
|
||||
struct sram_piece *next;
|
||||
};
|
||||
|
||||
static struct sram_piece free_l1_ssram_head, used_l1_ssram_head;
|
||||
static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
|
||||
static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
|
||||
|
||||
#if L1_DATA_A_LENGTH != 0
|
||||
static struct sram_piece free_l1_data_A_sram_head, used_l1_data_A_sram_head;
|
||||
static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
|
||||
static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
|
||||
#endif
|
||||
|
||||
#if L1_DATA_B_LENGTH != 0
|
||||
static struct sram_piece free_l1_data_B_sram_head, used_l1_data_B_sram_head;
|
||||
static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
|
||||
static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
|
||||
#endif
|
||||
|
||||
#if L1_CODE_LENGTH != 0
|
||||
static struct sram_piece free_l1_inst_sram_head, used_l1_inst_sram_head;
|
||||
static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
|
||||
static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
|
||||
#endif
|
||||
|
||||
#if L2_LENGTH != 0
|
||||
@ -75,102 +81,115 @@ static struct kmem_cache *sram_piece_cache;
|
||||
/* L1 Scratchpad SRAM initialization function */
|
||||
static void __init l1sram_init(void)
|
||||
{
|
||||
free_l1_ssram_head.next =
|
||||
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
|
||||
if (!free_l1_ssram_head.next) {
|
||||
printk(KERN_INFO "Failed to initialize Scratchpad data SRAM\n");
|
||||
return;
|
||||
unsigned int cpu;
|
||||
for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
|
||||
per_cpu(free_l1_ssram_head, cpu).next =
|
||||
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
|
||||
if (!per_cpu(free_l1_ssram_head, cpu).next) {
|
||||
printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu);
|
||||
per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH;
|
||||
per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
|
||||
per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
|
||||
|
||||
per_cpu(used_l1_ssram_head, cpu).next = NULL;
|
||||
|
||||
/* mutex initialize */
|
||||
spin_lock_init(&per_cpu(l1sram_lock, cpu));
|
||||
printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
|
||||
L1_SCRATCH_LENGTH >> 10);
|
||||
}
|
||||
|
||||
free_l1_ssram_head.next->paddr = (void *)L1_SCRATCH_START;
|
||||
free_l1_ssram_head.next->size = L1_SCRATCH_LENGTH;
|
||||
free_l1_ssram_head.next->pid = 0;
|
||||
free_l1_ssram_head.next->next = NULL;
|
||||
|
||||
used_l1_ssram_head.next = NULL;
|
||||
|
||||
/* mutex initialize */
|
||||
spin_lock_init(&l1sram_lock);
|
||||
|
||||
printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
|
||||
L1_SCRATCH_LENGTH >> 10);
|
||||
}
|
||||
|
||||
static void __init l1_data_sram_init(void)
|
||||
{
|
||||
unsigned int cpu;
|
||||
#if L1_DATA_A_LENGTH != 0
|
||||
free_l1_data_A_sram_head.next =
|
||||
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
|
||||
if (!free_l1_data_A_sram_head.next) {
|
||||
printk(KERN_INFO "Failed to initialize L1 Data A SRAM\n");
|
||||
return;
|
||||
for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
|
||||
per_cpu(free_l1_data_A_sram_head, cpu).next =
|
||||
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
|
||||
if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
|
||||
printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
|
||||
(void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
|
||||
per_cpu(free_l1_data_A_sram_head, cpu).next->size =
|
||||
L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
|
||||
per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
|
||||
per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
|
||||
|
||||
per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
|
||||
|
||||
printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
|
||||
L1_DATA_A_LENGTH >> 10,
|
||||
per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
|
||||
}
|
||||
|
||||
free_l1_data_A_sram_head.next->paddr =
|
||||
(void *)L1_DATA_A_START + (_ebss_l1 - _sdata_l1);
|
||||
free_l1_data_A_sram_head.next->size =
|
||||
L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
|
||||
free_l1_data_A_sram_head.next->pid = 0;
|
||||
free_l1_data_A_sram_head.next->next = NULL;
|
||||
|
||||
used_l1_data_A_sram_head.next = NULL;
|
||||
|
||||
printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
|
||||
L1_DATA_A_LENGTH >> 10,
|
||||
free_l1_data_A_sram_head.next->size >> 10);
|
||||
#endif
|
||||
#if L1_DATA_B_LENGTH != 0
|
||||
free_l1_data_B_sram_head.next =
|
||||
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
|
||||
if (!free_l1_data_B_sram_head.next) {
|
||||
printk(KERN_INFO "Failed to initialize L1 Data B SRAM\n");
|
||||
return;
|
||||
for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
|
||||
per_cpu(free_l1_data_B_sram_head, cpu).next =
|
||||
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
|
||||
if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
|
||||
printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
|
||||
(void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
|
||||
per_cpu(free_l1_data_B_sram_head, cpu).next->size =
|
||||
L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
|
||||
per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
|
||||
per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
|
||||
|
||||
per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
|
||||
|
||||
printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
|
||||
L1_DATA_B_LENGTH >> 10,
|
||||
per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
|
||||
/* mutex initialize */
|
||||
}
|
||||
|
||||
free_l1_data_B_sram_head.next->paddr =
|
||||
(void *)L1_DATA_B_START + (_ebss_b_l1 - _sdata_b_l1);
|
||||
free_l1_data_B_sram_head.next->size =
|
||||
L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
|
||||
free_l1_data_B_sram_head.next->pid = 0;
|
||||
free_l1_data_B_sram_head.next->next = NULL;
|
||||
|
||||
used_l1_data_B_sram_head.next = NULL;
|
||||
|
||||
printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
|
||||
L1_DATA_B_LENGTH >> 10,
|
||||
free_l1_data_B_sram_head.next->size >> 10);
|
||||
#endif
|
||||
|
||||
/* mutex initialize */
|
||||
spin_lock_init(&l1_data_sram_lock);
|
||||
#if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
|
||||
for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
|
||||
spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
|
||||
#endif
|
||||
}
|
||||
|
||||
static void __init l1_inst_sram_init(void)
|
||||
{
|
||||
#if L1_CODE_LENGTH != 0
|
||||
free_l1_inst_sram_head.next =
|
||||
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
|
||||
if (!free_l1_inst_sram_head.next) {
|
||||
printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
|
||||
return;
|
||||
unsigned int cpu;
|
||||
for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
|
||||
per_cpu(free_l1_inst_sram_head, cpu).next =
|
||||
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
|
||||
if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
|
||||
printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
|
||||
return;
|
||||
}
|
||||
|
||||
per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
|
||||
(void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
|
||||
per_cpu(free_l1_inst_sram_head, cpu).next->size =
|
||||
L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
|
||||
per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
|
||||
per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
|
||||
|
||||
per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
|
||||
|
||||
printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
|
||||
L1_CODE_LENGTH >> 10,
|
||||
per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
|
||||
|
||||
/* mutex initialize */
|
||||
spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
|
||||
}
|
||||
|
||||
free_l1_inst_sram_head.next->paddr =
|
||||
(void *)L1_CODE_START + (_etext_l1 - _stext_l1);
|
||||
free_l1_inst_sram_head.next->size =
|
||||
L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
|
||||
free_l1_inst_sram_head.next->pid = 0;
|
||||
free_l1_inst_sram_head.next->next = NULL;
|
||||
|
||||
used_l1_inst_sram_head.next = NULL;
|
||||
|
||||
printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
|
||||
L1_CODE_LENGTH >> 10,
|
||||
free_l1_inst_sram_head.next->size >> 10);
|
||||
#endif
|
||||
|
||||
/* mutex initialize */
|
||||
spin_lock_init(&l1_inst_sram_lock);
|
||||
}
|
||||
|
||||
static void __init l2_sram_init(void)
|
||||
@ -179,7 +198,7 @@ static void __init l2_sram_init(void)
|
||||
free_l2_sram_head.next =
|
||||
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
|
||||
if (!free_l2_sram_head.next) {
|
||||
printk(KERN_INFO "Failed to initialize L2 SRAM\n");
|
||||
printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
@ -200,6 +219,7 @@ static void __init l2_sram_init(void)
|
||||
/* mutex initialize */
|
||||
spin_lock_init(&l2_sram_lock);
|
||||
}
|
||||
|
||||
void __init bfin_sram_init(void)
|
||||
{
|
||||
sram_piece_cache = kmem_cache_create("sram_piece_cache",
|
||||
@ -353,20 +373,20 @@ int sram_free(const void *addr)
|
||||
{
|
||||
|
||||
#if L1_CODE_LENGTH != 0
|
||||
if (addr >= (void *)L1_CODE_START
|
||||
&& addr < (void *)(L1_CODE_START + L1_CODE_LENGTH))
|
||||
if (addr >= (void *)get_l1_code_start()
|
||||
&& addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
|
||||
return l1_inst_sram_free(addr);
|
||||
else
|
||||
#endif
|
||||
#if L1_DATA_A_LENGTH != 0
|
||||
if (addr >= (void *)L1_DATA_A_START
|
||||
&& addr < (void *)(L1_DATA_A_START + L1_DATA_A_LENGTH))
|
||||
if (addr >= (void *)get_l1_data_a_start()
|
||||
&& addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
|
||||
return l1_data_A_sram_free(addr);
|
||||
else
|
||||
#endif
|
||||
#if L1_DATA_B_LENGTH != 0
|
||||
if (addr >= (void *)L1_DATA_B_START
|
||||
&& addr < (void *)(L1_DATA_B_START + L1_DATA_B_LENGTH))
|
||||
if (addr >= (void *)get_l1_data_b_start()
|
||||
&& addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
|
||||
return l1_data_B_sram_free(addr);
|
||||
else
|
||||
#endif
|
||||
@ -384,17 +404,20 @@ void *l1_data_A_sram_alloc(size_t size)
|
||||
{
|
||||
unsigned long flags;
|
||||
void *addr = NULL;
|
||||
unsigned int cpu;
|
||||
|
||||
cpu = get_cpu();
|
||||
/* add mutex operation */
|
||||
spin_lock_irqsave(&l1_data_sram_lock, flags);
|
||||
spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
|
||||
|
||||
#if L1_DATA_A_LENGTH != 0
|
||||
addr = _sram_alloc(size, &free_l1_data_A_sram_head,
|
||||
&used_l1_data_A_sram_head);
|
||||
addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
|
||||
&per_cpu(used_l1_data_A_sram_head, cpu));
|
||||
#endif
|
||||
|
||||
/* add mutex operation */
|
||||
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
|
||||
spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
|
||||
put_cpu();
|
||||
|
||||
pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
|
||||
(long unsigned int)addr, size);
|
||||
@ -407,19 +430,22 @@ int l1_data_A_sram_free(const void *addr)
|
||||
{
|
||||
unsigned long flags;
|
||||
int ret;
|
||||
unsigned int cpu;
|
||||
|
||||
cpu = get_cpu();
|
||||
/* add mutex operation */
|
||||
spin_lock_irqsave(&l1_data_sram_lock, flags);
|
||||
spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
|
||||
|
||||
#if L1_DATA_A_LENGTH != 0
|
||||
ret = _sram_free(addr, &free_l1_data_A_sram_head,
|
||||
&used_l1_data_A_sram_head);
|
||||
ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
|
||||
&per_cpu(used_l1_data_A_sram_head, cpu));
|
||||
#else
|
||||
ret = -1;
|
||||
#endif
|
||||
|
||||
/* add mutex operation */
|
||||
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
|
||||
spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
|
||||
put_cpu();
|
||||
|
||||
return ret;
|
||||
}
|
||||
@ -430,15 +456,18 @@ void *l1_data_B_sram_alloc(size_t size)
|
||||
#if L1_DATA_B_LENGTH != 0
|
||||
unsigned long flags;
|
||||
void *addr;
|
||||
unsigned int cpu;
|
||||
|
||||
cpu = get_cpu();
|
||||
/* add mutex operation */
|
||||
spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
|
||||
|
||||
addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
|
||||
&per_cpu(used_l1_data_B_sram_head, cpu));
|
||||
|
||||
/* add mutex operation */
|
||||
spin_lock_irqsave(&l1_data_sram_lock, flags);
|
||||
|
||||
addr = _sram_alloc(size, &free_l1_data_B_sram_head,
|
||||
&used_l1_data_B_sram_head);
|
||||
|
||||
/* add mutex operation */
|
||||
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
|
||||
spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
|
||||
put_cpu();
|
||||
|
||||
pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
|
||||
(long unsigned int)addr, size);
|
||||
@ -455,15 +484,18 @@ int l1_data_B_sram_free(const void *addr)
|
||||
#if L1_DATA_B_LENGTH != 0
|
||||
unsigned long flags;
|
||||
int ret;
|
||||
unsigned int cpu;
|
||||
|
||||
cpu = get_cpu();
|
||||
/* add mutex operation */
|
||||
spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
|
||||
|
||||
ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
|
||||
&per_cpu(used_l1_data_B_sram_head, cpu));
|
||||
|
||||
/* add mutex operation */
|
||||
spin_lock_irqsave(&l1_data_sram_lock, flags);
|
||||
|
||||
ret = _sram_free(addr, &free_l1_data_B_sram_head,
|
||||
&used_l1_data_B_sram_head);
|
||||
|
||||
/* add mutex operation */
|
||||
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
|
||||
spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
|
||||
put_cpu();
|
||||
|
||||
return ret;
|
||||
#else
|
||||
@ -509,15 +541,18 @@ void *l1_inst_sram_alloc(size_t size)
|
||||
#if L1_CODE_LENGTH != 0
|
||||
unsigned long flags;
|
||||
void *addr;
|
||||
unsigned int cpu;
|
||||
|
||||
cpu = get_cpu();
|
||||
/* add mutex operation */
|
||||
spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
|
||||
|
||||
addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
|
||||
&per_cpu(used_l1_inst_sram_head, cpu));
|
||||
|
||||
/* add mutex operation */
|
||||
spin_lock_irqsave(&l1_inst_sram_lock, flags);
|
||||
|
||||
addr = _sram_alloc(size, &free_l1_inst_sram_head,
|
||||
&used_l1_inst_sram_head);
|
||||
|
||||
/* add mutex operation */
|
||||
spin_unlock_irqrestore(&l1_inst_sram_lock, flags);
|
||||
spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
|
||||
put_cpu();
|
||||
|
||||
pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
|
||||
(long unsigned int)addr, size);
|
||||
@ -534,15 +569,18 @@ int l1_inst_sram_free(const void *addr)
|
||||
#if L1_CODE_LENGTH != 0
|
||||
unsigned long flags;
|
||||
int ret;
|
||||
unsigned int cpu;
|
||||
|
||||
cpu = get_cpu();
|
||||
/* add mutex operation */
|
||||
spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
|
||||
|
||||
ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
|
||||
&per_cpu(used_l1_inst_sram_head, cpu));
|
||||
|
||||
/* add mutex operation */
|
||||
spin_lock_irqsave(&l1_inst_sram_lock, flags);
|
||||
|
||||
ret = _sram_free(addr, &free_l1_inst_sram_head,
|
||||
&used_l1_inst_sram_head);
|
||||
|
||||
/* add mutex operation */
|
||||
spin_unlock_irqrestore(&l1_inst_sram_lock, flags);
|
||||
spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
|
||||
put_cpu();
|
||||
|
||||
return ret;
|
||||
#else
|
||||
@ -556,15 +594,18 @@ void *l1sram_alloc(size_t size)
|
||||
{
|
||||
unsigned long flags;
|
||||
void *addr;
|
||||
unsigned int cpu;
|
||||
|
||||
cpu = get_cpu();
|
||||
/* add mutex operation */
|
||||
spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
|
||||
|
||||
addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
|
||||
&per_cpu(used_l1_ssram_head, cpu));
|
||||
|
||||
/* add mutex operation */
|
||||
spin_lock_irqsave(&l1sram_lock, flags);
|
||||
|
||||
addr = _sram_alloc(size, &free_l1_ssram_head,
|
||||
&used_l1_ssram_head);
|
||||
|
||||
/* add mutex operation */
|
||||
spin_unlock_irqrestore(&l1sram_lock, flags);
|
||||
spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
|
||||
put_cpu();
|
||||
|
||||
return addr;
|
||||
}
|
||||
@ -574,15 +615,18 @@ void *l1sram_alloc_max(size_t *psize)
|
||||
{
|
||||
unsigned long flags;
|
||||
void *addr;
|
||||
unsigned int cpu;
|
||||
|
||||
cpu = get_cpu();
|
||||
/* add mutex operation */
|
||||
spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
|
||||
|
||||
addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
|
||||
&per_cpu(used_l1_ssram_head, cpu), psize);
|
||||
|
||||
/* add mutex operation */
|
||||
spin_lock_irqsave(&l1sram_lock, flags);
|
||||
|
||||
addr = _sram_alloc_max(&free_l1_ssram_head,
|
||||
&used_l1_ssram_head, psize);
|
||||
|
||||
/* add mutex operation */
|
||||
spin_unlock_irqrestore(&l1sram_lock, flags);
|
||||
spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
|
||||
put_cpu();
|
||||
|
||||
return addr;
|
||||
}
|
||||
@ -592,15 +636,18 @@ int l1sram_free(const void *addr)
|
||||
{
|
||||
unsigned long flags;
|
||||
int ret;
|
||||
unsigned int cpu;
|
||||
|
||||
cpu = get_cpu();
|
||||
/* add mutex operation */
|
||||
spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
|
||||
|
||||
ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
|
||||
&per_cpu(used_l1_ssram_head, cpu));
|
||||
|
||||
/* add mutex operation */
|
||||
spin_lock_irqsave(&l1sram_lock, flags);
|
||||
|
||||
ret = _sram_free(addr, &free_l1_ssram_head,
|
||||
&used_l1_ssram_head);
|
||||
|
||||
/* add mutex operation */
|
||||
spin_unlock_irqrestore(&l1sram_lock, flags);
|
||||
spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
|
||||
put_cpu();
|
||||
|
||||
return ret;
|
||||
}
|
||||
@ -761,33 +808,36 @@ static int sram_proc_read(char *buf, char **start, off_t offset, int count,
|
||||
int *eof, void *data)
|
||||
{
|
||||
int len = 0;
|
||||
unsigned int cpu;
|
||||
|
||||
if (_sram_proc_read(buf, &len, count, "Scratchpad",
|
||||
&free_l1_ssram_head, &used_l1_ssram_head))
|
||||
goto not_done;
|
||||
for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
|
||||
if (_sram_proc_read(buf, &len, count, "Scratchpad",
|
||||
&per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
|
||||
goto not_done;
|
||||
#if L1_DATA_A_LENGTH != 0
|
||||
if (_sram_proc_read(buf, &len, count, "L1 Data A",
|
||||
&free_l1_data_A_sram_head,
|
||||
&used_l1_data_A_sram_head))
|
||||
goto not_done;
|
||||
if (_sram_proc_read(buf, &len, count, "L1 Data A",
|
||||
&per_cpu(free_l1_data_A_sram_head, cpu),
|
||||
&per_cpu(used_l1_data_A_sram_head, cpu)))
|
||||
goto not_done;
|
||||
#endif
|
||||
#if L1_DATA_B_LENGTH != 0
|
||||
if (_sram_proc_read(buf, &len, count, "L1 Data B",
|
||||
&free_l1_data_B_sram_head,
|
||||
&used_l1_data_B_sram_head))
|
||||
goto not_done;
|
||||
if (_sram_proc_read(buf, &len, count, "L1 Data B",
|
||||
&per_cpu(free_l1_data_B_sram_head, cpu),
|
||||
&per_cpu(used_l1_data_B_sram_head, cpu)))
|
||||
goto not_done;
|
||||
#endif
|
||||
#if L1_CODE_LENGTH != 0
|
||||
if (_sram_proc_read(buf, &len, count, "L1 Instruction",
|
||||
&free_l1_inst_sram_head, &used_l1_inst_sram_head))
|
||||
goto not_done;
|
||||
if (_sram_proc_read(buf, &len, count, "L1 Instruction",
|
||||
&per_cpu(free_l1_inst_sram_head, cpu),
|
||||
&per_cpu(used_l1_inst_sram_head, cpu)))
|
||||
goto not_done;
|
||||
#endif
|
||||
}
|
||||
#if L2_LENGTH != 0
|
||||
if (_sram_proc_read(buf, &len, count, "L2",
|
||||
&free_l2_sram_head, &used_l2_sram_head))
|
||||
if (_sram_proc_read(buf, &len, count, "L2", &free_l2_sram_head,
|
||||
&used_l2_sram_head))
|
||||
goto not_done;
|
||||
#endif
|
||||
|
||||
*eof = 1;
|
||||
not_done:
|
||||
return len;
|
||||
|
Loading…
Reference in New Issue
Block a user