mtd: nand: ecc-bch: Stop using raw NAND structures
This code is meant to be reused by the SPI-NAND core. Now that the driver has been cleaned and reorganized, use a generic ECC engine object to store the driver's data instead of accessing members of the nand_chip structure. Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20200929230124.31491-9-miquel.raynal@bootlin.com
This commit is contained in:
parent
ea146d7fbf
commit
80fe603160
@ -11,23 +11,8 @@
|
||||
#include <linux/module.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/bitops.h>
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/rawnand.h>
|
||||
#include <linux/mtd/nand.h>
|
||||
#include <linux/mtd/nand-ecc-sw-bch.h>
|
||||
#include <linux/bch.h>
|
||||
|
||||
/**
|
||||
* struct nand_bch_control - private NAND BCH control structure
|
||||
* @bch: BCH control structure
|
||||
* @errloc: error location array
|
||||
* @eccmask: XOR ecc mask, allows erased pages to be decoded as valid
|
||||
*/
|
||||
struct nand_bch_control {
|
||||
struct bch_control *bch;
|
||||
unsigned int *errloc;
|
||||
unsigned char *eccmask;
|
||||
};
|
||||
|
||||
/**
|
||||
* nand_ecc_sw_bch_calculate - Calculate the ECC corresponding to a data block
|
||||
@ -38,16 +23,15 @@ struct nand_bch_control {
|
||||
int nand_ecc_sw_bch_calculate(struct nand_device *nand,
|
||||
const unsigned char *buf, unsigned char *code)
|
||||
{
|
||||
struct nand_chip *chip = mtd_to_nand(nanddev_to_mtd(nand));
|
||||
struct nand_bch_control *nbc = chip->ecc.priv;
|
||||
struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv;
|
||||
unsigned int i;
|
||||
|
||||
memset(code, 0, chip->ecc.bytes);
|
||||
bch_encode(nbc->bch, buf, chip->ecc.size, code);
|
||||
memset(code, 0, engine_conf->code_size);
|
||||
bch_encode(engine_conf->bch, buf, nand->ecc.ctx.conf.step_size, code);
|
||||
|
||||
/* apply mask so that an erased page is a valid codeword */
|
||||
for (i = 0; i < chip->ecc.bytes; i++)
|
||||
code[i] ^= nbc->eccmask[i];
|
||||
for (i = 0; i < engine_conf->code_size; i++)
|
||||
code[i] ^= engine_conf->eccmask[i];
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -65,16 +49,16 @@ EXPORT_SYMBOL(nand_ecc_sw_bch_calculate);
|
||||
int nand_ecc_sw_bch_correct(struct nand_device *nand, unsigned char *buf,
|
||||
unsigned char *read_ecc, unsigned char *calc_ecc)
|
||||
{
|
||||
struct nand_chip *chip = mtd_to_nand(nanddev_to_mtd(nand));
|
||||
struct nand_bch_control *nbc = chip->ecc.priv;
|
||||
unsigned int *errloc = nbc->errloc;
|
||||
struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv;
|
||||
unsigned int step_size = nand->ecc.ctx.conf.step_size;
|
||||
unsigned int *errloc = engine_conf->errloc;
|
||||
int i, count;
|
||||
|
||||
count = bch_decode(nbc->bch, NULL, chip->ecc.size, read_ecc, calc_ecc,
|
||||
NULL, errloc);
|
||||
count = bch_decode(engine_conf->bch, NULL, step_size, read_ecc,
|
||||
calc_ecc, NULL, errloc);
|
||||
if (count > 0) {
|
||||
for (i = 0; i < count; i++) {
|
||||
if (errloc[i] < (chip->ecc.size * 8))
|
||||
if (errloc[i] < (step_size * 8))
|
||||
/* The error is in the data area: correct it */
|
||||
buf[errloc[i] >> 3] ^= (1 << (errloc[i] & 7));
|
||||
|
||||
@ -97,31 +81,30 @@ EXPORT_SYMBOL(nand_ecc_sw_bch_correct);
|
||||
*
|
||||
* Returns: a pointer to a new NAND BCH control structure, or NULL upon failure
|
||||
*
|
||||
* Initialize NAND BCH error correction. Parameters @eccsize and @eccbytes
|
||||
* are used to compute the following BCH parameters:
|
||||
* Initialize NAND BCH error correction. @nand.ecc parameters 'step_size' and
|
||||
* 'bytes' are used to compute the following BCH parameters:
|
||||
* m, the Galois field order
|
||||
* t, the error correction capability
|
||||
* @eccbytes should be equal to the number of bytes required to store m * t
|
||||
* 'bytes' should be equal to the number of bytes required to store m * t
|
||||
* bits, where m is such that 2^m - 1 > step_size * 8.
|
||||
*
|
||||
* Example: to configure 4 bit correction per 512 bytes, you should pass
|
||||
* @eccsize = 512 (thus, m = 13 is the smallest integer such that 2^m - 1 > 512 * 8)
|
||||
* @eccbytes = 7 (7 bytes are required to store m * t = 13 * 4 = 52 bits)
|
||||
* step_size = 512 (thus, m = 13 is the smallest integer such that 2^m - 1 > 512 * 8)
|
||||
* bytes = 7 (7 bytes are required to store m * t = 13 * 4 = 52 bits)
|
||||
*/
|
||||
int nand_ecc_sw_bch_init(struct nand_device *nand)
|
||||
{
|
||||
struct mtd_info *mtd = nanddev_to_mtd(nand);
|
||||
struct nand_chip *chip = mtd_to_nand(mtd);
|
||||
unsigned int m, t, eccsteps, i;
|
||||
struct nand_bch_control *nbc = NULL;
|
||||
struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv;
|
||||
unsigned char *erased_page;
|
||||
unsigned int eccsize = chip->ecc.size;
|
||||
unsigned int eccbytes = chip->ecc.bytes;
|
||||
unsigned int eccstrength = chip->ecc.strength;
|
||||
unsigned int eccsize = nand->ecc.ctx.conf.step_size;
|
||||
unsigned int eccbytes = engine_conf->code_size;
|
||||
unsigned int eccstrength = nand->ecc.ctx.conf.strength;
|
||||
|
||||
if (!eccbytes && eccstrength) {
|
||||
eccbytes = DIV_ROUND_UP(eccstrength * fls(8 * eccsize), 8);
|
||||
chip->ecc.bytes = eccbytes;
|
||||
engine_conf->code_size = eccbytes;
|
||||
}
|
||||
|
||||
if (!eccsize || !eccbytes) {
|
||||
@ -132,20 +115,14 @@ int nand_ecc_sw_bch_init(struct nand_device *nand)
|
||||
m = fls(1+8*eccsize);
|
||||
t = (eccbytes*8)/m;
|
||||
|
||||
nbc = kzalloc(sizeof(*nbc), GFP_KERNEL);
|
||||
if (!nbc)
|
||||
return -ENOMEM;
|
||||
|
||||
chip->ecc.priv = nbc;
|
||||
|
||||
nbc->bch = bch_init(m, t, 0, false);
|
||||
if (!nbc->bch)
|
||||
goto fail;
|
||||
engine_conf->bch = bch_init(m, t, 0, false);
|
||||
if (!engine_conf->bch)
|
||||
return -EINVAL;
|
||||
|
||||
/* verify that eccbytes has the expected value */
|
||||
if (nbc->bch->ecc_bytes != eccbytes) {
|
||||
if (engine_conf->bch->ecc_bytes != eccbytes) {
|
||||
pr_warn("invalid eccbytes %u, should be %u\n",
|
||||
eccbytes, nbc->bch->ecc_bytes);
|
||||
eccbytes, engine_conf->bch->ecc_bytes);
|
||||
goto fail;
|
||||
}
|
||||
|
||||
@ -163,25 +140,15 @@ int nand_ecc_sw_bch_init(struct nand_device *nand)
|
||||
goto fail;
|
||||
}
|
||||
|
||||
/*
|
||||
* ecc->steps and ecc->total might be used by mtd->ooblayout->ecc(),
|
||||
* which is called by mtd_ooblayout_count_eccbytes().
|
||||
* Make sure they are properly initialized before calling
|
||||
* mtd_ooblayout_count_eccbytes().
|
||||
* FIXME: we should probably rework the sequencing in nand_scan_tail()
|
||||
* to avoid setting those fields twice.
|
||||
*/
|
||||
chip->ecc.steps = eccsteps;
|
||||
chip->ecc.total = eccsteps * eccbytes;
|
||||
nand->base.ecc.ctx.total = chip->ecc.total;
|
||||
if (mtd_ooblayout_count_eccbytes(mtd) != (eccsteps*eccbytes)) {
|
||||
pr_warn("invalid ecc layout\n");
|
||||
goto fail;
|
||||
}
|
||||
|
||||
nbc->eccmask = kzalloc(eccbytes, GFP_KERNEL);
|
||||
nbc->errloc = kmalloc_array(t, sizeof(*nbc->errloc), GFP_KERNEL);
|
||||
if (!nbc->eccmask || !nbc->errloc)
|
||||
engine_conf->eccmask = kzalloc(eccbytes, GFP_KERNEL);
|
||||
engine_conf->errloc = kmalloc_array(t, sizeof(*engine_conf->errloc),
|
||||
GFP_KERNEL);
|
||||
if (!engine_conf->eccmask || !engine_conf->errloc)
|
||||
goto fail;
|
||||
|
||||
/*
|
||||
@ -192,14 +159,15 @@ int nand_ecc_sw_bch_init(struct nand_device *nand)
|
||||
goto fail;
|
||||
|
||||
memset(erased_page, 0xff, eccsize);
|
||||
bch_encode(nbc->bch, erased_page, eccsize, nbc->eccmask);
|
||||
bch_encode(engine_conf->bch, erased_page, eccsize,
|
||||
engine_conf->eccmask);
|
||||
kfree(erased_page);
|
||||
|
||||
for (i = 0; i < eccbytes; i++)
|
||||
nbc->eccmask[i] ^= 0xff;
|
||||
engine_conf->eccmask[i] ^= 0xff;
|
||||
|
||||
if (!eccstrength)
|
||||
chip->ecc.strength = (eccbytes * 8) / fls(8 * eccsize);
|
||||
nand->ecc.ctx.conf.strength = (eccbytes * 8) / fls(8 * eccsize);
|
||||
|
||||
return 0;
|
||||
|
||||
@ -216,14 +184,12 @@ EXPORT_SYMBOL(nand_ecc_sw_bch_init);
|
||||
*/
|
||||
void nand_ecc_sw_bch_cleanup(struct nand_device *nand)
|
||||
{
|
||||
struct nand_chip *chip = mtd_to_nand(nanddev_to_mtd(nand));
|
||||
struct nand_bch_control *nbc = chip->ecc.priv;
|
||||
struct nand_ecc_sw_bch_conf *engine_conf = nand->ecc.ctx.priv;
|
||||
|
||||
if (nbc) {
|
||||
bch_free(nbc->bch);
|
||||
kfree(nbc->errloc);
|
||||
kfree(nbc->eccmask);
|
||||
kfree(nbc);
|
||||
if (engine_conf) {
|
||||
bch_free(engine_conf->bch);
|
||||
kfree(engine_conf->errloc);
|
||||
kfree(engine_conf->eccmask);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL(nand_ecc_sw_bch_cleanup);
|
||||
|
@ -5142,8 +5142,33 @@ static void nand_scan_ident_cleanup(struct nand_chip *chip)
|
||||
int rawnand_sw_bch_init(struct nand_chip *chip)
|
||||
{
|
||||
struct nand_device *base = &chip->base;
|
||||
struct nand_ecc_sw_bch_conf *engine_conf;
|
||||
int ret;
|
||||
|
||||
return nand_ecc_sw_bch_init(base);
|
||||
base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
|
||||
base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
|
||||
base->ecc.user_conf.step_size = chip->ecc.size;
|
||||
base->ecc.user_conf.strength = chip->ecc.strength;
|
||||
|
||||
engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
|
||||
if (!engine_conf)
|
||||
return -ENOMEM;
|
||||
|
||||
engine_conf->code_size = chip->ecc.bytes;
|
||||
|
||||
base->ecc.ctx.priv = engine_conf;
|
||||
|
||||
ret = nand_ecc_sw_bch_init(base);
|
||||
if (ret)
|
||||
kfree(base->ecc.ctx.priv);
|
||||
|
||||
chip->ecc.size = base->ecc.ctx.conf.step_size;
|
||||
chip->ecc.strength = base->ecc.ctx.conf.strength;
|
||||
chip->ecc.total = base->ecc.ctx.total;
|
||||
chip->ecc.steps = engine_conf->nsteps;
|
||||
chip->ecc.bytes = engine_conf->code_size;
|
||||
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL(rawnand_sw_bch_init);
|
||||
|
||||
@ -5171,7 +5196,7 @@ void rawnand_sw_bch_cleanup(struct nand_chip *chip)
|
||||
|
||||
nand_ecc_sw_bch_cleanup(base);
|
||||
|
||||
chip->ecc.priv = NULL;
|
||||
kfree(base->ecc.ctx.priv);
|
||||
}
|
||||
EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
|
||||
|
||||
@ -5794,6 +5819,7 @@ static int nand_scan_tail(struct nand_chip *chip)
|
||||
* Set the number of read / write steps for one page depending on ECC
|
||||
* mode.
|
||||
*/
|
||||
if (!ecc->steps)
|
||||
ecc->steps = mtd->writesize / ecc->size;
|
||||
if (ecc->steps * ecc->size != mtd->writesize) {
|
||||
WARN(1, "Invalid ECC parameters\n");
|
||||
@ -5801,8 +5827,10 @@ static int nand_scan_tail(struct nand_chip *chip)
|
||||
goto err_nand_manuf_cleanup;
|
||||
}
|
||||
|
||||
if (!ecc->total) {
|
||||
ecc->total = ecc->steps * ecc->bytes;
|
||||
chip->base.ecc.ctx.total = ecc->total;
|
||||
}
|
||||
|
||||
if (ecc->total > mtd->oobsize) {
|
||||
WARN(1, "Total number of ECC bytes exceeded oobsize\n");
|
||||
|
@ -9,6 +9,31 @@
|
||||
#define __MTD_NAND_ECC_SW_BCH_H__
|
||||
|
||||
#include <linux/mtd/nand.h>
|
||||
#include <linux/bch.h>
|
||||
|
||||
/**
|
||||
* struct nand_ecc_sw_bch_conf - private software BCH ECC engine structure
|
||||
* @reqooblen: Save the actual user OOB length requested before overwriting it
|
||||
* @spare_oobbuf: Spare OOB buffer if none is provided
|
||||
* @code_size: Number of bytes needed to store a code (one code per step)
|
||||
* @nsteps: Number of steps
|
||||
* @calc_buf: Buffer to use when calculating ECC bytes
|
||||
* @code_buf: Buffer to use when reading (raw) ECC bytes from the chip
|
||||
* @bch: BCH control structure
|
||||
* @errloc: error location array
|
||||
* @eccmask: XOR ecc mask, allows erased pages to be decoded as valid
|
||||
*/
|
||||
struct nand_ecc_sw_bch_conf {
|
||||
unsigned int reqooblen;
|
||||
void *spare_oobbuf;
|
||||
unsigned int code_size;
|
||||
unsigned int nsteps;
|
||||
u8 *calc_buf;
|
||||
u8 *code_buf;
|
||||
struct bch_control *bch;
|
||||
unsigned int *errloc;
|
||||
unsigned char *eccmask;
|
||||
};
|
||||
|
||||
#if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user