forked from Minki/linux
Kprobes: move kprobe examples to samples/
Move kprobes examples from Documentation/kprobes.txt to under samples/. Patch originally by Randy Dunlap. o Updated the patch to apply on 2.6.25-rc3 o Modified examples code to build on multiple architectures. Currently, the kprobe and jprobe examples code works for x86 and powerpc o Cleaned up unneeded #includes o Cleaned up Kconfig per Sam Ravnborg's suggestions to fix build break on archs that don't have kretprobes o Implemented suggestions by Mathieu Desnoyers on CONFIG_KRETPROBES o Included Andrew Morton's cleanup based on x86-git o Modified kretprobe_example to act as a arch-agnostic module to determine routine execution times: Use 'modprobe kretprobe_example func=<func_name>' to determine execution time of func_name in nanoseconds. Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
parent
9edddaa200
commit
804defea1c
@ -192,7 +192,8 @@ code mapping.
|
||||
The Kprobes API includes a "register" function and an "unregister"
|
||||
function for each type of probe. Here are terse, mini-man-page
|
||||
specifications for these functions and the associated probe handlers
|
||||
that you'll write. See the latter half of this document for examples.
|
||||
that you'll write. See the files in the samples/kprobes/ sub-directory
|
||||
for examples.
|
||||
|
||||
4.1 register_kprobe
|
||||
|
||||
@ -420,249 +421,15 @@ e. Watchpoint probes (which fire on data references).
|
||||
|
||||
8. Kprobes Example
|
||||
|
||||
Here's a sample kernel module showing the use of kprobes to dump a
|
||||
stack trace and selected i386 registers when do_fork() is called.
|
||||
----- cut here -----
|
||||
/*kprobe_example.c*/
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/kprobes.h>
|
||||
#include <linux/sched.h>
|
||||
|
||||
/*For each probe you need to allocate a kprobe structure*/
|
||||
static struct kprobe kp;
|
||||
|
||||
/*kprobe pre_handler: called just before the probed instruction is executed*/
|
||||
int handler_pre(struct kprobe *p, struct pt_regs *regs)
|
||||
{
|
||||
printk("pre_handler: p->addr=0x%p, eip=%lx, eflags=0x%lx\n",
|
||||
p->addr, regs->eip, regs->eflags);
|
||||
dump_stack();
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*kprobe post_handler: called after the probed instruction is executed*/
|
||||
void handler_post(struct kprobe *p, struct pt_regs *regs, unsigned long flags)
|
||||
{
|
||||
printk("post_handler: p->addr=0x%p, eflags=0x%lx\n",
|
||||
p->addr, regs->eflags);
|
||||
}
|
||||
|
||||
/* fault_handler: this is called if an exception is generated for any
|
||||
* instruction within the pre- or post-handler, or when Kprobes
|
||||
* single-steps the probed instruction.
|
||||
*/
|
||||
int handler_fault(struct kprobe *p, struct pt_regs *regs, int trapnr)
|
||||
{
|
||||
printk("fault_handler: p->addr=0x%p, trap #%dn",
|
||||
p->addr, trapnr);
|
||||
/* Return 0 because we don't handle the fault. */
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int __init kprobe_init(void)
|
||||
{
|
||||
int ret;
|
||||
kp.pre_handler = handler_pre;
|
||||
kp.post_handler = handler_post;
|
||||
kp.fault_handler = handler_fault;
|
||||
kp.symbol_name = "do_fork";
|
||||
|
||||
ret = register_kprobe(&kp);
|
||||
if (ret < 0) {
|
||||
printk("register_kprobe failed, returned %d\n", ret);
|
||||
return ret;
|
||||
}
|
||||
printk("kprobe registered\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit kprobe_exit(void)
|
||||
{
|
||||
unregister_kprobe(&kp);
|
||||
printk("kprobe unregistered\n");
|
||||
}
|
||||
|
||||
module_init(kprobe_init)
|
||||
module_exit(kprobe_exit)
|
||||
MODULE_LICENSE("GPL");
|
||||
----- cut here -----
|
||||
|
||||
You can build the kernel module, kprobe-example.ko, using the following
|
||||
Makefile:
|
||||
----- cut here -----
|
||||
obj-m := kprobe-example.o
|
||||
KDIR := /lib/modules/$(shell uname -r)/build
|
||||
PWD := $(shell pwd)
|
||||
default:
|
||||
$(MAKE) -C $(KDIR) SUBDIRS=$(PWD) modules
|
||||
clean:
|
||||
rm -f *.mod.c *.ko *.o
|
||||
----- cut here -----
|
||||
|
||||
$ make
|
||||
$ su -
|
||||
...
|
||||
# insmod kprobe-example.ko
|
||||
|
||||
You will see the trace data in /var/log/messages and on the console
|
||||
whenever do_fork() is invoked to create a new process.
|
||||
See samples/kprobes/kprobe_example.c
|
||||
|
||||
9. Jprobes Example
|
||||
|
||||
Here's a sample kernel module showing the use of jprobes to dump
|
||||
the arguments of do_fork().
|
||||
----- cut here -----
|
||||
/*jprobe-example.c */
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/uio.h>
|
||||
#include <linux/kprobes.h>
|
||||
|
||||
/*
|
||||
* Jumper probe for do_fork.
|
||||
* Mirror principle enables access to arguments of the probed routine
|
||||
* from the probe handler.
|
||||
*/
|
||||
|
||||
/* Proxy routine having the same arguments as actual do_fork() routine */
|
||||
long jdo_fork(unsigned long clone_flags, unsigned long stack_start,
|
||||
struct pt_regs *regs, unsigned long stack_size,
|
||||
int __user * parent_tidptr, int __user * child_tidptr)
|
||||
{
|
||||
printk("jprobe: clone_flags=0x%lx, stack_size=0x%lx, regs=0x%p\n",
|
||||
clone_flags, stack_size, regs);
|
||||
/* Always end with a call to jprobe_return(). */
|
||||
jprobe_return();
|
||||
/*NOTREACHED*/
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct jprobe my_jprobe = {
|
||||
.entry = jdo_fork
|
||||
};
|
||||
|
||||
static int __init jprobe_init(void)
|
||||
{
|
||||
int ret;
|
||||
my_jprobe.kp.symbol_name = "do_fork";
|
||||
|
||||
if ((ret = register_jprobe(&my_jprobe)) <0) {
|
||||
printk("register_jprobe failed, returned %d\n", ret);
|
||||
return -1;
|
||||
}
|
||||
printk("Planted jprobe at %p, handler addr %p\n",
|
||||
my_jprobe.kp.addr, my_jprobe.entry);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit jprobe_exit(void)
|
||||
{
|
||||
unregister_jprobe(&my_jprobe);
|
||||
printk("jprobe unregistered\n");
|
||||
}
|
||||
|
||||
module_init(jprobe_init)
|
||||
module_exit(jprobe_exit)
|
||||
MODULE_LICENSE("GPL");
|
||||
----- cut here -----
|
||||
|
||||
Build and insert the kernel module as shown in the above kprobe
|
||||
example. You will see the trace data in /var/log/messages and on
|
||||
the console whenever do_fork() is invoked to create a new process.
|
||||
(Some messages may be suppressed if syslogd is configured to
|
||||
eliminate duplicate messages.)
|
||||
See samples/kprobes/jprobe_example.c
|
||||
|
||||
10. Kretprobes Example
|
||||
|
||||
Here's a sample kernel module showing the use of return probes to
|
||||
report failed calls to sys_open().
|
||||
----- cut here -----
|
||||
/*kretprobe-example.c*/
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/kprobes.h>
|
||||
#include <linux/ktime.h>
|
||||
|
||||
/* per-instance private data */
|
||||
struct my_data {
|
||||
ktime_t entry_stamp;
|
||||
};
|
||||
|
||||
static const char *probed_func = "sys_open";
|
||||
|
||||
/* Timestamp function entry. */
|
||||
static int entry_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
|
||||
{
|
||||
struct my_data *data;
|
||||
|
||||
if(!current->mm)
|
||||
return 1; /* skip kernel threads */
|
||||
|
||||
data = (struct my_data *)ri->data;
|
||||
data->entry_stamp = ktime_get();
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* If the probed function failed, log the return value and duration.
|
||||
* Duration may turn out to be zero consistently, depending upon the
|
||||
* granularity of time accounting on the platform. */
|
||||
static int return_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
|
||||
{
|
||||
int retval = regs_return_value(regs);
|
||||
struct my_data *data = (struct my_data *)ri->data;
|
||||
s64 delta;
|
||||
ktime_t now;
|
||||
|
||||
if (retval < 0) {
|
||||
now = ktime_get();
|
||||
delta = ktime_to_ns(ktime_sub(now, data->entry_stamp));
|
||||
printk("%s: return val = %d (duration = %lld ns)\n",
|
||||
probed_func, retval, delta);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct kretprobe my_kretprobe = {
|
||||
.handler = return_handler,
|
||||
.entry_handler = entry_handler,
|
||||
.data_size = sizeof(struct my_data),
|
||||
.maxactive = 20, /* probe up to 20 instances concurrently */
|
||||
};
|
||||
|
||||
static int __init kretprobe_init(void)
|
||||
{
|
||||
int ret;
|
||||
my_kretprobe.kp.symbol_name = (char *)probed_func;
|
||||
|
||||
if ((ret = register_kretprobe(&my_kretprobe)) < 0) {
|
||||
printk("register_kretprobe failed, returned %d\n", ret);
|
||||
return -1;
|
||||
}
|
||||
printk("Kretprobe active on %s\n", my_kretprobe.kp.symbol_name);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit kretprobe_exit(void)
|
||||
{
|
||||
unregister_kretprobe(&my_kretprobe);
|
||||
printk("kretprobe unregistered\n");
|
||||
/* nmissed > 0 suggests that maxactive was set too low. */
|
||||
printk("Missed probing %d instances of %s\n",
|
||||
my_kretprobe.nmissed, probed_func);
|
||||
}
|
||||
|
||||
module_init(kretprobe_init)
|
||||
module_exit(kretprobe_exit)
|
||||
MODULE_LICENSE("GPL");
|
||||
----- cut here -----
|
||||
|
||||
Build and insert the kernel module as shown in the above kprobe
|
||||
example. You will see the trace data in /var/log/messages and on the
|
||||
console whenever sys_open() returns a negative value. (Some messages
|
||||
may be suppressed if syslogd is configured to eliminate duplicate
|
||||
messages.)
|
||||
See samples/kprobes/kretprobe_example.c
|
||||
|
||||
For additional information on Kprobes, refer to the following URLs:
|
||||
http://www-106.ibm.com/developerworks/library/l-kprobes.html?ca=dgr-lnxw42Kprobe
|
||||
|
@ -22,5 +22,16 @@ config SAMPLE_KOBJECT
|
||||
|
||||
If in doubt, say "N" here.
|
||||
|
||||
config SAMPLE_KPROBES
|
||||
tristate "Build kprobes examples -- loadable modules only"
|
||||
depends on KPROBES && m
|
||||
help
|
||||
This build several kprobes example modules.
|
||||
|
||||
config SAMPLE_KRETPROBES
|
||||
tristate "Build kretprobes example -- loadable modules only"
|
||||
default m
|
||||
depends on SAMPLE_KPROBES && KRETPROBES
|
||||
|
||||
endif # SAMPLES
|
||||
|
||||
|
@ -1,3 +1,3 @@
|
||||
# Makefile for Linux samples code
|
||||
|
||||
obj-$(CONFIG_SAMPLES) += markers/ kobject/
|
||||
obj-$(CONFIG_SAMPLES) += markers/ kobject/ kprobes/
|
||||
|
5
samples/kprobes/Makefile
Normal file
5
samples/kprobes/Makefile
Normal file
@ -0,0 +1,5 @@
|
||||
# builds the kprobes example kernel modules;
|
||||
# then to use one (as root): insmod <module_name.ko>
|
||||
|
||||
obj-$(CONFIG_SAMPLE_KPROBES) += kprobe_example.o jprobe_example.o
|
||||
obj-$(CONFIG_SAMPLE_KRETPROBES) += kretprobe_example.o
|
68
samples/kprobes/jprobe_example.c
Normal file
68
samples/kprobes/jprobe_example.c
Normal file
@ -0,0 +1,68 @@
|
||||
/*
|
||||
* Here's a sample kernel module showing the use of jprobes to dump
|
||||
* the arguments of do_fork().
|
||||
*
|
||||
* For more information on theory of operation of jprobes, see
|
||||
* Documentation/kprobes.txt
|
||||
*
|
||||
* Build and insert the kernel module as done in the kprobe example.
|
||||
* You will see the trace data in /var/log/messages and on the
|
||||
* console whenever do_fork() is invoked to create a new process.
|
||||
* (Some messages may be suppressed if syslogd is configured to
|
||||
* eliminate duplicate messages.)
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/kprobes.h>
|
||||
|
||||
/*
|
||||
* Jumper probe for do_fork.
|
||||
* Mirror principle enables access to arguments of the probed routine
|
||||
* from the probe handler.
|
||||
*/
|
||||
|
||||
/* Proxy routine having the same arguments as actual do_fork() routine */
|
||||
static long jdo_fork(unsigned long clone_flags, unsigned long stack_start,
|
||||
struct pt_regs *regs, unsigned long stack_size,
|
||||
int __user *parent_tidptr, int __user *child_tidptr)
|
||||
{
|
||||
printk(KERN_INFO "jprobe: clone_flags = 0x%lx, stack_size = 0x%lx,"
|
||||
" regs = 0x%p\n",
|
||||
clone_flags, stack_size, regs);
|
||||
|
||||
/* Always end with a call to jprobe_return(). */
|
||||
jprobe_return();
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct jprobe my_jprobe = {
|
||||
.entry = jdo_fork,
|
||||
.kp = {
|
||||
.symbol_name = "do_fork",
|
||||
},
|
||||
};
|
||||
|
||||
static int __init jprobe_init(void)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ret = register_jprobe(&my_jprobe);
|
||||
if (ret < 0) {
|
||||
printk(KERN_INFO "register_jprobe failed, returned %d\n", ret);
|
||||
return -1;
|
||||
}
|
||||
printk(KERN_INFO "Planted jprobe at %p, handler addr %p\n",
|
||||
my_jprobe.kp.addr, my_jprobe.entry);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit jprobe_exit(void)
|
||||
{
|
||||
unregister_jprobe(&my_jprobe);
|
||||
printk(KERN_INFO "jprobe at %p unregistered\n", my_jprobe.kp.addr);
|
||||
}
|
||||
|
||||
module_init(jprobe_init)
|
||||
module_exit(jprobe_exit)
|
||||
MODULE_LICENSE("GPL");
|
91
samples/kprobes/kprobe_example.c
Normal file
91
samples/kprobes/kprobe_example.c
Normal file
@ -0,0 +1,91 @@
|
||||
/*
|
||||
* NOTE: This example is works on x86 and powerpc.
|
||||
* Here's a sample kernel module showing the use of kprobes to dump a
|
||||
* stack trace and selected registers when do_fork() is called.
|
||||
*
|
||||
* For more information on theory of operation of kprobes, see
|
||||
* Documentation/kprobes.txt
|
||||
*
|
||||
* You will see the trace data in /var/log/messages and on the console
|
||||
* whenever do_fork() is invoked to create a new process.
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/kprobes.h>
|
||||
|
||||
/* For each probe you need to allocate a kprobe structure */
|
||||
static struct kprobe kp = {
|
||||
.symbol_name = "do_fork",
|
||||
};
|
||||
|
||||
/* kprobe pre_handler: called just before the probed instruction is executed */
|
||||
static int handler_pre(struct kprobe *p, struct pt_regs *regs)
|
||||
{
|
||||
#ifdef CONFIG_X86
|
||||
printk(KERN_INFO "pre_handler: p->addr = 0x%p, ip = %lx,"
|
||||
" flags = 0x%lx\n",
|
||||
p->addr, regs->ip, regs->flags);
|
||||
#endif
|
||||
#ifdef CONFIG_PPC
|
||||
printk(KERN_INFO "pre_handler: p->addr = 0x%p, nip = 0x%lx,"
|
||||
" msr = 0x%lx\n",
|
||||
p->addr, regs->nip, regs->msr);
|
||||
#endif
|
||||
|
||||
/* A dump_stack() here will give a stack backtrace */
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* kprobe post_handler: called after the probed instruction is executed */
|
||||
static void handler_post(struct kprobe *p, struct pt_regs *regs,
|
||||
unsigned long flags)
|
||||
{
|
||||
#ifdef CONFIG_X86
|
||||
printk(KERN_INFO "post_handler: p->addr = 0x%p, flags = 0x%lx\n",
|
||||
p->addr, regs->flags);
|
||||
#endif
|
||||
#ifdef CONFIG_PPC
|
||||
printk(KERN_INFO "post_handler: p->addr = 0x%p, msr = 0x%lx\n",
|
||||
p->addr, regs->msr);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* fault_handler: this is called if an exception is generated for any
|
||||
* instruction within the pre- or post-handler, or when Kprobes
|
||||
* single-steps the probed instruction.
|
||||
*/
|
||||
static int handler_fault(struct kprobe *p, struct pt_regs *regs, int trapnr)
|
||||
{
|
||||
printk(KERN_INFO "fault_handler: p->addr = 0x%p, trap #%dn",
|
||||
p->addr, trapnr);
|
||||
/* Return 0 because we don't handle the fault. */
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int __init kprobe_init(void)
|
||||
{
|
||||
int ret;
|
||||
kp.pre_handler = handler_pre;
|
||||
kp.post_handler = handler_post;
|
||||
kp.fault_handler = handler_fault;
|
||||
|
||||
ret = register_kprobe(&kp);
|
||||
if (ret < 0) {
|
||||
printk(KERN_INFO "register_kprobe failed, returned %d\n", ret);
|
||||
return ret;
|
||||
}
|
||||
printk(KERN_INFO "Planted kprobe at %p\n", kp.addr);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit kprobe_exit(void)
|
||||
{
|
||||
unregister_kprobe(&kp);
|
||||
printk(KERN_INFO "kprobe at %p unregistered\n", kp.addr);
|
||||
}
|
||||
|
||||
module_init(kprobe_init)
|
||||
module_exit(kprobe_exit)
|
||||
MODULE_LICENSE("GPL");
|
106
samples/kprobes/kretprobe_example.c
Normal file
106
samples/kprobes/kretprobe_example.c
Normal file
@ -0,0 +1,106 @@
|
||||
/*
|
||||
* kretprobe_example.c
|
||||
*
|
||||
* Here's a sample kernel module showing the use of return probes to
|
||||
* report the return value and total time taken for probed function
|
||||
* to run.
|
||||
*
|
||||
* usage: insmod kretprobe_example.ko func=<func_name>
|
||||
*
|
||||
* If no func_name is specified, do_fork is instrumented
|
||||
*
|
||||
* For more information on theory of operation of kretprobes, see
|
||||
* Documentation/kprobes.txt
|
||||
*
|
||||
* Build and insert the kernel module as done in the kprobe example.
|
||||
* You will see the trace data in /var/log/messages and on the console
|
||||
* whenever the probed function returns. (Some messages may be suppressed
|
||||
* if syslogd is configured to eliminate duplicate messages.)
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/kprobes.h>
|
||||
#include <linux/ktime.h>
|
||||
#include <linux/limits.h>
|
||||
|
||||
static char func_name[NAME_MAX] = "do_fork";
|
||||
module_param_string(func, func_name, NAME_MAX, S_IRUGO);
|
||||
MODULE_PARM_DESC(func, "Function to kretprobe; this module will report the"
|
||||
" function's execution time");
|
||||
|
||||
/* per-instance private data */
|
||||
struct my_data {
|
||||
ktime_t entry_stamp;
|
||||
};
|
||||
|
||||
/* Here we use the entry_hanlder to timestamp function entry */
|
||||
static int entry_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
|
||||
{
|
||||
struct my_data *data;
|
||||
|
||||
if (!current->mm)
|
||||
return 1; /* Skip kernel threads */
|
||||
|
||||
data = (struct my_data *)ri->data;
|
||||
data->entry_stamp = ktime_get();
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Return-probe handler: Log the return value and duration. Duration may turn
|
||||
* out to be zero consistently, depending upon the granularity of time
|
||||
* accounting on the platform.
|
||||
*/
|
||||
static int ret_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
|
||||
{
|
||||
int retval = regs_return_value(regs);
|
||||
struct my_data *data = (struct my_data *)ri->data;
|
||||
s64 delta;
|
||||
ktime_t now;
|
||||
|
||||
now = ktime_get();
|
||||
delta = ktime_to_ns(ktime_sub(now, data->entry_stamp));
|
||||
printk(KERN_INFO "%s returned %d and took %lld ns to execute\n",
|
||||
func_name, retval, (long long)delta);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct kretprobe my_kretprobe = {
|
||||
.handler = ret_handler,
|
||||
.entry_handler = entry_handler,
|
||||
.data_size = sizeof(struct my_data),
|
||||
/* Probe up to 20 instances concurrently. */
|
||||
.maxactive = 20,
|
||||
};
|
||||
|
||||
static int __init kretprobe_init(void)
|
||||
{
|
||||
int ret;
|
||||
|
||||
my_kretprobe.kp.symbol_name = func_name;
|
||||
ret = register_kretprobe(&my_kretprobe);
|
||||
if (ret < 0) {
|
||||
printk(KERN_INFO "register_kretprobe failed, returned %d\n",
|
||||
ret);
|
||||
return -1;
|
||||
}
|
||||
printk(KERN_INFO "Planted return probe at %s: %p\n",
|
||||
my_kretprobe.kp.symbol_name, my_kretprobe.kp.addr);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit kretprobe_exit(void)
|
||||
{
|
||||
unregister_kretprobe(&my_kretprobe);
|
||||
printk(KERN_INFO "kretprobe at %p unregistered\n",
|
||||
my_kretprobe.kp.addr);
|
||||
|
||||
/* nmissed > 0 suggests that maxactive was set too low. */
|
||||
printk(KERN_INFO "Missed probing %d instances of %s\n",
|
||||
my_kretprobe.nmissed, my_kretprobe.kp.symbol_name);
|
||||
}
|
||||
|
||||
module_init(kretprobe_init)
|
||||
module_exit(kretprobe_exit)
|
||||
MODULE_LICENSE("GPL");
|
Loading…
Reference in New Issue
Block a user