MIPS: Netlogic: Support for multi-chip configuration

Upto 4 Netlogic XLP SoCs can be connected over ICI links to form a
coherent multi-node system.  Each SoC has its own set of on-chip
devices including PIC.  To support this, add a per SoC stucture and
use it for the PIC and SYS block addresses instead of using global
variables.

Signed-off-by: Jayachandran C <jchandra@broadcom.com>
Patchwork: http://patchwork.linux-mips.org/patch/4469
Signed-off-by: John Crispin <blogic@openwrt.org>
This commit is contained in:
Jayachandran C
2012-10-31 12:01:39 +00:00
committed by John Crispin
parent 2a37b1ae44
commit 77ae798f5b
12 changed files with 176 additions and 86 deletions

View File

@@ -70,33 +70,34 @@
*/
/* Globals */
static uint64_t nlm_irq_mask;
static DEFINE_SPINLOCK(nlm_pic_lock);
static void xlp_pic_enable(struct irq_data *d)
{
unsigned long flags;
struct nlm_soc_info *nodep;
int irt;
nodep = nlm_current_node();
irt = nlm_irq_to_irt(d->irq);
if (irt == -1)
return;
spin_lock_irqsave(&nlm_pic_lock, flags);
nlm_pic_enable_irt(nlm_pic_base, irt);
spin_unlock_irqrestore(&nlm_pic_lock, flags);
spin_lock_irqsave(&nodep->piclock, flags);
nlm_pic_enable_irt(nodep->picbase, irt);
spin_unlock_irqrestore(&nodep->piclock, flags);
}
static void xlp_pic_disable(struct irq_data *d)
{
struct nlm_soc_info *nodep;
unsigned long flags;
int irt;
nodep = nlm_current_node();
irt = nlm_irq_to_irt(d->irq);
if (irt == -1)
return;
spin_lock_irqsave(&nlm_pic_lock, flags);
nlm_pic_disable_irt(nlm_pic_base, irt);
spin_unlock_irqrestore(&nlm_pic_lock, flags);
spin_lock_irqsave(&nodep->piclock, flags);
nlm_pic_disable_irt(nodep->picbase, irt);
spin_unlock_irqrestore(&nodep->piclock, flags);
}
static void xlp_pic_mask_ack(struct irq_data *d)
@@ -109,8 +110,10 @@ static void xlp_pic_mask_ack(struct irq_data *d)
static void xlp_pic_unmask(struct irq_data *d)
{
void *hd = irq_data_get_irq_handler_data(d);
struct nlm_soc_info *nodep;
int irt;
nodep = nlm_current_node();
irt = nlm_irq_to_irt(d->irq);
if (irt == -1)
return;
@@ -120,7 +123,7 @@ static void xlp_pic_unmask(struct irq_data *d)
extra_ack(d);
}
/* Ack is a single write, no need to lock */
nlm_pic_ack(nlm_pic_base, irt);
nlm_pic_ack(nodep->picbase, irt);
}
static struct irq_chip xlp_pic = {
@@ -177,7 +180,11 @@ struct irq_chip nlm_cpu_intr = {
void __init init_nlm_common_irqs(void)
{
int i, irq, irt;
uint64_t irqmask;
struct nlm_soc_info *nodep;
nodep = nlm_current_node();
irqmask = (1ULL << IRQ_TIMER);
for (i = 0; i < PIC_IRT_FIRST_IRQ; i++)
irq_set_chip_and_handler(i, &nlm_cpu_intr, handle_percpu_irq);
@@ -189,7 +196,7 @@ void __init init_nlm_common_irqs(void)
nlm_smp_function_ipi_handler);
irq_set_chip_and_handler(IRQ_IPI_SMP_RESCHEDULE, &nlm_cpu_intr,
nlm_smp_resched_ipi_handler);
nlm_irq_mask |=
irqmask |=
((1ULL << IRQ_IPI_SMP_FUNCTION) | (1ULL << IRQ_IPI_SMP_RESCHEDULE));
#endif
@@ -197,11 +204,11 @@ void __init init_nlm_common_irqs(void)
irt = nlm_irq_to_irt(irq);
if (irt == -1)
continue;
nlm_irq_mask |= (1ULL << irq);
nlm_pic_init_irt(nlm_pic_base, irt, irq, 0);
irqmask |= (1ULL << irq);
nlm_pic_init_irt(nodep->picbase, irt, irq, 0);
}
nlm_irq_mask |= (1ULL << IRQ_TIMER);
nodep->irqmask = irqmask;
}
void __init arch_init_irq(void)
@@ -209,29 +216,39 @@ void __init arch_init_irq(void)
/* Initialize the irq descriptors */
init_nlm_common_irqs();
write_c0_eimr(nlm_irq_mask);
write_c0_eimr(nlm_current_node()->irqmask);
}
void __cpuinit nlm_smp_irq_init(void)
{
/* set interrupt mask for non-zero cpus */
write_c0_eimr(nlm_irq_mask);
write_c0_eimr(nlm_current_node()->irqmask);
}
asmlinkage void plat_irq_dispatch(void)
{
uint64_t eirr;
int i;
int i, node;
node = nlm_nodeid();
eirr = read_c0_eirr() & read_c0_eimr();
if (eirr & (1 << IRQ_TIMER)) {
do_IRQ(IRQ_TIMER);
return;
}
#ifdef CONFIG_SMP
if (eirr & IRQ_IPI_SMP_FUNCTION) {
do_IRQ(IRQ_IPI_SMP_FUNCTION);
return;
}
if (eirr & IRQ_IPI_SMP_RESCHEDULE) {
do_IRQ(IRQ_IPI_SMP_RESCHEDULE);
return;
}
#endif
i = __ilog2_u64(eirr);
if (i == -1)
return;
do_IRQ(i);
do_IRQ(nlm_irq_to_xirq(node, i));
}

View File

@@ -59,12 +59,17 @@
void nlm_send_ipi_single(int logical_cpu, unsigned int action)
{
int cpu = cpu_logical_map(logical_cpu);
int cpu, node;
uint64_t picbase;
cpu = cpu_logical_map(logical_cpu);
node = cpu / NLM_CPUS_PER_NODE;
picbase = nlm_get_node(node)->picbase;
if (action & SMP_CALL_FUNCTION)
nlm_pic_send_ipi(nlm_pic_base, cpu, IRQ_IPI_SMP_FUNCTION, 0);
nlm_pic_send_ipi(picbase, cpu, IRQ_IPI_SMP_FUNCTION, 0);
if (action & SMP_RESCHEDULE_YOURSELF)
nlm_pic_send_ipi(nlm_pic_base, cpu, IRQ_IPI_SMP_RESCHEDULE, 0);
nlm_pic_send_ipi(picbase, cpu, IRQ_IPI_SMP_RESCHEDULE, 0);
}
void nlm_send_ipi_mask(const struct cpumask *mask, unsigned int action)
@@ -96,11 +101,12 @@ void nlm_smp_resched_ipi_handler(unsigned int irq, struct irq_desc *desc)
void nlm_early_init_secondary(int cpu)
{
change_c0_config(CONF_CM_CMASK, 0x3);
write_c0_ebase((uint32_t)nlm_common_ebase);
#ifdef CONFIG_CPU_XLP
if (cpu % 4 == 0)
/* mmu init, once per core */
if (cpu % NLM_THREADS_PER_CORE == 0)
xlp_mmu_init();
#endif
write_c0_ebase(nlm_current_node()->ebase);
}
/*
@@ -108,7 +114,7 @@ void nlm_early_init_secondary(int cpu)
*/
static void __cpuinit nlm_init_secondary(void)
{
current_cpu_data.core = hard_smp_processor_id() / 4;
current_cpu_data.core = hard_smp_processor_id() / NLM_THREADS_PER_CORE;
nlm_smp_irq_init();
}
@@ -142,22 +148,22 @@ cpumask_t phys_cpu_present_map;
void nlm_boot_secondary(int logical_cpu, struct task_struct *idle)
{
unsigned long gp = (unsigned long)task_thread_info(idle);
unsigned long sp = (unsigned long)__KSTK_TOS(idle);
int cpu = cpu_logical_map(logical_cpu);
int cpu, node;
nlm_next_sp = sp;
nlm_next_gp = gp;
cpu = cpu_logical_map(logical_cpu);
node = cpu / NLM_CPUS_PER_NODE;
nlm_next_sp = (unsigned long)__KSTK_TOS(idle);
nlm_next_gp = (unsigned long)task_thread_info(idle);
/* barrier */
/* barrier for sp/gp store above */
__sync();
nlm_pic_send_ipi(nlm_pic_base, cpu, 1, 1);
nlm_pic_send_ipi(nlm_get_node(node)->picbase, cpu, 1, 1); /* NMI */
}
void __init nlm_smp_setup(void)
{
unsigned int boot_cpu;
int num_cpus, i;
int num_cpus, i, ncore;
boot_cpu = hard_smp_processor_id();
cpumask_clear(&phys_cpu_present_map);
@@ -182,11 +188,16 @@ void __init nlm_smp_setup(void)
}
}
/* check with the cores we have worken up */
for (ncore = 0, i = 0; i < NLM_NR_NODES; i++)
ncore += hweight32(nlm_get_node(i)->coremask);
pr_info("Phys CPU present map: %lx, possible map %lx\n",
(unsigned long)cpumask_bits(&phys_cpu_present_map)[0],
(unsigned long)cpumask_bits(cpu_possible_mask)[0]);
pr_info("Detected %i Slave CPU(s)\n", num_cpus);
pr_info("Detected (%dc%dt) %d Slave CPU(s)\n", ncore,
nlm_threads_per_core, num_cpus);
nlm_set_nmi_handler(nlm_boot_secondary_cpus);
}
@@ -196,7 +207,7 @@ static int nlm_parse_cpumask(cpumask_t *wakeup_mask)
int threadmode, i, j;
core0_thr_mask = 0;
for (i = 0; i < 4; i++)
for (i = 0; i < NLM_THREADS_PER_CORE; i++)
if (cpumask_test_cpu(i, wakeup_mask))
core0_thr_mask |= (1 << i);
switch (core0_thr_mask) {
@@ -217,9 +228,9 @@ static int nlm_parse_cpumask(cpumask_t *wakeup_mask)
}
/* Verify other cores CPU masks */
for (i = 0; i < NR_CPUS; i += 4) {
for (i = 0; i < NR_CPUS; i += NLM_THREADS_PER_CORE) {
core_thr_mask = 0;
for (j = 0; j < 4; j++)
for (j = 0; j < NLM_THREADS_PER_CORE; j++)
if (cpumask_test_cpu(i + j, wakeup_mask))
core_thr_mask |= (1 << j);
if (core_thr_mask != 0 && core_thr_mask != core0_thr_mask)