forked from Minki/linux
arm64: Import latest version of Cortex Strings' strcmp
Import the latest version of the former Cortex Strings - now Arm Optimized Routines - strcmp function based on the upstream code of string/aarch64/strcmp.S at commit afd6244 from https://github.com/ARM-software/optimized-routines Note that for simplicity Arm have chosen to contribute this code to Linux under GPLv2 rather than the original MIT license. Signed-off-by: Sam Tebbs <sam.tebbs@arm.com> [ rm: update attribution and commit message ] Signed-off-by: Robin Murphy <robin.murphy@arm.com> Link: https://lore.kernel.org/r/0fe90c90b96b569fbdfd46e47bd1298abb02079e.1622128527.git.robin.murphy@arm.com Signed-off-by: Will Deacon <will@kernel.org>
This commit is contained in:
parent
43de30d367
commit
758602c044
@ -1,84 +1,123 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
/*
|
||||
* Copyright (C) 2013 ARM Ltd.
|
||||
* Copyright (C) 2013 Linaro.
|
||||
* Copyright (c) 2012-2020, Arm Limited.
|
||||
*
|
||||
* This code is based on glibc cortex strings work originally authored by Linaro
|
||||
* be found @
|
||||
*
|
||||
* http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
|
||||
* files/head:/src/aarch64/
|
||||
* Adapted from the original at:
|
||||
* https://github.com/ARM-software/optimized-routines/blob/master/string/aarch64/strcmp.S
|
||||
*/
|
||||
|
||||
#include <linux/linkage.h>
|
||||
#include <asm/assembler.h>
|
||||
|
||||
/*
|
||||
* compare two strings
|
||||
/* Assumptions:
|
||||
*
|
||||
* Parameters:
|
||||
* x0 - const string 1 pointer
|
||||
* x1 - const string 2 pointer
|
||||
* Returns:
|
||||
* x0 - an integer less than, equal to, or greater than zero
|
||||
* if s1 is found, respectively, to be less than, to match,
|
||||
* or be greater than s2.
|
||||
* ARMv8-a, AArch64
|
||||
*/
|
||||
|
||||
#define L(label) .L ## label
|
||||
|
||||
#define REP8_01 0x0101010101010101
|
||||
#define REP8_7f 0x7f7f7f7f7f7f7f7f
|
||||
#define REP8_80 0x8080808080808080
|
||||
|
||||
/* Parameters and result. */
|
||||
src1 .req x0
|
||||
src2 .req x1
|
||||
result .req x0
|
||||
#define src1 x0
|
||||
#define src2 x1
|
||||
#define result x0
|
||||
|
||||
/* Internal variables. */
|
||||
data1 .req x2
|
||||
data1w .req w2
|
||||
data2 .req x3
|
||||
data2w .req w3
|
||||
has_nul .req x4
|
||||
diff .req x5
|
||||
syndrome .req x6
|
||||
tmp1 .req x7
|
||||
tmp2 .req x8
|
||||
tmp3 .req x9
|
||||
zeroones .req x10
|
||||
pos .req x11
|
||||
#define data1 x2
|
||||
#define data1w w2
|
||||
#define data2 x3
|
||||
#define data2w w3
|
||||
#define has_nul x4
|
||||
#define diff x5
|
||||
#define syndrome x6
|
||||
#define tmp1 x7
|
||||
#define tmp2 x8
|
||||
#define tmp3 x9
|
||||
#define zeroones x10
|
||||
#define pos x11
|
||||
|
||||
/* Start of performance-critical section -- one 64B cache line. */
|
||||
.align 6
|
||||
SYM_FUNC_START_WEAK_PI(strcmp)
|
||||
eor tmp1, src1, src2
|
||||
mov zeroones, #REP8_01
|
||||
tst tmp1, #7
|
||||
b.ne .Lmisaligned8
|
||||
b.ne L(misaligned8)
|
||||
ands tmp1, src1, #7
|
||||
b.ne .Lmutual_align
|
||||
|
||||
/*
|
||||
* NUL detection works on the principle that (X - 1) & (~X) & 0x80
|
||||
* (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
|
||||
* can be done in parallel across the entire word.
|
||||
*/
|
||||
.Lloop_aligned:
|
||||
b.ne L(mutual_align)
|
||||
/* NUL detection works on the principle that (X - 1) & (~X) & 0x80
|
||||
(=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
|
||||
can be done in parallel across the entire word. */
|
||||
L(loop_aligned):
|
||||
ldr data1, [src1], #8
|
||||
ldr data2, [src2], #8
|
||||
.Lstart_realigned:
|
||||
L(start_realigned):
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, #REP8_7f
|
||||
eor diff, data1, data2 /* Non-zero if differences found. */
|
||||
bic has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
|
||||
orr syndrome, diff, has_nul
|
||||
cbz syndrome, .Lloop_aligned
|
||||
b .Lcal_cmpresult
|
||||
cbz syndrome, L(loop_aligned)
|
||||
/* End of performance-critical section -- one 64B cache line. */
|
||||
|
||||
.Lmutual_align:
|
||||
/*
|
||||
* Sources are mutually aligned, but are not currently at an
|
||||
* alignment boundary. Round down the addresses and then mask off
|
||||
* the bytes that preceed the start point.
|
||||
*/
|
||||
L(end):
|
||||
#ifndef __AARCH64EB__
|
||||
rev syndrome, syndrome
|
||||
rev data1, data1
|
||||
/* The MS-non-zero bit of the syndrome marks either the first bit
|
||||
that is different, or the top bit of the first zero byte.
|
||||
Shifting left now will bring the critical information into the
|
||||
top bits. */
|
||||
clz pos, syndrome
|
||||
rev data2, data2
|
||||
lsl data1, data1, pos
|
||||
lsl data2, data2, pos
|
||||
/* But we need to zero-extend (char is unsigned) the value and then
|
||||
perform a signed 32-bit subtraction. */
|
||||
lsr data1, data1, #56
|
||||
sub result, data1, data2, lsr #56
|
||||
ret
|
||||
#else
|
||||
/* For big-endian we cannot use the trick with the syndrome value
|
||||
as carry-propagation can corrupt the upper bits if the trailing
|
||||
bytes in the string contain 0x01. */
|
||||
/* However, if there is no NUL byte in the dword, we can generate
|
||||
the result directly. We can't just subtract the bytes as the
|
||||
MSB might be significant. */
|
||||
cbnz has_nul, 1f
|
||||
cmp data1, data2
|
||||
cset result, ne
|
||||
cneg result, result, lo
|
||||
ret
|
||||
1:
|
||||
/* Re-compute the NUL-byte detection, using a byte-reversed value. */
|
||||
rev tmp3, data1
|
||||
sub tmp1, tmp3, zeroones
|
||||
orr tmp2, tmp3, #REP8_7f
|
||||
bic has_nul, tmp1, tmp2
|
||||
rev has_nul, has_nul
|
||||
orr syndrome, diff, has_nul
|
||||
clz pos, syndrome
|
||||
/* The MS-non-zero bit of the syndrome marks either the first bit
|
||||
that is different, or the top bit of the first zero byte.
|
||||
Shifting left now will bring the critical information into the
|
||||
top bits. */
|
||||
lsl data1, data1, pos
|
||||
lsl data2, data2, pos
|
||||
/* But we need to zero-extend (char is unsigned) the value and then
|
||||
perform a signed 32-bit subtraction. */
|
||||
lsr data1, data1, #56
|
||||
sub result, data1, data2, lsr #56
|
||||
ret
|
||||
#endif
|
||||
|
||||
L(mutual_align):
|
||||
/* Sources are mutually aligned, but are not currently at an
|
||||
alignment boundary. Round down the addresses and then mask off
|
||||
the bytes that preceed the start point. */
|
||||
bic src1, src1, #7
|
||||
bic src2, src2, #7
|
||||
lsl tmp1, tmp1, #3 /* Bytes beyond alignment -> bits. */
|
||||
@ -86,138 +125,52 @@ SYM_FUNC_START_WEAK_PI(strcmp)
|
||||
neg tmp1, tmp1 /* Bits to alignment -64. */
|
||||
ldr data2, [src2], #8
|
||||
mov tmp2, #~0
|
||||
#ifdef __AARCH64EB__
|
||||
/* Big-endian. Early bytes are at MSB. */
|
||||
CPU_BE( lsl tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */
|
||||
lsl tmp2, tmp2, tmp1 /* Shift (tmp1 & 63). */
|
||||
#else
|
||||
/* Little-endian. Early bytes are at LSB. */
|
||||
CPU_LE( lsr tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */
|
||||
|
||||
lsr tmp2, tmp2, tmp1 /* Shift (tmp1 & 63). */
|
||||
#endif
|
||||
orr data1, data1, tmp2
|
||||
orr data2, data2, tmp2
|
||||
b .Lstart_realigned
|
||||
b L(start_realigned)
|
||||
|
||||
.Lmisaligned8:
|
||||
/*
|
||||
* Get the align offset length to compare per byte first.
|
||||
* After this process, one string's address will be aligned.
|
||||
*/
|
||||
and tmp1, src1, #7
|
||||
neg tmp1, tmp1
|
||||
add tmp1, tmp1, #8
|
||||
and tmp2, src2, #7
|
||||
neg tmp2, tmp2
|
||||
add tmp2, tmp2, #8
|
||||
subs tmp3, tmp1, tmp2
|
||||
csel pos, tmp1, tmp2, hi /*Choose the maximum. */
|
||||
.Ltinycmp:
|
||||
L(misaligned8):
|
||||
/* Align SRC1 to 8 bytes and then compare 8 bytes at a time, always
|
||||
checking to make sure that we don't access beyond page boundary in
|
||||
SRC2. */
|
||||
tst src1, #7
|
||||
b.eq L(loop_misaligned)
|
||||
L(do_misaligned):
|
||||
ldrb data1w, [src1], #1
|
||||
ldrb data2w, [src2], #1
|
||||
subs pos, pos, #1
|
||||
ccmp data1w, #1, #0, ne /* NZCV = 0b0000. */
|
||||
ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */
|
||||
b.eq .Ltinycmp
|
||||
cbnz pos, 1f /*find the null or unequal...*/
|
||||
cmp data1w, #1
|
||||
ccmp data1w, data2w, #0, cs
|
||||
b.eq .Lstart_align /*the last bytes are equal....*/
|
||||
1:
|
||||
ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */
|
||||
b.ne L(done)
|
||||
tst src1, #7
|
||||
b.ne L(do_misaligned)
|
||||
|
||||
L(loop_misaligned):
|
||||
/* Test if we are within the last dword of the end of a 4K page. If
|
||||
yes then jump back to the misaligned loop to copy a byte at a time. */
|
||||
and tmp1, src2, #0xff8
|
||||
eor tmp1, tmp1, #0xff8
|
||||
cbz tmp1, L(do_misaligned)
|
||||
ldr data1, [src1], #8
|
||||
ldr data2, [src2], #8
|
||||
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, #REP8_7f
|
||||
eor diff, data1, data2 /* Non-zero if differences found. */
|
||||
bic has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
|
||||
orr syndrome, diff, has_nul
|
||||
cbz syndrome, L(loop_misaligned)
|
||||
b L(end)
|
||||
|
||||
L(done):
|
||||
sub result, data1, data2
|
||||
ret
|
||||
|
||||
.Lstart_align:
|
||||
ands xzr, src1, #7
|
||||
b.eq .Lrecal_offset
|
||||
/*process more leading bytes to make str1 aligned...*/
|
||||
add src1, src1, tmp3
|
||||
add src2, src2, tmp3
|
||||
/*load 8 bytes from aligned str1 and non-aligned str2..*/
|
||||
ldr data1, [src1], #8
|
||||
ldr data2, [src2], #8
|
||||
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, #REP8_7f
|
||||
bic has_nul, tmp1, tmp2
|
||||
eor diff, data1, data2 /* Non-zero if differences found. */
|
||||
orr syndrome, diff, has_nul
|
||||
cbnz syndrome, .Lcal_cmpresult
|
||||
/*How far is the current str2 from the alignment boundary...*/
|
||||
and tmp3, tmp3, #7
|
||||
.Lrecal_offset:
|
||||
neg pos, tmp3
|
||||
.Lloopcmp_proc:
|
||||
/*
|
||||
* Divide the eight bytes into two parts. First,backwards the src2
|
||||
* to an alignment boundary,load eight bytes from the SRC2 alignment
|
||||
* boundary,then compare with the relative bytes from SRC1.
|
||||
* If all 8 bytes are equal,then start the second part's comparison.
|
||||
* Otherwise finish the comparison.
|
||||
* This special handle can garantee all the accesses are in the
|
||||
* thread/task space in avoid to overrange access.
|
||||
*/
|
||||
ldr data1, [src1,pos]
|
||||
ldr data2, [src2,pos]
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, #REP8_7f
|
||||
bic has_nul, tmp1, tmp2
|
||||
eor diff, data1, data2 /* Non-zero if differences found. */
|
||||
orr syndrome, diff, has_nul
|
||||
cbnz syndrome, .Lcal_cmpresult
|
||||
|
||||
/*The second part process*/
|
||||
ldr data1, [src1], #8
|
||||
ldr data2, [src2], #8
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, #REP8_7f
|
||||
bic has_nul, tmp1, tmp2
|
||||
eor diff, data1, data2 /* Non-zero if differences found. */
|
||||
orr syndrome, diff, has_nul
|
||||
cbz syndrome, .Lloopcmp_proc
|
||||
|
||||
.Lcal_cmpresult:
|
||||
/*
|
||||
* reversed the byte-order as big-endian,then CLZ can find the most
|
||||
* significant zero bits.
|
||||
*/
|
||||
CPU_LE( rev syndrome, syndrome )
|
||||
CPU_LE( rev data1, data1 )
|
||||
CPU_LE( rev data2, data2 )
|
||||
|
||||
/*
|
||||
* For big-endian we cannot use the trick with the syndrome value
|
||||
* as carry-propagation can corrupt the upper bits if the trailing
|
||||
* bytes in the string contain 0x01.
|
||||
* However, if there is no NUL byte in the dword, we can generate
|
||||
* the result directly. We cannot just subtract the bytes as the
|
||||
* MSB might be significant.
|
||||
*/
|
||||
CPU_BE( cbnz has_nul, 1f )
|
||||
CPU_BE( cmp data1, data2 )
|
||||
CPU_BE( cset result, ne )
|
||||
CPU_BE( cneg result, result, lo )
|
||||
CPU_BE( ret )
|
||||
CPU_BE( 1: )
|
||||
/*Re-compute the NUL-byte detection, using a byte-reversed value. */
|
||||
CPU_BE( rev tmp3, data1 )
|
||||
CPU_BE( sub tmp1, tmp3, zeroones )
|
||||
CPU_BE( orr tmp2, tmp3, #REP8_7f )
|
||||
CPU_BE( bic has_nul, tmp1, tmp2 )
|
||||
CPU_BE( rev has_nul, has_nul )
|
||||
CPU_BE( orr syndrome, diff, has_nul )
|
||||
|
||||
clz pos, syndrome
|
||||
/*
|
||||
* The MS-non-zero bit of the syndrome marks either the first bit
|
||||
* that is different, or the top bit of the first zero byte.
|
||||
* Shifting left now will bring the critical information into the
|
||||
* top bits.
|
||||
*/
|
||||
lsl data1, data1, pos
|
||||
lsl data2, data2, pos
|
||||
/*
|
||||
* But we need to zero-extend (char is unsigned) the value and then
|
||||
* perform a signed 32-bit subtraction.
|
||||
*/
|
||||
lsr data1, data1, #56
|
||||
sub result, data1, data2, lsr #56
|
||||
ret
|
||||
SYM_FUNC_END_PI(strcmp)
|
||||
EXPORT_SYMBOL_NOKASAN(strcmp)
|
||||
|
Loading…
Reference in New Issue
Block a user