x86/speculation: Add SRBDS vulnerability and mitigation documentation
Add documentation for the SRBDS vulnerability and its mitigation. [ bp: Massage. jpoimboe: sysfs table strings. ] Signed-off-by: Mark Gross <mgross@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Tony Luck <tony.luck@intel.com> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
This commit is contained in:
parent
7e5b3c267d
commit
7222a1b5b8
@ -14,3 +14,4 @@ are configurable at compile, boot or run time.
|
||||
mds
|
||||
tsx_async_abort
|
||||
multihit.rst
|
||||
special-register-buffer-data-sampling.rst
|
||||
|
@ -0,0 +1,148 @@
|
||||
.. SPDX-License-Identifier: GPL-2.0
|
||||
|
||||
SRBDS - Special Register Buffer Data Sampling
|
||||
=============================================
|
||||
|
||||
SRBDS is a hardware vulnerability that allows MDS :doc:`mds` techniques to
|
||||
infer values returned from special register accesses. Special register
|
||||
accesses are accesses to off core registers. According to Intel's evaluation,
|
||||
the special register reads that have a security expectation of privacy are
|
||||
RDRAND, RDSEED and SGX EGETKEY.
|
||||
|
||||
When RDRAND, RDSEED and EGETKEY instructions are used, the data is moved
|
||||
to the core through the special register mechanism that is susceptible
|
||||
to MDS attacks.
|
||||
|
||||
Affected processors
|
||||
--------------------
|
||||
Core models (desktop, mobile, Xeon-E3) that implement RDRAND and/or RDSEED may
|
||||
be affected.
|
||||
|
||||
A processor is affected by SRBDS if its Family_Model and stepping is
|
||||
in the following list, with the exception of the listed processors
|
||||
exporting MDS_NO while Intel TSX is available yet not enabled. The
|
||||
latter class of processors are only affected when Intel TSX is enabled
|
||||
by software using TSX_CTRL_MSR otherwise they are not affected.
|
||||
|
||||
============= ============ ========
|
||||
common name Family_Model Stepping
|
||||
============= ============ ========
|
||||
Haswell 06_3CH All
|
||||
Haswell_L 06_45H All
|
||||
Haswell_G 06_46H All
|
||||
|
||||
Broadwell_G 06_47H All
|
||||
Broadwell 06_3DH All
|
||||
|
||||
Skylake_L 06_4EH All
|
||||
Skylake 06_5EH All
|
||||
|
||||
Kabylake_L 06_8EH <=0xC
|
||||
|
||||
Kabylake 06_9EH <=0xD
|
||||
============= ============ ========
|
||||
|
||||
Related CVEs
|
||||
------------
|
||||
|
||||
The following CVE entry is related to this SRBDS issue:
|
||||
|
||||
============== ===== =====================================
|
||||
CVE-2020-0543 SRBDS Special Register Buffer Data Sampling
|
||||
============== ===== =====================================
|
||||
|
||||
Attack scenarios
|
||||
----------------
|
||||
An unprivileged user can extract values returned from RDRAND and RDSEED
|
||||
executed on another core or sibling thread using MDS techniques.
|
||||
|
||||
|
||||
Mitigation mechanism
|
||||
-------------------
|
||||
Intel will release microcode updates that modify the RDRAND, RDSEED, and
|
||||
EGETKEY instructions to overwrite secret special register data in the shared
|
||||
staging buffer before the secret data can be accessed by another logical
|
||||
processor.
|
||||
|
||||
During execution of the RDRAND, RDSEED, or EGETKEY instructions, off-core
|
||||
accesses from other logical processors will be delayed until the special
|
||||
register read is complete and the secret data in the shared staging buffer is
|
||||
overwritten.
|
||||
|
||||
This has three effects on performance:
|
||||
|
||||
#. RDRAND, RDSEED, or EGETKEY instructions have higher latency.
|
||||
|
||||
#. Executing RDRAND at the same time on multiple logical processors will be
|
||||
serialized, resulting in an overall reduction in the maximum RDRAND
|
||||
bandwidth.
|
||||
|
||||
#. Executing RDRAND, RDSEED or EGETKEY will delay memory accesses from other
|
||||
logical processors that miss their core caches, with an impact similar to
|
||||
legacy locked cache-line-split accesses.
|
||||
|
||||
The microcode updates provide an opt-out mechanism (RNGDS_MITG_DIS) to disable
|
||||
the mitigation for RDRAND and RDSEED instructions executed outside of Intel
|
||||
Software Guard Extensions (Intel SGX) enclaves. On logical processors that
|
||||
disable the mitigation using this opt-out mechanism, RDRAND and RDSEED do not
|
||||
take longer to execute and do not impact performance of sibling logical
|
||||
processors memory accesses. The opt-out mechanism does not affect Intel SGX
|
||||
enclaves (including execution of RDRAND or RDSEED inside an enclave, as well
|
||||
as EGETKEY execution).
|
||||
|
||||
IA32_MCU_OPT_CTRL MSR Definition
|
||||
--------------------------------
|
||||
Along with the mitigation for this issue, Intel added a new thread-scope
|
||||
IA32_MCU_OPT_CTRL MSR, (address 0x123). The presence of this MSR and
|
||||
RNGDS_MITG_DIS (bit 0) is enumerated by CPUID.(EAX=07H,ECX=0).EDX[SRBDS_CTRL =
|
||||
9]==1. This MSR is introduced through the microcode update.
|
||||
|
||||
Setting IA32_MCU_OPT_CTRL[0] (RNGDS_MITG_DIS) to 1 for a logical processor
|
||||
disables the mitigation for RDRAND and RDSEED executed outside of an Intel SGX
|
||||
enclave on that logical processor. Opting out of the mitigation for a
|
||||
particular logical processor does not affect the RDRAND and RDSEED mitigations
|
||||
for other logical processors.
|
||||
|
||||
Note that inside of an Intel SGX enclave, the mitigation is applied regardless
|
||||
of the value of RNGDS_MITG_DS.
|
||||
|
||||
Mitigation control on the kernel command line
|
||||
---------------------------------------------
|
||||
The kernel command line allows control over the SRBDS mitigation at boot time
|
||||
with the option "srbds=". The option for this is:
|
||||
|
||||
============= =============================================================
|
||||
off This option disables SRBDS mitigation for RDRAND and RDSEED on
|
||||
affected platforms.
|
||||
============= =============================================================
|
||||
|
||||
SRBDS System Information
|
||||
-----------------------
|
||||
The Linux kernel provides vulnerability status information through sysfs. For
|
||||
SRBDS this can be accessed by the following sysfs file:
|
||||
/sys/devices/system/cpu/vulnerabilities/srbds
|
||||
|
||||
The possible values contained in this file are:
|
||||
|
||||
============================== =============================================
|
||||
Not affected Processor not vulnerable
|
||||
Vulnerable Processor vulnerable and mitigation disabled
|
||||
Vulnerable: No microcode Processor vulnerable and microcode is missing
|
||||
mitigation
|
||||
Mitigation: Microcode Processor is vulnerable and mitigation is in
|
||||
effect.
|
||||
Mitigation: TSX disabled Processor is only vulnerable when TSX is
|
||||
enabled while this system was booted with TSX
|
||||
disabled.
|
||||
Unknown: Dependent on
|
||||
hypervisor status Running on virtual guest processor that is
|
||||
affected but with no way to know if host
|
||||
processor is mitigated or vulnerable.
|
||||
============================== =============================================
|
||||
|
||||
SRBDS Default mitigation
|
||||
------------------------
|
||||
This new microcode serializes processor access during execution of RDRAND,
|
||||
RDSEED ensures that the shared buffer is overwritten before it is released for
|
||||
reuse. Use the "srbds=off" kernel command line to disable the mitigation for
|
||||
RDRAND and RDSEED.
|
Loading…
Reference in New Issue
Block a user