x86/platform/uv: Remove uv bios and efi code related to EFI_UV1_MEMMAP
With UV1 removed, EFI_UV1_MEMMAP is not longer used. Remove the code used by it and the related code in EFI. Signed-off-by: Steve Wahl <steve.wahl@hpe.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lkml.kernel.org/r/20200713212955.902592618@hpe.com
This commit is contained in:
parent
66d67fecd8
commit
6aa3baabe1
@ -496,7 +496,7 @@ void __init efi_init(void)
|
||||
efi_print_memmap();
|
||||
}
|
||||
|
||||
#if defined(CONFIG_X86_32) || defined(CONFIG_X86_UV)
|
||||
#if defined(CONFIG_X86_32)
|
||||
|
||||
void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
|
||||
{
|
||||
|
@ -30,17 +30,7 @@ static s64 __uv_bios_call(enum uv_bios_cmd which, u64 a1, u64 a2, u64 a3,
|
||||
*/
|
||||
return BIOS_STATUS_UNIMPLEMENTED;
|
||||
|
||||
/*
|
||||
* If EFI_UV1_MEMMAP is set, we need to fall back to using our old EFI
|
||||
* callback method, which uses efi_call() directly, with the kernel page tables:
|
||||
*/
|
||||
if (unlikely(efi_enabled(EFI_UV1_MEMMAP))) {
|
||||
kernel_fpu_begin();
|
||||
ret = efi_call((void *)__va(tab->function), (u64)which, a1, a2, a3, a4, a5);
|
||||
kernel_fpu_end();
|
||||
} else {
|
||||
ret = efi_call_virt_pointer(tab, function, (u64)which, a1, a2, a3, a4, a5);
|
||||
}
|
||||
ret = efi_call_virt_pointer(tab, function, (u64)which, a1, a2, a3, a4, a5);
|
||||
|
||||
return ret;
|
||||
}
|
||||
@ -209,150 +199,3 @@ int uv_bios_init(void)
|
||||
pr_info("UV: UVsystab: Revision:%x\n", uv_systab->revision);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __init early_code_mapping_set_exec(int executable)
|
||||
{
|
||||
efi_memory_desc_t *md;
|
||||
|
||||
if (!(__supported_pte_mask & _PAGE_NX))
|
||||
return;
|
||||
|
||||
/* Make EFI service code area executable */
|
||||
for_each_efi_memory_desc(md) {
|
||||
if (md->type == EFI_RUNTIME_SERVICES_CODE ||
|
||||
md->type == EFI_BOOT_SERVICES_CODE)
|
||||
efi_set_executable(md, executable);
|
||||
}
|
||||
}
|
||||
|
||||
void __init efi_uv1_memmap_phys_epilog(pgd_t *save_pgd)
|
||||
{
|
||||
/*
|
||||
* After the lock is released, the original page table is restored.
|
||||
*/
|
||||
int pgd_idx, i;
|
||||
int nr_pgds;
|
||||
pgd_t *pgd;
|
||||
p4d_t *p4d;
|
||||
pud_t *pud;
|
||||
|
||||
nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
|
||||
|
||||
for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) {
|
||||
pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE);
|
||||
set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
|
||||
|
||||
if (!pgd_present(*pgd))
|
||||
continue;
|
||||
|
||||
for (i = 0; i < PTRS_PER_P4D; i++) {
|
||||
p4d = p4d_offset(pgd,
|
||||
pgd_idx * PGDIR_SIZE + i * P4D_SIZE);
|
||||
|
||||
if (!p4d_present(*p4d))
|
||||
continue;
|
||||
|
||||
pud = (pud_t *)p4d_page_vaddr(*p4d);
|
||||
pud_free(&init_mm, pud);
|
||||
}
|
||||
|
||||
p4d = (p4d_t *)pgd_page_vaddr(*pgd);
|
||||
p4d_free(&init_mm, p4d);
|
||||
}
|
||||
|
||||
kfree(save_pgd);
|
||||
|
||||
__flush_tlb_all();
|
||||
early_code_mapping_set_exec(0);
|
||||
}
|
||||
|
||||
pgd_t * __init efi_uv1_memmap_phys_prolog(void)
|
||||
{
|
||||
unsigned long vaddr, addr_pgd, addr_p4d, addr_pud;
|
||||
pgd_t *save_pgd, *pgd_k, *pgd_efi;
|
||||
p4d_t *p4d, *p4d_k, *p4d_efi;
|
||||
pud_t *pud;
|
||||
|
||||
int pgd;
|
||||
int n_pgds, i, j;
|
||||
|
||||
early_code_mapping_set_exec(1);
|
||||
|
||||
n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
|
||||
save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
|
||||
if (!save_pgd)
|
||||
return NULL;
|
||||
|
||||
/*
|
||||
* Build 1:1 identity mapping for UV1 memmap usage. Note that
|
||||
* PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
|
||||
* it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
|
||||
* address X, the pud_index(X) != pud_index(__va(X)), we can only copy
|
||||
* PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
|
||||
* This means here we can only reuse the PMD tables of the direct mapping.
|
||||
*/
|
||||
for (pgd = 0; pgd < n_pgds; pgd++) {
|
||||
addr_pgd = (unsigned long)(pgd * PGDIR_SIZE);
|
||||
vaddr = (unsigned long)__va(pgd * PGDIR_SIZE);
|
||||
pgd_efi = pgd_offset_k(addr_pgd);
|
||||
save_pgd[pgd] = *pgd_efi;
|
||||
|
||||
p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd);
|
||||
if (!p4d) {
|
||||
pr_err("Failed to allocate p4d table!\n");
|
||||
goto out;
|
||||
}
|
||||
|
||||
for (i = 0; i < PTRS_PER_P4D; i++) {
|
||||
addr_p4d = addr_pgd + i * P4D_SIZE;
|
||||
p4d_efi = p4d + p4d_index(addr_p4d);
|
||||
|
||||
pud = pud_alloc(&init_mm, p4d_efi, addr_p4d);
|
||||
if (!pud) {
|
||||
pr_err("Failed to allocate pud table!\n");
|
||||
goto out;
|
||||
}
|
||||
|
||||
for (j = 0; j < PTRS_PER_PUD; j++) {
|
||||
addr_pud = addr_p4d + j * PUD_SIZE;
|
||||
|
||||
if (addr_pud > (max_pfn << PAGE_SHIFT))
|
||||
break;
|
||||
|
||||
vaddr = (unsigned long)__va(addr_pud);
|
||||
|
||||
pgd_k = pgd_offset_k(vaddr);
|
||||
p4d_k = p4d_offset(pgd_k, vaddr);
|
||||
pud[j] = *pud_offset(p4d_k, vaddr);
|
||||
}
|
||||
}
|
||||
pgd_offset_k(pgd * PGDIR_SIZE)->pgd &= ~_PAGE_NX;
|
||||
}
|
||||
|
||||
__flush_tlb_all();
|
||||
return save_pgd;
|
||||
out:
|
||||
efi_uv1_memmap_phys_epilog(save_pgd);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
|
||||
u32 type, u64 attribute)
|
||||
{
|
||||
unsigned long last_map_pfn;
|
||||
|
||||
if (type == EFI_MEMORY_MAPPED_IO)
|
||||
return ioremap(phys_addr, size);
|
||||
|
||||
last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size,
|
||||
PAGE_KERNEL);
|
||||
if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
|
||||
unsigned long top = last_map_pfn << PAGE_SHIFT;
|
||||
efi_ioremap(top, size - (top - phys_addr), type, attribute);
|
||||
}
|
||||
|
||||
if (!(attribute & EFI_MEMORY_WB))
|
||||
efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
|
||||
|
||||
return (void __iomem *)__va(phys_addr);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user