x86, numa: Fix numa emulation calculation of big nodes
numa=fake=N uses split_nodes_interleave() to partition the system into N fake nodes. Each node size must have be a multiple of FAKE_NODE_MIN_SIZE, otherwise it is possible to get strange alignments. Because of this, the remaining memory from each node when rounded to FAKE_NODE_MIN_SIZE is consolidated into a number of "big nodes" that are bigger than the rest. The calculation of the number of big nodes is incorrect since it is using a logical AND operator when it should be multiplying the rounded-off portion of each node with N. Signed-off-by: David Rientjes <rientjes@google.com> LKML-Reference: <alpine.DEB.2.00.1002151342230.26927@chino.kir.corp.google.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
This commit is contained in:
parent
0271f91003
commit
68fd111e02
@ -427,7 +427,7 @@ static int __init split_nodes_interleave(u64 addr, u64 max_addr,
|
||||
* Calculate the number of big nodes that can be allocated as a result
|
||||
* of consolidating the remainder.
|
||||
*/
|
||||
big = ((size & ~FAKE_NODE_MIN_HASH_MASK) & nr_nodes) /
|
||||
big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
|
||||
FAKE_NODE_MIN_SIZE;
|
||||
|
||||
size &= FAKE_NODE_MIN_HASH_MASK;
|
||||
|
Loading…
Reference in New Issue
Block a user