iio: chemical: scd30: add core driver

Add Sensirion SCD30 carbon dioxide core driver.

Signed-off-by: Tomasz Duszynski <tomasz.duszynski@octakon.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
This commit is contained in:
Tomasz Duszynski 2020-06-21 21:56:58 +02:00 committed by Jonathan Cameron
parent 477c653f0e
commit 64b3d8b1b0
6 changed files with 901 additions and 0 deletions

View File

@ -0,0 +1,34 @@
What: /sys/bus/iio/devices/iio:deviceX/calibration_auto_enable
Date: June 2020
KernelVersion: 5.8
Contact: linux-iio@vger.kernel.org
Description:
Contaminants build-up in the measurement chamber or optical
elements deterioration leads to sensor drift.
One can compensate for sensor drift by using automatic self
calibration procedure (asc).
Writing 1 or 0 to this attribute will respectively activate or
deactivate asc.
Upon reading current asc status is returned.
What: /sys/bus/iio/devices/iio:deviceX/calibration_forced_value
Date: June 2020
KernelVersion: 5.8
Contact: linux-iio@vger.kernel.org
Description:
Contaminants build-up in the measurement chamber or optical
elements deterioration leads to sensor drift.
One can compensate for sensor drift by using forced
recalibration (frc). This is useful in case there's known
co2 reference available nearby the sensor.
Picking value from the range [400 1 2000] and writing it to the
sensor will set frc.
Upon reading current frc value is returned. Note that after
power cycling default value (i.e 400) is returned even though
internally sensor had recalibrated itself.

View File

@ -15351,6 +15351,12 @@ S: Maintained
F: drivers/misc/phantom.c
F: include/uapi/linux/phantom.h
SENSIRION SCD30 CARBON DIOXIDE SENSOR DRIVER
M: Tomasz Duszynski <tomasz.duszynski@octakon.com>
S: Maintained
F: drivers/iio/chemical/scd30.h
F: drivers/iio/chemical/scd30_core.c
SENSIRION SPS30 AIR POLLUTION SENSOR DRIVER
M: Tomasz Duszynski <tduszyns@gmail.com>
S: Maintained

View File

@ -85,6 +85,17 @@ config PMS7003
To compile this driver as a module, choose M here: the module will
be called pms7003.
config SCD30_CORE
tristate "SCD30 carbon dioxide sensor driver"
select IIO_BUFFER
select IIO_TRIGGERED_BUFFER
help
Say Y here to build support for the Sensirion SCD30 sensor with carbon
dioxide, relative humidity and temperature sensing capabilities.
To compile this driver as a module, choose M here: the module will
be called scd30_core.
config SENSIRION_SGP30
tristate "Sensirion SGPxx gas sensors"
depends on I2C

View File

@ -12,6 +12,7 @@ obj-$(CONFIG_BME680_SPI) += bme680_spi.o
obj-$(CONFIG_CCS811) += ccs811.o
obj-$(CONFIG_IAQCORE) += ams-iaq-core.o
obj-$(CONFIG_PMS7003) += pms7003.o
obj-$(CONFIG_SCD30_CORE) += scd30_core.o
obj-$(CONFIG_SENSIRION_SGP30) += sgp30.o
obj-$(CONFIG_SPS30) += sps30.o
obj-$(CONFIG_VZ89X) += vz89x.o

View File

@ -0,0 +1,78 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _SCD30_H
#define _SCD30_H
#include <linux/completion.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/pm.h>
#include <linux/regulator/consumer.h>
#include <linux/types.h>
struct scd30_state;
enum scd30_cmd {
/* start continuous measurement with pressure compensation */
CMD_START_MEAS,
/* stop continuous measurement */
CMD_STOP_MEAS,
/* set/get measurement interval */
CMD_MEAS_INTERVAL,
/* check whether new measurement is ready */
CMD_MEAS_READY,
/* get measurement */
CMD_READ_MEAS,
/* turn on/off automatic self calibration */
CMD_ASC,
/* set/get forced recalibration value */
CMD_FRC,
/* set/get temperature offset */
CMD_TEMP_OFFSET,
/* get firmware version */
CMD_FW_VERSION,
/* reset sensor */
CMD_RESET,
/*
* Command for altitude compensation was omitted intentionally because
* the same can be achieved by means of CMD_START_MEAS which takes
* pressure above the sea level as an argument.
*/
};
#define SCD30_MEAS_COUNT 3
typedef int (*scd30_command_t)(struct scd30_state *state, enum scd30_cmd cmd, u16 arg,
void *response, int size);
struct scd30_state {
/* serialize access to the device */
struct mutex lock;
struct device *dev;
struct regulator *vdd;
struct completion meas_ready;
/*
* priv pointer is solely for serdev driver private data. We keep it
* here because driver_data inside dev has been already used for iio and
* struct serdev_device doesn't have one.
*/
void *priv;
int irq;
/*
* no way to retrieve current ambient pressure compensation value from
* the sensor so keep one around
*/
u16 pressure_comp;
u16 meas_interval;
int meas[SCD30_MEAS_COUNT];
scd30_command_t command;
};
int scd30_suspend(struct device *dev);
int scd30_resume(struct device *dev);
static __maybe_unused SIMPLE_DEV_PM_OPS(scd30_pm_ops, scd30_suspend, scd30_resume);
int scd30_probe(struct device *dev, int irq, const char *name, void *priv, scd30_command_t command);
#endif

View File

@ -0,0 +1,771 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Sensirion SCD30 carbon dioxide sensor core driver
*
* Copyright (c) 2020 Tomasz Duszynski <tomasz.duszynski@octakon.com>
*/
#include <linux/bits.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/types.h>
#include <linux/interrupt.h>
#include <linux/irqreturn.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/regulator/consumer.h>
#include <linux/string.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <asm/byteorder.h>
#include "scd30.h"
#define SCD30_PRESSURE_COMP_MIN_MBAR 700
#define SCD30_PRESSURE_COMP_MAX_MBAR 1400
#define SCD30_PRESSURE_COMP_DEFAULT 1013
#define SCD30_MEAS_INTERVAL_MIN_S 2
#define SCD30_MEAS_INTERVAL_MAX_S 1800
#define SCD30_MEAS_INTERVAL_DEFAULT SCD30_MEAS_INTERVAL_MIN_S
#define SCD30_FRC_MIN_PPM 400
#define SCD30_FRC_MAX_PPM 2000
#define SCD30_TEMP_OFFSET_MAX 655360
#define SCD30_EXTRA_TIMEOUT_PER_S 250
enum {
SCD30_CONC,
SCD30_TEMP,
SCD30_HR,
};
static int scd30_command_write(struct scd30_state *state, enum scd30_cmd cmd, u16 arg)
{
return state->command(state, cmd, arg, NULL, 0);
}
static int scd30_command_read(struct scd30_state *state, enum scd30_cmd cmd, u16 *val)
{
__be16 tmp;
int ret;
ret = state->command(state, cmd, 0, &tmp, sizeof(tmp));
*val = be16_to_cpup(&tmp);
return ret;
}
static int scd30_reset(struct scd30_state *state)
{
int ret;
u16 val;
ret = scd30_command_write(state, CMD_RESET, 0);
if (ret)
return ret;
/* sensor boots up within 2 secs */
msleep(2000);
/*
* Power-on-reset causes sensor to produce some glitch on i2c bus and
* some controllers end up in error state. Try to recover by placing
* any data on the bus.
*/
scd30_command_read(state, CMD_MEAS_READY, &val);
return 0;
}
/* simplified float to fixed point conversion with a scaling factor of 0.01 */
static int scd30_float_to_fp(int float32)
{
int fraction, shift,
mantissa = float32 & GENMASK(22, 0),
sign = (float32 & BIT(31)) ? -1 : 1,
exp = (float32 & ~BIT(31)) >> 23;
/* special case 0 */
if (!exp && !mantissa)
return 0;
exp -= 127;
if (exp < 0) {
exp = -exp;
/* return values ranging from 1 to 99 */
return sign * ((((BIT(23) + mantissa) * 100) >> 23) >> exp);
}
/* return values starting at 100 */
shift = 23 - exp;
float32 = BIT(exp) + (mantissa >> shift);
fraction = mantissa & GENMASK(shift - 1, 0);
return sign * (float32 * 100 + ((fraction * 100) >> shift));
}
static int scd30_read_meas(struct scd30_state *state)
{
int i, ret;
ret = state->command(state, CMD_READ_MEAS, 0, state->meas, sizeof(state->meas));
if (ret)
return ret;
be32_to_cpu_array(state->meas, (__be32 *)state->meas, ARRAY_SIZE(state->meas));
for (i = 0; i < ARRAY_SIZE(state->meas); i++)
state->meas[i] = scd30_float_to_fp(state->meas[i]);
/*
* co2 is left unprocessed while temperature and humidity are scaled
* to milli deg C and milli percent respectively.
*/
state->meas[SCD30_TEMP] *= 10;
state->meas[SCD30_HR] *= 10;
return 0;
}
static int scd30_wait_meas_irq(struct scd30_state *state)
{
int ret, timeout;
reinit_completion(&state->meas_ready);
enable_irq(state->irq);
timeout = msecs_to_jiffies(state->meas_interval * (1000 + SCD30_EXTRA_TIMEOUT_PER_S));
ret = wait_for_completion_interruptible_timeout(&state->meas_ready, timeout);
if (ret > 0)
ret = 0;
else if (!ret)
ret = -ETIMEDOUT;
disable_irq(state->irq);
return ret;
}
static int scd30_wait_meas_poll(struct scd30_state *state)
{
int timeout = state->meas_interval * SCD30_EXTRA_TIMEOUT_PER_S, tries = 5;
do {
int ret;
u16 val;
ret = scd30_command_read(state, CMD_MEAS_READY, &val);
if (ret)
return -EIO;
/* new measurement available */
if (val)
break;
msleep_interruptible(timeout);
} while (--tries);
return tries ? 0 : -ETIMEDOUT;
}
static int scd30_read_poll(struct scd30_state *state)
{
int ret;
ret = scd30_wait_meas_poll(state);
if (ret)
return ret;
return scd30_read_meas(state);
}
static int scd30_read(struct scd30_state *state)
{
if (state->irq > 0)
return scd30_wait_meas_irq(state);
return scd30_read_poll(state);
}
static int scd30_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct scd30_state *state = iio_priv(indio_dev);
int ret = -EINVAL;
u16 tmp;
mutex_lock(&state->lock);
switch (mask) {
case IIO_CHAN_INFO_RAW:
case IIO_CHAN_INFO_PROCESSED:
if (chan->output) {
*val = state->pressure_comp;
ret = IIO_VAL_INT;
break;
}
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
break;
ret = scd30_read(state);
if (ret) {
iio_device_release_direct_mode(indio_dev);
break;
}
*val = state->meas[chan->address];
iio_device_release_direct_mode(indio_dev);
ret = IIO_VAL_INT;
break;
case IIO_CHAN_INFO_SCALE:
*val = 0;
*val2 = 1;
ret = IIO_VAL_INT_PLUS_MICRO;
break;
case IIO_CHAN_INFO_SAMP_FREQ:
ret = scd30_command_read(state, CMD_MEAS_INTERVAL, &tmp);
if (ret)
break;
*val = 0;
*val2 = 1000000000 / tmp;
ret = IIO_VAL_INT_PLUS_NANO;
break;
case IIO_CHAN_INFO_CALIBBIAS:
ret = scd30_command_read(state, CMD_TEMP_OFFSET, &tmp);
if (ret)
break;
*val = tmp;
ret = IIO_VAL_INT;
break;
}
mutex_unlock(&state->lock);
return ret;
}
static int scd30_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct scd30_state *state = iio_priv(indio_dev);
int ret = -EINVAL;
mutex_lock(&state->lock);
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
if (val)
break;
val = 1000000000 / val2;
if (val < SCD30_MEAS_INTERVAL_MIN_S || val > SCD30_MEAS_INTERVAL_MAX_S)
break;
ret = scd30_command_write(state, CMD_MEAS_INTERVAL, val);
if (ret)
break;
state->meas_interval = val;
break;
case IIO_CHAN_INFO_RAW:
switch (chan->type) {
case IIO_PRESSURE:
if (val < SCD30_PRESSURE_COMP_MIN_MBAR ||
val > SCD30_PRESSURE_COMP_MAX_MBAR)
break;
ret = scd30_command_write(state, CMD_START_MEAS, val);
if (ret)
break;
state->pressure_comp = val;
break;
default:
break;
}
break;
case IIO_CHAN_INFO_CALIBBIAS:
if (val < 0 || val > SCD30_TEMP_OFFSET_MAX)
break;
/*
* Manufacturer does not explicitly specify min/max sensible
* values hence check is omitted for simplicity.
*/
ret = scd30_command_write(state, CMD_TEMP_OFFSET / 10, val);
}
mutex_unlock(&state->lock);
return ret;
}
static int scd30_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
return IIO_VAL_INT_PLUS_NANO;
case IIO_CHAN_INFO_RAW:
case IIO_CHAN_INFO_CALIBBIAS:
return IIO_VAL_INT;
}
return -EINVAL;
}
static const int scd30_pressure_raw_available[] = {
SCD30_PRESSURE_COMP_MIN_MBAR, 1, SCD30_PRESSURE_COMP_MAX_MBAR,
};
static const int scd30_temp_calibbias_available[] = {
0, 10, SCD30_TEMP_OFFSET_MAX,
};
static int scd30_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan,
const int **vals, int *type, int *length, long mask)
{
switch (mask) {
case IIO_CHAN_INFO_RAW:
*vals = scd30_pressure_raw_available;
*type = IIO_VAL_INT;
return IIO_AVAIL_RANGE;
case IIO_CHAN_INFO_CALIBBIAS:
*vals = scd30_temp_calibbias_available;
*type = IIO_VAL_INT;
return IIO_AVAIL_RANGE;
}
return -EINVAL;
}
static ssize_t sampling_frequency_available_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int i = SCD30_MEAS_INTERVAL_MIN_S;
ssize_t len = 0;
do {
len += scnprintf(buf + len, PAGE_SIZE - len, "0.%09u ", 1000000000 / i);
/*
* Not all values fit PAGE_SIZE buffer hence print every 6th
* (each frequency differs by 6s in time domain from the
* adjacent). Unlisted but valid ones are still accepted.
*/
i += 6;
} while (i <= SCD30_MEAS_INTERVAL_MAX_S);
buf[len - 1] = '\n';
return len;
}
static ssize_t calibration_auto_enable_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct scd30_state *state = iio_priv(indio_dev);
int ret;
u16 val;
mutex_lock(&state->lock);
ret = scd30_command_read(state, CMD_ASC, &val);
mutex_unlock(&state->lock);
return ret ?: sprintf(buf, "%d\n", val);
}
static ssize_t calibration_auto_enable_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct scd30_state *state = iio_priv(indio_dev);
bool val;
int ret;
ret = kstrtobool(buf, &val);
if (ret)
return ret;
mutex_lock(&state->lock);
ret = scd30_command_write(state, CMD_ASC, val);
mutex_unlock(&state->lock);
return ret ?: len;
}
static ssize_t calibration_forced_value_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct scd30_state *state = iio_priv(indio_dev);
int ret;
u16 val;
mutex_lock(&state->lock);
ret = scd30_command_read(state, CMD_FRC, &val);
mutex_unlock(&state->lock);
return ret ?: sprintf(buf, "%d\n", val);
}
static ssize_t calibration_forced_value_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct scd30_state *state = iio_priv(indio_dev);
int ret;
u16 val;
ret = kstrtou16(buf, 0, &val);
if (ret)
return ret;
if (val < SCD30_FRC_MIN_PPM || val > SCD30_FRC_MAX_PPM)
return -EINVAL;
mutex_lock(&state->lock);
ret = scd30_command_write(state, CMD_FRC, val);
mutex_unlock(&state->lock);
return ret ?: len;
}
static IIO_DEVICE_ATTR_RO(sampling_frequency_available, 0);
static IIO_DEVICE_ATTR_RW(calibration_auto_enable, 0);
static IIO_DEVICE_ATTR_RW(calibration_forced_value, 0);
static struct attribute *scd30_attrs[] = {
&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
&iio_dev_attr_calibration_auto_enable.dev_attr.attr,
&iio_dev_attr_calibration_forced_value.dev_attr.attr,
NULL
};
static const struct attribute_group scd30_attr_group = {
.attrs = scd30_attrs,
};
static const struct iio_info scd30_info = {
.attrs = &scd30_attr_group,
.read_raw = scd30_read_raw,
.write_raw = scd30_write_raw,
.write_raw_get_fmt = scd30_write_raw_get_fmt,
.read_avail = scd30_read_avail,
};
#define SCD30_CHAN_SCAN_TYPE(_sign, _realbits) .scan_type = { \
.sign = _sign, \
.realbits = _realbits, \
.storagebits = 32, \
.endianness = IIO_CPU, \
}
static const struct iio_chan_spec scd30_channels[] = {
{
/*
* this channel is special in a sense we are pretending that
* sensor is able to change measurement chamber pressure but in
* fact we're just setting pressure compensation value
*/
.type = IIO_PRESSURE,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_separate_available = BIT(IIO_CHAN_INFO_RAW),
.output = 1,
.scan_index = -1,
},
{
.type = IIO_CONCENTRATION,
.channel2 = IIO_MOD_CO2,
.address = SCD30_CONC,
.scan_index = SCD30_CONC,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
.modified = 1,
SCD30_CHAN_SCAN_TYPE('u', 20),
},
{
.type = IIO_TEMP,
.address = SCD30_TEMP,
.scan_index = SCD30_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
BIT(IIO_CHAN_INFO_CALIBBIAS),
.info_mask_separate_available = BIT(IIO_CHAN_INFO_CALIBBIAS),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
SCD30_CHAN_SCAN_TYPE('s', 18),
},
{
.type = IIO_HUMIDITYRELATIVE,
.address = SCD30_HR,
.scan_index = SCD30_HR,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
SCD30_CHAN_SCAN_TYPE('u', 17),
},
IIO_CHAN_SOFT_TIMESTAMP(3),
};
int __maybe_unused scd30_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct scd30_state *state = iio_priv(indio_dev);
int ret;
ret = scd30_command_write(state, CMD_STOP_MEAS, 0);
if (ret)
return ret;
return regulator_disable(state->vdd);
}
EXPORT_SYMBOL(scd30_suspend);
int __maybe_unused scd30_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct scd30_state *state = iio_priv(indio_dev);
int ret;
ret = regulator_enable(state->vdd);
if (ret)
return ret;
return scd30_command_write(state, CMD_START_MEAS, state->pressure_comp);
}
EXPORT_SYMBOL(scd30_resume);
static void scd30_stop_meas(void *data)
{
struct scd30_state *state = data;
scd30_command_write(state, CMD_STOP_MEAS, 0);
}
static void scd30_disable_regulator(void *data)
{
struct scd30_state *state = data;
regulator_disable(state->vdd);
}
static irqreturn_t scd30_irq_handler(int irq, void *priv)
{
struct iio_dev *indio_dev = priv;
if (iio_buffer_enabled(indio_dev)) {
iio_trigger_poll(indio_dev->trig);
return IRQ_HANDLED;
}
return IRQ_WAKE_THREAD;
}
static irqreturn_t scd30_irq_thread_handler(int irq, void *priv)
{
struct iio_dev *indio_dev = priv;
struct scd30_state *state = iio_priv(indio_dev);
int ret;
ret = scd30_read_meas(state);
if (ret)
goto out;
complete_all(&state->meas_ready);
out:
return IRQ_HANDLED;
}
static irqreturn_t scd30_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct scd30_state *state = iio_priv(indio_dev);
struct {
int data[SCD30_MEAS_COUNT];
s64 ts __aligned(8);
} scan;
int ret;
mutex_lock(&state->lock);
if (!iio_trigger_using_own(indio_dev))
ret = scd30_read_poll(state);
else
ret = scd30_read_meas(state);
memset(&scan, 0, sizeof(scan));
memcpy(scan.data, state->meas, sizeof(state->meas));
mutex_unlock(&state->lock);
if (ret)
goto out;
iio_push_to_buffers_with_timestamp(indio_dev, &scan, iio_get_time_ns(indio_dev));
out:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int scd30_set_trigger_state(struct iio_trigger *trig, bool state)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct scd30_state *st = iio_priv(indio_dev);
if (state)
enable_irq(st->irq);
else
disable_irq(st->irq);
return 0;
}
static const struct iio_trigger_ops scd30_trigger_ops = {
.set_trigger_state = scd30_set_trigger_state,
.validate_device = iio_trigger_validate_own_device,
};
static int scd30_setup_trigger(struct iio_dev *indio_dev)
{
struct scd30_state *state = iio_priv(indio_dev);
struct device *dev = indio_dev->dev.parent;
struct iio_trigger *trig;
int ret;
trig = devm_iio_trigger_alloc(dev, "%s-dev%d", indio_dev->name, indio_dev->id);
if (!trig) {
dev_err(dev, "failed to allocate trigger\n");
return -ENOMEM;
}
trig->dev.parent = dev;
trig->ops = &scd30_trigger_ops;
iio_trigger_set_drvdata(trig, indio_dev);
ret = devm_iio_trigger_register(dev, trig);
if (ret)
return ret;
indio_dev->trig = iio_trigger_get(trig);
ret = devm_request_threaded_irq(dev, state->irq, scd30_irq_handler,
scd30_irq_thread_handler, IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
indio_dev->name, indio_dev);
if (ret)
dev_err(dev, "failed to request irq\n");
/*
* Interrupt is enabled just before taking a fresh measurement
* and disabled afterwards. This means we need to disable it here
* to keep calls to enable/disable balanced.
*/
disable_irq(state->irq);
return ret;
}
int scd30_probe(struct device *dev, int irq, const char *name, void *priv,
scd30_command_t command)
{
static const unsigned long scd30_scan_masks[] = { 0x07, 0x00 };
struct scd30_state *state;
struct iio_dev *indio_dev;
int ret;
u16 val;
indio_dev = devm_iio_device_alloc(dev, sizeof(*state));
if (!indio_dev)
return -ENOMEM;
state = iio_priv(indio_dev);
state->dev = dev;
state->priv = priv;
state->irq = irq;
state->pressure_comp = SCD30_PRESSURE_COMP_DEFAULT;
state->meas_interval = SCD30_MEAS_INTERVAL_DEFAULT;
state->command = command;
mutex_init(&state->lock);
init_completion(&state->meas_ready);
dev_set_drvdata(dev, indio_dev);
indio_dev->info = &scd30_info;
indio_dev->name = name;
indio_dev->channels = scd30_channels;
indio_dev->num_channels = ARRAY_SIZE(scd30_channels);
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->available_scan_masks = scd30_scan_masks;
state->vdd = devm_regulator_get(dev, "vdd");
if (IS_ERR(state->vdd)) {
if (PTR_ERR(state->vdd) == -EPROBE_DEFER)
return -EPROBE_DEFER;
dev_err(dev, "failed to get regulator\n");
return PTR_ERR(state->vdd);
}
ret = regulator_enable(state->vdd);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev, scd30_disable_regulator, state);
if (ret)
return ret;
ret = scd30_reset(state);
if (ret) {
dev_err(dev, "failed to reset device: %d\n", ret);
return ret;
}
if (state->irq > 0) {
ret = scd30_setup_trigger(indio_dev);
if (ret) {
dev_err(dev, "failed to setup trigger: %d\n", ret);
return ret;
}
}
ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL, scd30_trigger_handler, NULL);
if (ret)
return ret;
ret = scd30_command_read(state, CMD_FW_VERSION, &val);
if (ret) {
dev_err(dev, "failed to read firmware version: %d\n", ret);
return ret;
}
dev_info(dev, "firmware version: %d.%d\n", val >> 8, (char)val);
ret = scd30_command_write(state, CMD_MEAS_INTERVAL, state->meas_interval);
if (ret) {
dev_err(dev, "failed to set measurement interval: %d\n", ret);
return ret;
}
ret = scd30_command_write(state, CMD_START_MEAS, state->pressure_comp);
if (ret) {
dev_err(dev, "failed to start measurement: %d\n", ret);
return ret;
}
ret = devm_add_action_or_reset(dev, scd30_stop_meas, state);
if (ret)
return ret;
return devm_iio_device_register(dev, indio_dev);
}
EXPORT_SYMBOL(scd30_probe);
MODULE_AUTHOR("Tomasz Duszynski <tomasz.duszynski@octakon.com>");
MODULE_DESCRIPTION("Sensirion SCD30 carbon dioxide sensor core driver");
MODULE_LICENSE("GPL v2");