iio: adc: stm32: introduce compatible data cfg

Prepare support for stm32h7 adc variant by introducing compatible
configuration data.
Move STM32F4 specific stuff to compatible data structure:
- registers & bit fields
- input channels data
- start/stop procedures
- trigger definitions

Signed-off-by: Fabrice Gasnier <fabrice.gasnier@st.com>
Signed-off-by: Jonathan Cameron <jic23@kernel.org>
This commit is contained in:
Fabrice Gasnier 2017-05-29 11:28:18 +02:00 committed by Jonathan Cameron
parent 9fd243c4fb
commit 64ad7f6438
2 changed files with 205 additions and 59 deletions

View File

@ -49,12 +49,39 @@
/* STM32 F4 maximum analog clock rate (from datasheet) */
#define STM32F4_ADC_MAX_CLK_RATE 36000000
/**
* stm32_adc_common_regs - stm32 common registers, compatible dependent data
* @csr: common status register offset
* @eoc1: adc1 end of conversion flag in @csr
* @eoc2: adc2 end of conversion flag in @csr
* @eoc3: adc3 end of conversion flag in @csr
*/
struct stm32_adc_common_regs {
u32 csr;
u32 eoc1_msk;
u32 eoc2_msk;
u32 eoc3_msk;
};
struct stm32_adc_priv;
/**
* stm32_adc_priv_cfg - stm32 core compatible configuration data
* @regs: common registers for all instances
* @clk_sel: clock selection routine
*/
struct stm32_adc_priv_cfg {
const struct stm32_adc_common_regs *regs;
int (*clk_sel)(struct platform_device *, struct stm32_adc_priv *);
};
/**
* struct stm32_adc_priv - stm32 ADC core private data
* @irq: irq for ADC block
* @domain: irq domain reference
* @aclk: clock reference for the analog circuitry
* @vref: regulator reference
* @cfg: compatible configuration data
* @common: common data for all ADC instances
*/
struct stm32_adc_priv {
@ -62,6 +89,7 @@ struct stm32_adc_priv {
struct irq_domain *domain;
struct clk *aclk;
struct regulator *vref;
const struct stm32_adc_priv_cfg *cfg;
struct stm32_adc_common common;
};
@ -112,6 +140,14 @@ static int stm32f4_adc_clk_sel(struct platform_device *pdev,
return 0;
}
/* STM32F4 common registers definitions */
static const struct stm32_adc_common_regs stm32f4_adc_common_regs = {
.csr = STM32F4_ADC_CSR,
.eoc1_msk = STM32F4_EOC1,
.eoc2_msk = STM32F4_EOC2,
.eoc3_msk = STM32F4_EOC3,
};
/* ADC common interrupt for all instances */
static void stm32_adc_irq_handler(struct irq_desc *desc)
{
@ -120,15 +156,15 @@ static void stm32_adc_irq_handler(struct irq_desc *desc)
u32 status;
chained_irq_enter(chip, desc);
status = readl_relaxed(priv->common.base + STM32F4_ADC_CSR);
status = readl_relaxed(priv->common.base + priv->cfg->regs->csr);
if (status & STM32F4_EOC1)
if (status & priv->cfg->regs->eoc1_msk)
generic_handle_irq(irq_find_mapping(priv->domain, 0));
if (status & STM32F4_EOC2)
if (status & priv->cfg->regs->eoc2_msk)
generic_handle_irq(irq_find_mapping(priv->domain, 1));
if (status & STM32F4_EOC3)
if (status & priv->cfg->regs->eoc3_msk)
generic_handle_irq(irq_find_mapping(priv->domain, 2));
chained_irq_exit(chip, desc);
@ -194,6 +230,7 @@ static void stm32_adc_irq_remove(struct platform_device *pdev,
static int stm32_adc_probe(struct platform_device *pdev)
{
struct stm32_adc_priv *priv;
struct device *dev = &pdev->dev;
struct device_node *np = pdev->dev.of_node;
struct resource *res;
int ret;
@ -205,6 +242,9 @@ static int stm32_adc_probe(struct platform_device *pdev)
if (!priv)
return -ENOMEM;
priv->cfg = (const struct stm32_adc_priv_cfg *)
of_match_device(dev->driver->of_match_table, dev)->data;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->common.base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(priv->common.base))
@ -251,7 +291,7 @@ static int stm32_adc_probe(struct platform_device *pdev)
}
}
ret = stm32f4_adc_clk_sel(pdev, priv);
ret = priv->cfg->clk_sel(pdev, priv);
if (ret < 0)
goto err_clk_disable;
@ -296,9 +336,17 @@ static int stm32_adc_remove(struct platform_device *pdev)
return 0;
}
static const struct stm32_adc_priv_cfg stm32f4_adc_priv_cfg = {
.regs = &stm32f4_adc_common_regs,
.clk_sel = stm32f4_adc_clk_sel,
};
static const struct of_device_id stm32_adc_of_match[] = {
{ .compatible = "st,stm32f4-adc-core" },
{},
{
.compatible = "st,stm32f4-adc-core",
.data = (void *)&stm32f4_adc_priv_cfg
}, {
},
};
MODULE_DEVICE_TABLE(of, stm32_adc_of_match);

View File

@ -34,6 +34,7 @@
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include "stm32-adc-core.h"
@ -132,10 +133,49 @@ struct stm32_adc_regs {
int shift;
};
/**
* stm32_adc_regspec - stm32 registers definition, compatible dependent data
* @dr: data register offset
* @ier_eoc: interrupt enable register & eocie bitfield
* @isr_eoc: interrupt status register & eoc bitfield
* @sqr: reference to sequence registers array
* @exten: trigger control register & bitfield
* @extsel: trigger selection register & bitfield
* @res: resolution selection register & bitfield
*/
struct stm32_adc_regspec {
const u32 dr;
const struct stm32_adc_regs ier_eoc;
const struct stm32_adc_regs isr_eoc;
const struct stm32_adc_regs *sqr;
const struct stm32_adc_regs exten;
const struct stm32_adc_regs extsel;
const struct stm32_adc_regs res;
};
struct stm32_adc;
/**
* stm32_adc_cfg - stm32 compatible configuration data
* @regs: registers descriptions
* @adc_info: per instance input channels definitions
* @trigs: external trigger sources
* @start_conv: routine to start conversions
* @stop_conv: routine to stop conversions
*/
struct stm32_adc_cfg {
const struct stm32_adc_regspec *regs;
const struct stm32_adc_info *adc_info;
struct stm32_adc_trig_info *trigs;
void (*start_conv)(struct stm32_adc *, bool dma);
void (*stop_conv)(struct stm32_adc *);
};
/**
* struct stm32_adc - private data of each ADC IIO instance
* @common: reference to ADC block common data
* @offset: ADC instance register offset in ADC block
* @cfg: compatible configuration data
* @completion: end of single conversion completion
* @buffer: data buffer
* @clk: clock for this adc instance
@ -153,6 +193,7 @@ struct stm32_adc_regs {
struct stm32_adc {
struct stm32_adc_common *common;
u32 offset;
const struct stm32_adc_cfg *cfg;
struct completion completion;
u16 buffer[STM32_ADC_MAX_SQ];
struct clk *clk;
@ -180,8 +221,25 @@ struct stm32_adc_chan_spec {
const char *name;
};
/* Input definitions common for all STM32F4 instances */
static const struct stm32_adc_chan_spec stm32f4_adc123_channels[] = {
/**
* struct stm32_adc_info - stm32 ADC, per instance config data
* @channels: Reference to stm32 channels spec
* @max_channels: Number of channels
* @resolutions: available resolutions
* @num_res: number of available resolutions
*/
struct stm32_adc_info {
const struct stm32_adc_chan_spec *channels;
int max_channels;
const unsigned int *resolutions;
const unsigned int num_res;
};
/*
* Input definitions common for all instances:
* stm32f4 can have up to 16 channels
*/
static const struct stm32_adc_chan_spec stm32_adc_channels[] = {
{ IIO_VOLTAGE, 0, "in0" },
{ IIO_VOLTAGE, 1, "in1" },
{ IIO_VOLTAGE, 2, "in2" },
@ -205,6 +263,13 @@ static const unsigned int stm32f4_adc_resolutions[] = {
12, 10, 8, 6,
};
static const struct stm32_adc_info stm32f4_adc_info = {
.channels = stm32_adc_channels,
.max_channels = 16,
.resolutions = stm32f4_adc_resolutions,
.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
};
/**
* stm32f4_sq - describe regular sequence registers
* - L: sequence len (register & bit field)
@ -252,6 +317,17 @@ static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
{}, /* sentinel */
};
static const struct stm32_adc_regspec stm32f4_adc_regspec = {
.dr = STM32F4_ADC_DR,
.ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
.isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
.sqr = stm32f4_sq,
.exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
.extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
STM32F4_EXTSEL_SHIFT },
.res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
};
/**
* STM32 ADC registers access routines
* @adc: stm32 adc instance
@ -299,7 +375,8 @@ static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
*/
static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
{
stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_EOCIE);
stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
adc->cfg->regs->ier_eoc.mask);
};
/**
@ -308,19 +385,22 @@ static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
*/
static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
{
stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_EOCIE);
stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
adc->cfg->regs->ier_eoc.mask);
}
static void stm32_adc_set_res(struct stm32_adc *adc)
{
u32 val = stm32_adc_readl(adc, STM32F4_ADC_CR1);
const struct stm32_adc_regs *res = &adc->cfg->regs->res;
u32 val;
val = (val & ~STM32F4_RES_MASK) | (adc->res << STM32F4_RES_SHIFT);
stm32_adc_writel(adc, STM32F4_ADC_CR1, val);
val = stm32_adc_readl(adc, res->reg);
val = (val & ~res->mask) | (adc->res << res->shift);
stm32_adc_writel(adc, res->reg, val);
}
/**
* stm32_adc_start_conv() - Start conversions for regular channels.
* stm32f4_adc_start_conv() - Start conversions for regular channels.
* @adc: stm32 adc instance
* @dma: use dma to transfer conversion result
*
@ -329,7 +409,7 @@ static void stm32_adc_set_res(struct stm32_adc *adc)
* conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
* DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
*/
static void stm32_adc_start_conv(struct stm32_adc *adc, bool dma)
static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
{
stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
@ -347,7 +427,7 @@ static void stm32_adc_start_conv(struct stm32_adc *adc, bool dma)
stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
}
static void stm32_adc_stop_conv(struct stm32_adc *adc)
static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
{
stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
@ -371,6 +451,7 @@ static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
const unsigned long *scan_mask)
{
struct stm32_adc *adc = iio_priv(indio_dev);
const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
const struct iio_chan_spec *chan;
u32 val, bit;
int i = 0;
@ -388,20 +469,20 @@ static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
__func__, chan->channel, i);
val = stm32_adc_readl(adc, stm32f4_sq[i].reg);
val &= ~stm32f4_sq[i].mask;
val |= chan->channel << stm32f4_sq[i].shift;
stm32_adc_writel(adc, stm32f4_sq[i].reg, val);
val = stm32_adc_readl(adc, sqr[i].reg);
val &= ~sqr[i].mask;
val |= chan->channel << sqr[i].shift;
stm32_adc_writel(adc, sqr[i].reg, val);
}
if (!i)
return -EINVAL;
/* Sequence len */
val = stm32_adc_readl(adc, stm32f4_sq[0].reg);
val &= ~stm32f4_sq[0].mask;
val |= ((i - 1) << stm32f4_sq[0].shift);
stm32_adc_writel(adc, stm32f4_sq[0].reg, val);
val = stm32_adc_readl(adc, sqr[0].reg);
val &= ~sqr[0].mask;
val |= ((i - 1) << sqr[0].shift);
stm32_adc_writel(adc, sqr[0].reg, val);
return 0;
}
@ -412,19 +493,21 @@ static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
*
* Returns trigger extsel value, if trig matches, -EINVAL otherwise.
*/
static int stm32_adc_get_trig_extsel(struct iio_trigger *trig)
static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
struct iio_trigger *trig)
{
struct stm32_adc *adc = iio_priv(indio_dev);
int i;
/* lookup triggers registered by stm32 timer trigger driver */
for (i = 0; stm32f4_adc_trigs[i].name; i++) {
for (i = 0; adc->cfg->trigs[i].name; i++) {
/**
* Checking both stm32 timer trigger type and trig name
* should be safe against arbitrary trigger names.
*/
if (is_stm32_timer_trigger(trig) &&
!strcmp(stm32f4_adc_trigs[i].name, trig->name)) {
return stm32f4_adc_trigs[i].extsel;
!strcmp(adc->cfg->trigs[i].name, trig->name)) {
return adc->cfg->trigs[i].extsel;
}
}
@ -449,7 +532,7 @@ static int stm32_adc_set_trig(struct iio_dev *indio_dev,
int ret;
if (trig) {
ret = stm32_adc_get_trig_extsel(trig);
ret = stm32_adc_get_trig_extsel(indio_dev, trig);
if (ret < 0)
return ret;
@ -459,11 +542,11 @@ static int stm32_adc_set_trig(struct iio_dev *indio_dev,
}
spin_lock_irqsave(&adc->lock, flags);
val = stm32_adc_readl(adc, STM32F4_ADC_CR2);
val &= ~(STM32F4_EXTEN_MASK | STM32F4_EXTSEL_MASK);
val |= exten << STM32F4_EXTEN_SHIFT;
val |= extsel << STM32F4_EXTSEL_SHIFT;
stm32_adc_writel(adc, STM32F4_ADC_CR2, val);
val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
val |= exten << adc->cfg->regs->exten.shift;
val |= extsel << adc->cfg->regs->extsel.shift;
stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val);
spin_unlock_irqrestore(&adc->lock, flags);
return 0;
@ -515,6 +598,7 @@ static int stm32_adc_single_conv(struct iio_dev *indio_dev,
int *res)
{
struct stm32_adc *adc = iio_priv(indio_dev);
const struct stm32_adc_regspec *regs = adc->cfg->regs;
long timeout;
u32 val;
int ret;
@ -524,20 +608,20 @@ static int stm32_adc_single_conv(struct iio_dev *indio_dev,
adc->bufi = 0;
/* Program chan number in regular sequence (SQ1) */
val = stm32_adc_readl(adc, stm32f4_sq[1].reg);
val &= ~stm32f4_sq[1].mask;
val |= chan->channel << stm32f4_sq[1].shift;
stm32_adc_writel(adc, stm32f4_sq[1].reg, val);
val = stm32_adc_readl(adc, regs->sqr[1].reg);
val &= ~regs->sqr[1].mask;
val |= chan->channel << regs->sqr[1].shift;
stm32_adc_writel(adc, regs->sqr[1].reg, val);
/* Set regular sequence len (0 for 1 conversion) */
stm32_adc_clr_bits(adc, stm32f4_sq[0].reg, stm32f4_sq[0].mask);
stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
/* Trigger detection disabled (conversion can be launched in SW) */
stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
stm32_adc_conv_irq_enable(adc);
stm32_adc_start_conv(adc, false);
adc->cfg->start_conv(adc, false);
timeout = wait_for_completion_interruptible_timeout(
&adc->completion, STM32_ADC_TIMEOUT);
@ -550,7 +634,7 @@ static int stm32_adc_single_conv(struct iio_dev *indio_dev,
ret = IIO_VAL_INT;
}
stm32_adc_stop_conv(adc);
adc->cfg->stop_conv(adc);
stm32_adc_conv_irq_disable(adc);
@ -590,11 +674,12 @@ static irqreturn_t stm32_adc_isr(int irq, void *data)
{
struct stm32_adc *adc = data;
struct iio_dev *indio_dev = iio_priv_to_dev(adc);
u32 status = stm32_adc_readl(adc, STM32F4_ADC_SR);
const struct stm32_adc_regspec *regs = adc->cfg->regs;
u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
if (status & STM32F4_EOC) {
if (status & regs->isr_eoc.mask) {
/* Reading DR also clears EOC status flag */
adc->buffer[adc->bufi] = stm32_adc_readw(adc, STM32F4_ADC_DR);
adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
if (iio_buffer_enabled(indio_dev)) {
adc->bufi++;
if (adc->bufi >= adc->num_conv) {
@ -621,7 +706,7 @@ static irqreturn_t stm32_adc_isr(int irq, void *data)
static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
struct iio_trigger *trig)
{
return stm32_adc_get_trig_extsel(trig) < 0 ? -EINVAL : 0;
return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
}
static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
@ -799,7 +884,7 @@ static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
if (!adc->dma_chan)
stm32_adc_conv_irq_enable(adc);
stm32_adc_start_conv(adc, !!adc->dma_chan);
adc->cfg->start_conv(adc, !!adc->dma_chan);
return 0;
@ -817,7 +902,7 @@ static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
struct stm32_adc *adc = iio_priv(indio_dev);
int ret;
stm32_adc_stop_conv(adc);
adc->cfg->stop_conv(adc);
if (!adc->dma_chan)
stm32_adc_conv_irq_disable(adc);
@ -895,12 +980,12 @@ static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
u32 res;
if (of_property_read_u32(node, "assigned-resolution-bits", &res))
res = stm32f4_adc_resolutions[0];
res = adc->cfg->adc_info->resolutions[0];
for (i = 0; i < ARRAY_SIZE(stm32f4_adc_resolutions); i++)
if (res == stm32f4_adc_resolutions[i])
for (i = 0; i < adc->cfg->adc_info->num_res; i++)
if (res == adc->cfg->adc_info->resolutions[i])
break;
if (i >= ARRAY_SIZE(stm32f4_adc_resolutions)) {
if (i >= adc->cfg->adc_info->num_res) {
dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
return -EINVAL;
}
@ -926,7 +1011,7 @@ static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
chan->scan_type.sign = 'u';
chan->scan_type.realbits = stm32f4_adc_resolutions[adc->res];
chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
chan->scan_type.storagebits = 16;
chan->ext_info = stm32_adc_ext_info;
}
@ -934,6 +1019,8 @@ static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
{
struct device_node *node = indio_dev->dev.of_node;
struct stm32_adc *adc = iio_priv(indio_dev);
const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
struct property *prop;
const __be32 *cur;
struct iio_chan_spec *channels;
@ -942,7 +1029,7 @@ static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
num_channels = of_property_count_u32_elems(node, "st,adc-channels");
if (num_channels < 0 ||
num_channels >= ARRAY_SIZE(stm32f4_adc123_channels)) {
num_channels >= adc_info->max_channels) {
dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
return num_channels < 0 ? num_channels : -EINVAL;
}
@ -953,12 +1040,12 @@ static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
return -ENOMEM;
of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
if (val >= ARRAY_SIZE(stm32f4_adc123_channels)) {
if (val >= adc_info->max_channels) {
dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
return -EINVAL;
}
stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
&stm32f4_adc123_channels[val],
&adc_info->channels[val],
scan_index);
scan_index++;
}
@ -990,7 +1077,7 @@ static int stm32_adc_dma_request(struct iio_dev *indio_dev)
/* Configure DMA channel to read data register */
memset(&config, 0, sizeof(config));
config.src_addr = (dma_addr_t)adc->common->phys_base;
config.src_addr += adc->offset + STM32F4_ADC_DR;
config.src_addr += adc->offset + adc->cfg->regs->dr;
config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
ret = dmaengine_slave_config(adc->dma_chan, &config);
@ -1011,6 +1098,7 @@ err_release:
static int stm32_adc_probe(struct platform_device *pdev)
{
struct iio_dev *indio_dev;
struct device *dev = &pdev->dev;
struct stm32_adc *adc;
int ret;
@ -1025,6 +1113,8 @@ static int stm32_adc_probe(struct platform_device *pdev)
adc->common = dev_get_drvdata(pdev->dev.parent);
spin_lock_init(&adc->lock);
init_completion(&adc->completion);
adc->cfg = (const struct stm32_adc_cfg *)
of_match_device(dev->driver->of_match_table, dev)->data;
indio_dev->name = dev_name(&pdev->dev);
indio_dev->dev.parent = &pdev->dev;
@ -1129,8 +1219,16 @@ static int stm32_adc_remove(struct platform_device *pdev)
return 0;
}
static const struct stm32_adc_cfg stm32f4_adc_cfg = {
.regs = &stm32f4_adc_regspec,
.adc_info = &stm32f4_adc_info,
.trigs = stm32f4_adc_trigs,
.start_conv = stm32f4_adc_start_conv,
.stop_conv = stm32f4_adc_stop_conv,
};
static const struct of_device_id stm32_adc_of_match[] = {
{ .compatible = "st,stm32f4-adc" },
{ .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
{},
};
MODULE_DEVICE_TABLE(of, stm32_adc_of_match);