Merge branch 'akpm' (patches from Andrew)

Merge fourth patch-bomb from Andrew Morton:
 "A lot more stuff than expected, sorry.  A bunch of ocfs2 reviewing was
  finished off.

   - mhocko's oom-reaper out-of-memory-handler changes

   - ocfs2 fixes and features

   - KASAN feature work

   - various fixes"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (42 commits)
  thp: fix typo in khugepaged_scan_pmd()
  MAINTAINERS: fill entries for KASAN
  mm/filemap: generic_file_read_iter(): check for zero reads unconditionally
  kasan: test fix: warn if the UAF could not be detected in kmalloc_uaf2
  mm, kasan: stackdepot implementation. Enable stackdepot for SLAB
  arch, ftrace: for KASAN put hard/soft IRQ entries into separate sections
  mm, kasan: add GFP flags to KASAN API
  mm, kasan: SLAB support
  kasan: modify kmalloc_large_oob_right(), add kmalloc_pagealloc_oob_right()
  include/linux/oom.h: remove undefined oom_kills_count()/note_oom_kill()
  mm/page_alloc: prevent merging between isolated and other pageblocks
  drivers/memstick/host/r592.c: avoid gcc-6 warning
  ocfs2: extend enough credits for freeing one truncate record while replaying truncate records
  ocfs2: extend transaction for ocfs2_remove_rightmost_path() and ocfs2_update_edge_lengths() before to avoid inconsistency between inode and et
  ocfs2/dlm: move lock to the tail of grant queue while doing in-place convert
  ocfs2: solve a problem of crossing the boundary in updating backups
  ocfs2: fix occurring deadlock by changing ocfs2_wq from global to local
  ocfs2/dlm: fix BUG in dlm_move_lockres_to_recovery_list
  ocfs2/dlm: fix race between convert and recovery
  ocfs2: fix a deadlock issue in ocfs2_dio_end_io_write()
  ...
This commit is contained in:
Linus Torvalds 2016-03-25 16:59:11 -07:00
commit 606c61a057
79 changed files with 1769 additions and 961 deletions

View File

@ -12,8 +12,7 @@ KASAN uses compile-time instrumentation for checking every memory access,
therefore you will need a GCC version 4.9.2 or later. GCC 5.0 or later is
required for detection of out-of-bounds accesses to stack or global variables.
Currently KASAN is supported only for x86_64 architecture and requires the
kernel to be built with the SLUB allocator.
Currently KASAN is supported only for x86_64 architecture.
1. Usage
========
@ -27,7 +26,7 @@ inline are compiler instrumentation types. The former produces smaller binary
the latter is 1.1 - 2 times faster. Inline instrumentation requires a GCC
version 5.0 or later.
Currently KASAN works only with the SLUB memory allocator.
KASAN works with both SLUB and SLAB memory allocators.
For better bug detection and nicer reporting, enable CONFIG_STACKTRACE.
To disable instrumentation for specific files or directories, add a line

View File

@ -6165,6 +6165,20 @@ S: Maintained
F: Documentation/hwmon/k8temp
F: drivers/hwmon/k8temp.c
KASAN
M: Andrey Ryabinin <aryabinin@virtuozzo.com>
R: Alexander Potapenko <glider@google.com>
R: Dmitry Vyukov <dvyukov@google.com>
L: kasan-dev@googlegroups.com
S: Maintained
F: arch/*/include/asm/kasan.h
F: arch/*/mm/kasan_init*
F: Documentation/kasan.txt
F: include/linux/kasan.h
F: lib/test_kasan.c
F: mm/kasan/
F: scripts/Makefile.kasan
KCONFIG
M: "Yann E. MORIN" <yann.morin.1998@free.fr>
L: linux-kbuild@vger.kernel.org

View File

@ -7,7 +7,7 @@
#ifndef __ASM_ARM_EXCEPTION_H
#define __ASM_ARM_EXCEPTION_H
#include <linux/ftrace.h>
#include <linux/interrupt.h>
#define __exception __attribute__((section(".exception.text")))
#ifdef CONFIG_FUNCTION_GRAPH_TRACER

View File

@ -108,6 +108,7 @@ SECTIONS
*(.exception.text)
__exception_text_end = .;
IRQENTRY_TEXT
SOFTIRQENTRY_TEXT
TEXT_TEXT
SCHED_TEXT
LOCK_TEXT

View File

@ -18,7 +18,7 @@
#ifndef __ASM_EXCEPTION_H
#define __ASM_EXCEPTION_H
#include <linux/ftrace.h>
#include <linux/interrupt.h>
#define __exception __attribute__((section(".exception.text")))
#ifdef CONFIG_FUNCTION_GRAPH_TRACER

View File

@ -103,6 +103,7 @@ SECTIONS
*(.exception.text)
__exception_text_end = .;
IRQENTRY_TEXT
SOFTIRQENTRY_TEXT
TEXT_TEXT
SCHED_TEXT
LOCK_TEXT

View File

@ -35,6 +35,7 @@ SECTIONS
#endif
LOCK_TEXT
IRQENTRY_TEXT
SOFTIRQENTRY_TEXT
KPROBES_TEXT
#ifdef CONFIG_ROMKERNEL
__sinittext = .;

View File

@ -72,6 +72,7 @@ SECTIONS
SCHED_TEXT
LOCK_TEXT
IRQENTRY_TEXT
SOFTIRQENTRY_TEXT
KPROBES_TEXT
*(.fixup)
*(.gnu.warning)

View File

@ -24,6 +24,7 @@ SECTIONS
LOCK_TEXT
KPROBES_TEXT
IRQENTRY_TEXT
SOFTIRQENTRY_TEXT
*(.text.*)
*(.gnu.warning)
}

View File

@ -36,6 +36,7 @@ SECTIONS {
LOCK_TEXT
KPROBES_TEXT
IRQENTRY_TEXT
SOFTIRQENTRY_TEXT
. = ALIGN (4) ;
_etext = . ;
}

View File

@ -58,6 +58,7 @@ SECTIONS
LOCK_TEXT
KPROBES_TEXT
IRQENTRY_TEXT
SOFTIRQENTRY_TEXT
*(.text.*)
*(.fixup)
*(.gnu.warning)

View File

@ -39,6 +39,7 @@ SECTIONS
SCHED_TEXT
LOCK_TEXT
IRQENTRY_TEXT
SOFTIRQENTRY_TEXT
KPROBES_TEXT
} =0
_etext = .;

View File

@ -50,6 +50,7 @@ SECTIONS
LOCK_TEXT
KPROBES_TEXT
IRQENTRY_TEXT
SOFTIRQENTRY_TEXT
*(.fixup)
*(.text.__*)
_etext = .;

View File

@ -72,6 +72,7 @@ SECTIONS
LOCK_TEXT
KPROBES_TEXT
IRQENTRY_TEXT
SOFTIRQENTRY_TEXT
*(.text.do_softirq)
*(.text.sys_exit)
*(.text.do_sigaltstack)

View File

@ -55,6 +55,7 @@ SECTIONS
LOCK_TEXT
KPROBES_TEXT
IRQENTRY_TEXT
SOFTIRQENTRY_TEXT
#ifdef CONFIG_PPC32
*(.got1)

View File

@ -28,6 +28,7 @@ SECTIONS
LOCK_TEXT
KPROBES_TEXT
IRQENTRY_TEXT
SOFTIRQENTRY_TEXT
*(.fixup)
*(.gnu.warning)
} :text = 0x0700

View File

@ -39,6 +39,7 @@ SECTIONS
LOCK_TEXT
KPROBES_TEXT
IRQENTRY_TEXT
SOFTIRQENTRY_TEXT
*(.fixup)
*(.gnu.warning)
_etext = .; /* End of text section */

View File

@ -48,6 +48,7 @@ SECTIONS
LOCK_TEXT
KPROBES_TEXT
IRQENTRY_TEXT
SOFTIRQENTRY_TEXT
*(.gnu.warning)
} = 0
_etext = .;

View File

@ -45,6 +45,7 @@ SECTIONS
LOCK_TEXT
KPROBES_TEXT
IRQENTRY_TEXT
SOFTIRQENTRY_TEXT
__fix_text_end = .; /* tile-cpack won't rearrange before this */
ALIGN_FUNCTION();
*(.hottext*)

View File

@ -19,6 +19,7 @@ endif
KASAN_SANITIZE_head$(BITS).o := n
KASAN_SANITIZE_dumpstack.o := n
KASAN_SANITIZE_dumpstack_$(BITS).o := n
KASAN_SANITIZE_stacktrace.o := n
OBJECT_FILES_NON_STANDARD_head_$(BITS).o := y
OBJECT_FILES_NON_STANDARD_relocate_kernel_$(BITS).o := y

View File

@ -101,6 +101,7 @@ SECTIONS
KPROBES_TEXT
ENTRY_TEXT
IRQENTRY_TEXT
SOFTIRQENTRY_TEXT
*(.fixup)
*(.gnu.warning)
/* End of text section */

View File

@ -17,7 +17,7 @@
int input_event_from_user(const char __user *buffer,
struct input_event *event)
{
if (INPUT_COMPAT_TEST && !COMPAT_USE_64BIT_TIME) {
if (in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
struct input_event_compat compat_event;
if (copy_from_user(&compat_event, buffer,
@ -41,7 +41,7 @@ int input_event_from_user(const char __user *buffer,
int input_event_to_user(char __user *buffer,
const struct input_event *event)
{
if (INPUT_COMPAT_TEST && !COMPAT_USE_64BIT_TIME) {
if (in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
struct input_event_compat compat_event;
compat_event.time.tv_sec = event->time.tv_sec;
@ -65,7 +65,7 @@ int input_event_to_user(char __user *buffer,
int input_ff_effect_from_user(const char __user *buffer, size_t size,
struct ff_effect *effect)
{
if (INPUT_COMPAT_TEST) {
if (in_compat_syscall()) {
struct ff_effect_compat *compat_effect;
if (size != sizeof(struct ff_effect_compat))

View File

@ -17,8 +17,6 @@
#ifdef CONFIG_COMPAT
#define INPUT_COMPAT_TEST in_compat_syscall()
struct input_event_compat {
struct compat_timeval time;
__u16 type;
@ -57,7 +55,7 @@ struct ff_effect_compat {
static inline size_t input_event_size(void)
{
return (INPUT_COMPAT_TEST && !COMPAT_USE_64BIT_TIME) ?
return (in_compat_syscall() && !COMPAT_USE_64BIT_TIME) ?
sizeof(struct input_event_compat) : sizeof(struct input_event);
}

View File

@ -1015,7 +1015,7 @@ static int input_bits_to_string(char *buf, int buf_size,
{
int len = 0;
if (INPUT_COMPAT_TEST) {
if (in_compat_syscall()) {
u32 dword = bits >> 32;
if (dword || !skip_empty)
len += snprintf(buf, buf_size, "%x ", dword);

View File

@ -664,7 +664,7 @@ struct uinput_ff_upload_compat {
static int uinput_ff_upload_to_user(char __user *buffer,
const struct uinput_ff_upload *ff_up)
{
if (INPUT_COMPAT_TEST) {
if (in_compat_syscall()) {
struct uinput_ff_upload_compat ff_up_compat;
ff_up_compat.request_id = ff_up->request_id;
@ -695,7 +695,7 @@ static int uinput_ff_upload_to_user(char __user *buffer,
static int uinput_ff_upload_from_user(const char __user *buffer,
struct uinput_ff_upload *ff_up)
{
if (INPUT_COMPAT_TEST) {
if (in_compat_syscall()) {
struct uinput_ff_upload_compat ff_up_compat;
if (copy_from_user(&ff_up_compat, buffer,

View File

@ -298,8 +298,7 @@ static int r592_transfer_fifo_dma(struct r592_device *dev)
sg_count = dma_map_sg(&dev->pci_dev->dev, &dev->req->sg, 1, is_write ?
PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
if (sg_count != 1 ||
(sg_dma_len(&dev->req->sg) < dev->req->sg.length)) {
if (sg_count != 1 || sg_dma_len(&dev->req->sg) < R592_LFIFO_SIZE) {
message("problem in dma_map_sg");
return -EIO;
}

View File

@ -2516,21 +2516,6 @@ static int ocfs2_update_edge_lengths(handle_t *handle,
struct ocfs2_extent_block *eb;
u32 range;
/*
* In normal tree rotation process, we will never touch the
* tree branch above subtree_index and ocfs2_extend_rotate_transaction
* doesn't reserve the credits for them either.
*
* But we do have a special case here which will update the rightmost
* records for all the bh in the path.
* So we have to allocate extra credits and access them.
*/
ret = ocfs2_extend_trans(handle, subtree_index);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access_path(et->et_ci, handle, path);
if (ret) {
mlog_errno(ret);
@ -2956,7 +2941,7 @@ static int __ocfs2_rotate_tree_left(handle_t *handle,
right_path->p_node[subtree_root].bh->b_blocknr,
right_path->p_tree_depth);
ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
ret = ocfs2_extend_rotate_transaction(handle, 0,
orig_credits, left_path);
if (ret) {
mlog_errno(ret);
@ -3029,21 +3014,9 @@ static int ocfs2_remove_rightmost_path(handle_t *handle,
struct ocfs2_extent_block *eb;
struct ocfs2_extent_list *el;
ret = ocfs2_et_sanity_check(et);
if (ret)
goto out;
/*
* There's two ways we handle this depending on
* whether path is the only existing one.
*/
ret = ocfs2_extend_rotate_transaction(handle, 0,
handle->h_buffer_credits,
path);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access_path(et->et_ci, handle, path);
if (ret) {
@ -3641,6 +3614,14 @@ static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
*/
if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
le16_to_cpu(el->l_next_free_rec) == 1) {
/* extend credit for ocfs2_remove_rightmost_path */
ret = ocfs2_extend_rotate_transaction(handle, 0,
handle->h_buffer_credits,
right_path);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_remove_rightmost_path(handle, et,
right_path,
@ -3679,6 +3660,14 @@ static int ocfs2_try_to_merge_extent(handle_t *handle,
BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
/* extend credit for ocfs2_remove_rightmost_path */
ret = ocfs2_extend_rotate_transaction(handle, 0,
handle->h_buffer_credits,
path);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* The merge code will need to create an empty
* extent to take the place of the newly
@ -3727,6 +3716,15 @@ static int ocfs2_try_to_merge_extent(handle_t *handle,
*/
BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
/* extend credit for ocfs2_remove_rightmost_path */
ret = ocfs2_extend_rotate_transaction(handle, 0,
handle->h_buffer_credits,
path);
if (ret) {
mlog_errno(ret);
goto out;
}
/* The merge left us with an empty extent, remove it. */
ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
if (ret) {
@ -3748,6 +3746,15 @@ static int ocfs2_try_to_merge_extent(handle_t *handle,
goto out;
}
/* extend credit for ocfs2_remove_rightmost_path */
ret = ocfs2_extend_rotate_transaction(handle, 0,
handle->h_buffer_credits,
path);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
/*
* Error from this last rotate is not critical, so
@ -3783,6 +3790,16 @@ static int ocfs2_try_to_merge_extent(handle_t *handle,
}
if (ctxt->c_split_covers_rec) {
/* extend credit for ocfs2_remove_rightmost_path */
ret = ocfs2_extend_rotate_transaction(handle, 0,
handle->h_buffer_credits,
path);
if (ret) {
mlog_errno(ret);
ret = 0;
goto out;
}
/*
* The merge may have left an empty extent in
* our leaf. Try to rotate it away.
@ -5342,6 +5359,15 @@ static int ocfs2_truncate_rec(handle_t *handle,
struct ocfs2_extent_block *eb;
if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
/* extend credit for ocfs2_remove_rightmost_path */
ret = ocfs2_extend_rotate_transaction(handle, 0,
handle->h_buffer_credits,
path);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
if (ret) {
mlog_errno(ret);
@ -5928,16 +5954,6 @@ static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
ocfs2_journal_dirty(handle, tl_bh);
/* TODO: Perhaps we can calculate the bulk of the
* credits up front rather than extending like
* this. */
status = ocfs2_extend_trans(handle,
OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
if (status < 0) {
mlog_errno(status);
goto bail;
}
rec = tl->tl_recs[i];
start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
le32_to_cpu(rec.t_start));
@ -5958,6 +5974,13 @@ static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
goto bail;
}
}
status = ocfs2_extend_trans(handle,
OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
if (status < 0) {
mlog_errno(status);
goto bail;
}
i--;
}
@ -6016,7 +6039,7 @@ int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
goto out_mutex;
}
handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
if (IS_ERR(handle)) {
status = PTR_ERR(handle);
mlog_errno(status);
@ -6079,7 +6102,7 @@ void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
if (cancel)
cancel_delayed_work(&osb->osb_truncate_log_wq);
queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq,
OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
}
}
@ -6253,7 +6276,7 @@ void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
if (tl_inode) {
cancel_delayed_work(&osb->osb_truncate_log_wq);
flush_workqueue(ocfs2_wq);
flush_workqueue(osb->ocfs2_wq);
status = ocfs2_flush_truncate_log(osb);
if (status < 0)

File diff suppressed because it is too large Load Diff

View File

@ -47,9 +47,14 @@ int ocfs2_write_end_nolock(struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata);
int ocfs2_write_begin_nolock(struct file *filp,
struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
typedef enum {
OCFS2_WRITE_BUFFER = 0,
OCFS2_WRITE_DIRECT,
OCFS2_WRITE_MMAP,
} ocfs2_write_type_t;
int ocfs2_write_begin_nolock(struct address_space *mapping,
loff_t pos, unsigned len, ocfs2_write_type_t type,
struct page **pagep, void **fsdata,
struct buffer_head *di_bh, struct page *mmap_page);
@ -79,7 +84,6 @@ static inline void ocfs2_iocb_set_rw_locked(struct kiocb *iocb, int level)
enum ocfs2_iocb_lock_bits {
OCFS2_IOCB_RW_LOCK = 0,
OCFS2_IOCB_RW_LOCK_LEVEL,
OCFS2_IOCB_UNALIGNED_IO,
OCFS2_IOCB_NUM_LOCKS
};
@ -88,11 +92,4 @@ enum ocfs2_iocb_lock_bits {
#define ocfs2_iocb_rw_locked_level(iocb) \
test_bit(OCFS2_IOCB_RW_LOCK_LEVEL, (unsigned long *)&iocb->private)
#define ocfs2_iocb_set_unaligned_aio(iocb) \
set_bit(OCFS2_IOCB_UNALIGNED_IO, (unsigned long *)&iocb->private)
#define ocfs2_iocb_clear_unaligned_aio(iocb) \
clear_bit(OCFS2_IOCB_UNALIGNED_IO, (unsigned long *)&iocb->private)
#define ocfs2_iocb_is_unaligned_aio(iocb) \
test_bit(OCFS2_IOCB_UNALIGNED_IO, (unsigned long *)&iocb->private)
#endif /* OCFS2_FILE_H */

View File

@ -1444,8 +1444,8 @@ static void o2hb_region_release(struct config_item *item)
debugfs_remove(reg->hr_debug_dir);
kfree(reg->hr_db_livenodes);
kfree(reg->hr_db_regnum);
kfree(reg->hr_debug_elapsed_time);
kfree(reg->hr_debug_pinned);
kfree(reg->hr_db_elapsed_time);
kfree(reg->hr_db_pinned);
spin_lock(&o2hb_live_lock);
list_del(&reg->hr_all_item);

View File

@ -212,6 +212,12 @@ grant:
if (lock->lksb->flags & DLM_LKSB_PUT_LVB)
memcpy(res->lvb, lock->lksb->lvb, DLM_LVB_LEN);
/*
* Move the lock to the tail because it may be the only lock which has
* an invalid lvb.
*/
list_move_tail(&lock->list, &res->granted);
status = DLM_NORMAL;
*call_ast = 1;
goto unlock_exit;
@ -262,6 +268,7 @@ enum dlm_status dlmconvert_remote(struct dlm_ctxt *dlm,
struct dlm_lock *lock, int flags, int type)
{
enum dlm_status status;
u8 old_owner = res->owner;
mlog(0, "type=%d, convert_type=%d, busy=%d\n", lock->ml.type,
lock->ml.convert_type, res->state & DLM_LOCK_RES_IN_PROGRESS);
@ -287,6 +294,19 @@ enum dlm_status dlmconvert_remote(struct dlm_ctxt *dlm,
status = DLM_DENIED;
goto bail;
}
if (lock->ml.type == type && lock->ml.convert_type == LKM_IVMODE) {
mlog(0, "last convert request returned DLM_RECOVERING, but "
"owner has already queued and sent ast to me. res %.*s, "
"(cookie=%u:%llu, type=%d, conv=%d)\n",
res->lockname.len, res->lockname.name,
dlm_get_lock_cookie_node(be64_to_cpu(lock->ml.cookie)),
dlm_get_lock_cookie_seq(be64_to_cpu(lock->ml.cookie)),
lock->ml.type, lock->ml.convert_type);
status = DLM_NORMAL;
goto bail;
}
res->state |= DLM_LOCK_RES_IN_PROGRESS;
/* move lock to local convert queue */
/* do not alter lock refcount. switching lists. */
@ -316,11 +336,19 @@ enum dlm_status dlmconvert_remote(struct dlm_ctxt *dlm,
spin_lock(&res->spinlock);
res->state &= ~DLM_LOCK_RES_IN_PROGRESS;
lock->convert_pending = 0;
/* if it failed, move it back to granted queue */
/* if it failed, move it back to granted queue.
* if master returns DLM_NORMAL and then down before sending ast,
* it may have already been moved to granted queue, reset to
* DLM_RECOVERING and retry convert */
if (status != DLM_NORMAL) {
if (status != DLM_NOTQUEUED)
dlm_error(status);
dlm_revert_pending_convert(res, lock);
} else if ((res->state & DLM_LOCK_RES_RECOVERING) ||
(old_owner != res->owner)) {
mlog(0, "res %.*s is in recovering or has been recovered.\n",
res->lockname.len, res->lockname.name);
status = DLM_RECOVERING;
}
bail:
spin_unlock(&res->spinlock);

View File

@ -2083,7 +2083,6 @@ void dlm_move_lockres_to_recovery_list(struct dlm_ctxt *dlm,
dlm_lock_get(lock);
if (lock->convert_pending) {
/* move converting lock back to granted */
BUG_ON(i != DLM_CONVERTING_LIST);
mlog(0, "node died with convert pending "
"on %.*s. move back to granted list.\n",
res->lockname.len, res->lockname.name);

View File

@ -1381,44 +1381,6 @@ out:
return ret;
}
/*
* Will look for holes and unwritten extents in the range starting at
* pos for count bytes (inclusive).
*/
static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
size_t count)
{
int ret = 0;
unsigned int extent_flags;
u32 cpos, clusters, extent_len, phys_cpos;
struct super_block *sb = inode->i_sb;
cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
while (clusters) {
ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
&extent_flags);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
ret = 1;
break;
}
if (extent_len > clusters)
extent_len = clusters;
clusters -= extent_len;
cpos += extent_len;
}
out:
return ret;
}
static int ocfs2_write_remove_suid(struct inode *inode)
{
int ret;
@ -2129,18 +2091,12 @@ out:
static int ocfs2_prepare_inode_for_write(struct file *file,
loff_t pos,
size_t count,
int appending,
int *direct_io,
int *has_refcount)
size_t count)
{
int ret = 0, meta_level = 0;
struct dentry *dentry = file->f_path.dentry;
struct inode *inode = d_inode(dentry);
loff_t end;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
int full_coherency = !(osb->s_mount_opt &
OCFS2_MOUNT_COHERENCY_BUFFERED);
/*
* We start with a read level meta lock and only jump to an ex
@ -2189,10 +2145,6 @@ static int ocfs2_prepare_inode_for_write(struct file *file,
pos,
count,
&meta_level);
if (has_refcount)
*has_refcount = 1;
if (direct_io)
*direct_io = 0;
}
if (ret < 0) {
@ -2200,67 +2152,12 @@ static int ocfs2_prepare_inode_for_write(struct file *file,
goto out_unlock;
}
/*
* Skip the O_DIRECT checks if we don't need
* them.
*/
if (!direct_io || !(*direct_io))
break;
/*
* There's no sane way to do direct writes to an inode
* with inline data.
*/
if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
*direct_io = 0;
break;
}
/*
* Allowing concurrent direct writes means
* i_size changes wouldn't be synchronized, so
* one node could wind up truncating another
* nodes writes.
*/
if (end > i_size_read(inode) && !full_coherency) {
*direct_io = 0;
break;
}
/*
* Fallback to old way if the feature bit is not set.
*/
if (end > i_size_read(inode) &&
!ocfs2_supports_append_dio(osb)) {
*direct_io = 0;
break;
}
/*
* We don't fill holes during direct io, so
* check for them here. If any are found, the
* caller will have to retake some cluster
* locks and initiate the io as buffered.
*/
ret = ocfs2_check_range_for_holes(inode, pos, count);
if (ret == 1) {
/*
* Fallback to old way if the feature bit is not set.
* Otherwise try dio first and then complete the rest
* request through buffer io.
*/
if (!ocfs2_supports_append_dio(osb))
*direct_io = 0;
ret = 0;
} else if (ret < 0)
mlog_errno(ret);
break;
}
out_unlock:
trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
pos, appending, count,
direct_io, has_refcount);
pos, count);
if (meta_level >= 0)
ocfs2_inode_unlock(inode, meta_level);
@ -2272,18 +2169,16 @@ out:
static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
struct iov_iter *from)
{
int direct_io, appending, rw_level;
int can_do_direct, has_refcount = 0;
int direct_io, rw_level;
ssize_t written = 0;
ssize_t ret;
size_t count = iov_iter_count(from), orig_count;
size_t count = iov_iter_count(from);
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
int full_coherency = !(osb->s_mount_opt &
OCFS2_MOUNT_COHERENCY_BUFFERED);
int unaligned_dio = 0;
int dropped_dio = 0;
void *saved_ki_complete = NULL;
int append_write = ((iocb->ki_pos + count) >=
i_size_read(inode) ? 1 : 0);
@ -2296,12 +2191,10 @@ static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
if (count == 0)
return 0;
appending = iocb->ki_flags & IOCB_APPEND ? 1 : 0;
direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
inode_lock(inode);
relock:
/*
* Concurrent O_DIRECT writes are allowed with
* mount_option "coherency=buffered".
@ -2334,7 +2227,6 @@ relock:
ocfs2_inode_unlock(inode, 1);
}
orig_count = iov_iter_count(from);
ret = generic_write_checks(iocb, from);
if (ret <= 0) {
if (ret)
@ -2343,41 +2235,18 @@ relock:
}
count = ret;
can_do_direct = direct_io;
ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, appending,
&can_do_direct, &has_refcount);
ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
if (direct_io && !is_sync_kiocb(iocb))
unaligned_dio = ocfs2_is_io_unaligned(inode, count, iocb->ki_pos);
/*
* We can't complete the direct I/O as requested, fall back to
* buffered I/O.
*/
if (direct_io && !can_do_direct) {
ocfs2_rw_unlock(inode, rw_level);
rw_level = -1;
direct_io = 0;
iocb->ki_flags &= ~IOCB_DIRECT;
iov_iter_reexpand(from, orig_count);
dropped_dio = 1;
goto relock;
}
if (unaligned_dio) {
if (direct_io && !is_sync_kiocb(iocb) &&
ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
/*
* Wait on previous unaligned aio to complete before
* proceeding.
* Make it a sync io if it's an unaligned aio.
*/
mutex_lock(&OCFS2_I(inode)->ip_unaligned_aio);
/* Mark the iocb as needing an unlock in ocfs2_dio_end_io */
ocfs2_iocb_set_unaligned_aio(iocb);
saved_ki_complete = xchg(&iocb->ki_complete, NULL);
}
/* communicate with ocfs2_dio_end_io */
@ -2398,14 +2267,13 @@ relock:
*/
if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
rw_level = -1;
unaligned_dio = 0;
}
if (unlikely(written <= 0))
goto no_sync;
goto out;
if (((file->f_flags & O_DSYNC) && !direct_io) ||
IS_SYNC(inode) || dropped_dio) {
IS_SYNC(inode)) {
ret = filemap_fdatawrite_range(file->f_mapping,
iocb->ki_pos - written,
iocb->ki_pos - 1);
@ -2424,13 +2292,10 @@ relock:
iocb->ki_pos - 1);
}
no_sync:
if (unaligned_dio && ocfs2_iocb_is_unaligned_aio(iocb)) {
ocfs2_iocb_clear_unaligned_aio(iocb);
mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
}
out:
if (saved_ki_complete)
xchg(&iocb->ki_complete, saved_ki_complete);
if (rw_level != -1)
ocfs2_rw_unlock(inode, rw_level);

View File

@ -1170,6 +1170,9 @@ static void ocfs2_clear_inode(struct inode *inode)
mlog_bug_on_msg(!list_empty(&oi->ip_io_markers),
"Clear inode of %llu, inode has io markers\n",
(unsigned long long)oi->ip_blkno);
mlog_bug_on_msg(!list_empty(&oi->ip_unwritten_list),
"Clear inode of %llu, inode has unwritten extents\n",
(unsigned long long)oi->ip_blkno);
ocfs2_extent_map_trunc(inode, 0);

View File

@ -43,9 +43,6 @@ struct ocfs2_inode_info
/* protects extended attribute changes on this inode */
struct rw_semaphore ip_xattr_sem;
/* Number of outstanding AIO's which are not page aligned */
struct mutex ip_unaligned_aio;
/* These fields are protected by ip_lock */
spinlock_t ip_lock;
u32 ip_open_count;
@ -57,6 +54,9 @@ struct ocfs2_inode_info
u32 ip_flags; /* see below */
u32 ip_attr; /* inode attributes */
/* Record unwritten extents during direct io. */
struct list_head ip_unwritten_list;
/* protected by recovery_lock. */
struct inode *ip_next_orphan;

View File

@ -231,7 +231,7 @@ void ocfs2_recovery_exit(struct ocfs2_super *osb)
/* At this point, we know that no more recovery threads can be
* launched, so wait for any recovery completion work to
* complete. */
flush_workqueue(ocfs2_wq);
flush_workqueue(osb->ocfs2_wq);
/*
* Now that recovery is shut down, and the osb is about to be
@ -1326,7 +1326,7 @@ static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
spin_lock(&journal->j_lock);
list_add_tail(&item->lri_list, &journal->j_la_cleanups);
queue_work(ocfs2_wq, &journal->j_recovery_work);
queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
spin_unlock(&journal->j_lock);
}
@ -1968,7 +1968,7 @@ static void ocfs2_orphan_scan_work(struct work_struct *work)
mutex_lock(&os->os_lock);
ocfs2_queue_orphan_scan(osb);
if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
ocfs2_orphan_scan_timeout());
mutex_unlock(&os->os_lock);
}
@ -2008,7 +2008,7 @@ void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
else {
atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
ocfs2_orphan_scan_timeout());
}
}

View File

@ -386,7 +386,7 @@ void ocfs2_shutdown_local_alloc(struct ocfs2_super *osb)
struct ocfs2_dinode *alloc = NULL;
cancel_delayed_work(&osb->la_enable_wq);
flush_workqueue(ocfs2_wq);
flush_workqueue(osb->ocfs2_wq);
if (osb->local_alloc_state == OCFS2_LA_UNUSED)
goto out;
@ -1085,7 +1085,7 @@ static int ocfs2_recalc_la_window(struct ocfs2_super *osb,
} else {
osb->local_alloc_state = OCFS2_LA_DISABLED;
}
queue_delayed_work(ocfs2_wq, &osb->la_enable_wq,
queue_delayed_work(osb->ocfs2_wq, &osb->la_enable_wq,
OCFS2_LA_ENABLE_INTERVAL);
goto out_unlock;
}

View File

@ -104,8 +104,8 @@ static int __ocfs2_page_mkwrite(struct file *file, struct buffer_head *di_bh,
if (page->index == last_index)
len = ((size - 1) & ~PAGE_CACHE_MASK) + 1;
ret = ocfs2_write_begin_nolock(file, mapping, pos, len, 0, &locked_page,
&fsdata, di_bh, page);
ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_MMAP,
&locked_page, &fsdata, di_bh, page);
if (ret) {
if (ret != -ENOSPC)
mlog_errno(ret);

View File

@ -464,6 +464,14 @@ struct ocfs2_super
struct ocfs2_refcount_tree *osb_ref_tree_lru;
struct mutex system_file_mutex;
/*
* OCFS2 needs to schedule several different types of work which
* require cluster locking, disk I/O, recovery waits, etc. Since these
* types of work tend to be heavy we avoid using the kernel events
* workqueue and schedule on our own.
*/
struct workqueue_struct *ocfs2_wq;
};
#define OCFS2_SB(sb) ((struct ocfs2_super *)(sb)->s_fs_info)

View File

@ -1450,28 +1450,20 @@ DEFINE_OCFS2_ULL_ULL_ULL_EVENT(ocfs2_remove_inode_range);
TRACE_EVENT(ocfs2_prepare_inode_for_write,
TP_PROTO(unsigned long long ino, unsigned long long saved_pos,
int appending, unsigned long count,
int *direct_io, int *has_refcount),
TP_ARGS(ino, saved_pos, appending, count, direct_io, has_refcount),
unsigned long count),
TP_ARGS(ino, saved_pos, count),
TP_STRUCT__entry(
__field(unsigned long long, ino)
__field(unsigned long long, saved_pos)
__field(int, appending)
__field(unsigned long, count)
__field(int, direct_io)
__field(int, has_refcount)
),
TP_fast_assign(
__entry->ino = ino;
__entry->saved_pos = saved_pos;
__entry->appending = appending;
__entry->count = count;
__entry->direct_io = direct_io ? *direct_io : -1;
__entry->has_refcount = has_refcount ? *has_refcount : -1;
),
TP_printk("%llu %llu %d %lu %d %d", __entry->ino,
__entry->saved_pos, __entry->appending, __entry->count,
__entry->direct_io, __entry->has_refcount)
TP_printk("%llu %llu %lu", __entry->ino,
__entry->saved_pos, __entry->count)
);
DEFINE_OCFS2_INT_EVENT(generic_file_aio_read_ret);

View File

@ -726,7 +726,7 @@ static int ocfs2_release_dquot(struct dquot *dquot)
dqgrab(dquot);
/* First entry on list -> queue work */
if (llist_add(&OCFS2_DQUOT(dquot)->list, &osb->dquot_drop_list))
queue_work(ocfs2_wq, &osb->dquot_drop_work);
queue_work(osb->ocfs2_wq, &osb->dquot_drop_work);
goto out;
}
status = ocfs2_lock_global_qf(oinfo, 1);

View File

@ -196,7 +196,7 @@ static int update_backups(struct inode * inode, u32 clusters, char *data)
for (i = 0; i < OCFS2_MAX_BACKUP_SUPERBLOCKS; i++) {
blkno = ocfs2_backup_super_blkno(inode->i_sb, i);
cluster = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
if (cluster > clusters)
if (cluster >= clusters)
break;
ret = ocfs2_read_blocks_sync(osb, blkno, 1, &backup);

View File

@ -80,12 +80,6 @@ static struct kmem_cache *ocfs2_inode_cachep;
struct kmem_cache *ocfs2_dquot_cachep;
struct kmem_cache *ocfs2_qf_chunk_cachep;
/* OCFS2 needs to schedule several different types of work which
* require cluster locking, disk I/O, recovery waits, etc. Since these
* types of work tend to be heavy we avoid using the kernel events
* workqueue and schedule on our own. */
struct workqueue_struct *ocfs2_wq = NULL;
static struct dentry *ocfs2_debugfs_root;
MODULE_AUTHOR("Oracle");
@ -1613,33 +1607,25 @@ static int __init ocfs2_init(void)
if (status < 0)
goto out2;
ocfs2_wq = create_singlethread_workqueue("ocfs2_wq");
if (!ocfs2_wq) {
status = -ENOMEM;
goto out3;
}
ocfs2_debugfs_root = debugfs_create_dir("ocfs2", NULL);
if (!ocfs2_debugfs_root) {
status = -ENOMEM;
mlog(ML_ERROR, "Unable to create ocfs2 debugfs root.\n");
goto out4;
goto out3;
}
ocfs2_set_locking_protocol();
status = register_quota_format(&ocfs2_quota_format);
if (status < 0)
goto out4;
goto out3;
status = register_filesystem(&ocfs2_fs_type);
if (!status)
return 0;
unregister_quota_format(&ocfs2_quota_format);
out4:
destroy_workqueue(ocfs2_wq);
debugfs_remove(ocfs2_debugfs_root);
out3:
debugfs_remove(ocfs2_debugfs_root);
ocfs2_free_mem_caches();
out2:
exit_ocfs2_uptodate_cache();
@ -1650,11 +1636,6 @@ out1:
static void __exit ocfs2_exit(void)
{
if (ocfs2_wq) {
flush_workqueue(ocfs2_wq);
destroy_workqueue(ocfs2_wq);
}
unregister_quota_format(&ocfs2_quota_format);
debugfs_remove(ocfs2_debugfs_root);
@ -1745,8 +1726,8 @@ static void ocfs2_inode_init_once(void *data)
spin_lock_init(&oi->ip_lock);
ocfs2_extent_map_init(&oi->vfs_inode);
INIT_LIST_HEAD(&oi->ip_io_markers);
INIT_LIST_HEAD(&oi->ip_unwritten_list);
oi->ip_dir_start_lookup = 0;
mutex_init(&oi->ip_unaligned_aio);
init_rwsem(&oi->ip_alloc_sem);
init_rwsem(&oi->ip_xattr_sem);
mutex_init(&oi->ip_io_mutex);
@ -2349,6 +2330,12 @@ static int ocfs2_initialize_super(struct super_block *sb,
}
cleancache_init_shared_fs(sb);
osb->ocfs2_wq = create_singlethread_workqueue("ocfs2_wq");
if (!osb->ocfs2_wq) {
status = -ENOMEM;
mlog_errno(status);
}
bail:
return status;
}
@ -2536,6 +2523,12 @@ static void ocfs2_delete_osb(struct ocfs2_super *osb)
{
/* This function assumes that the caller has the main osb resource */
/* ocfs2_initializer_super have already created this workqueue */
if (osb->ocfs2_wq) {
flush_workqueue(osb->ocfs2_wq);
destroy_workqueue(osb->ocfs2_wq);
}
ocfs2_free_slot_info(osb);
kfree(osb->osb_orphan_wipes);

View File

@ -26,8 +26,6 @@
#ifndef OCFS2_SUPER_H
#define OCFS2_SUPER_H
extern struct workqueue_struct *ocfs2_wq;
int ocfs2_publish_get_mount_state(struct ocfs2_super *osb,
int node_num);

View File

@ -456,7 +456,7 @@
*(.entry.text) \
VMLINUX_SYMBOL(__entry_text_end) = .;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
#define IRQENTRY_TEXT \
ALIGN_FUNCTION(); \
VMLINUX_SYMBOL(__irqentry_text_start) = .; \
@ -466,6 +466,16 @@
#define IRQENTRY_TEXT
#endif
#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
#define SOFTIRQENTRY_TEXT \
ALIGN_FUNCTION(); \
VMLINUX_SYMBOL(__softirqentry_text_start) = .; \
*(.softirqentry.text) \
VMLINUX_SYMBOL(__softirqentry_text_end) = .;
#else
#define SOFTIRQENTRY_TEXT
#endif
/* Section used for early init (in .S files) */
#define HEAD_TEXT *(.head.text)

View File

@ -811,16 +811,6 @@ ftrace_push_return_trace(unsigned long ret, unsigned long func, int *depth,
*/
#define __notrace_funcgraph notrace
/*
* We want to which function is an entrypoint of a hardirq.
* That will help us to put a signal on output.
*/
#define __irq_entry __attribute__((__section__(".irqentry.text")))
/* Limits of hardirq entrypoints */
extern char __irqentry_text_start[];
extern char __irqentry_text_end[];
#define FTRACE_NOTRACE_DEPTH 65536
#define FTRACE_RETFUNC_DEPTH 50
#define FTRACE_RETSTACK_ALLOC_SIZE 32
@ -857,7 +847,6 @@ static inline void unpause_graph_tracing(void)
#else /* !CONFIG_FUNCTION_GRAPH_TRACER */
#define __notrace_funcgraph
#define __irq_entry
#define INIT_FTRACE_GRAPH
static inline void ftrace_graph_init_task(struct task_struct *t) { }

View File

@ -683,4 +683,24 @@ extern int early_irq_init(void);
extern int arch_probe_nr_irqs(void);
extern int arch_early_irq_init(void);
#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
/*
* We want to know which function is an entrypoint of a hardirq or a softirq.
*/
#define __irq_entry __attribute__((__section__(".irqentry.text")))
#define __softirq_entry \
__attribute__((__section__(".softirqentry.text")))
/* Limits of hardirq entrypoints */
extern char __irqentry_text_start[];
extern char __irqentry_text_end[];
/* Limits of softirq entrypoints */
extern char __softirqentry_text_start[];
extern char __softirqentry_text_end[];
#else
#define __irq_entry
#define __softirq_entry
#endif
#endif

View File

@ -48,19 +48,28 @@ void kasan_unpoison_task_stack(struct task_struct *task);
void kasan_alloc_pages(struct page *page, unsigned int order);
void kasan_free_pages(struct page *page, unsigned int order);
void kasan_cache_create(struct kmem_cache *cache, size_t *size,
unsigned long *flags);
void kasan_poison_slab(struct page *page);
void kasan_unpoison_object_data(struct kmem_cache *cache, void *object);
void kasan_poison_object_data(struct kmem_cache *cache, void *object);
void kasan_kmalloc_large(const void *ptr, size_t size);
void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags);
void kasan_kfree_large(const void *ptr);
void kasan_kfree(void *ptr);
void kasan_kmalloc(struct kmem_cache *s, const void *object, size_t size);
void kasan_krealloc(const void *object, size_t new_size);
void kasan_kmalloc(struct kmem_cache *s, const void *object, size_t size,
gfp_t flags);
void kasan_krealloc(const void *object, size_t new_size, gfp_t flags);
void kasan_slab_alloc(struct kmem_cache *s, void *object);
void kasan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags);
void kasan_slab_free(struct kmem_cache *s, void *object);
struct kasan_cache {
int alloc_meta_offset;
int free_meta_offset;
};
int kasan_module_alloc(void *addr, size_t size);
void kasan_free_shadow(const struct vm_struct *vm);
@ -76,20 +85,26 @@ static inline void kasan_disable_current(void) {}
static inline void kasan_alloc_pages(struct page *page, unsigned int order) {}
static inline void kasan_free_pages(struct page *page, unsigned int order) {}
static inline void kasan_cache_create(struct kmem_cache *cache,
size_t *size,
unsigned long *flags) {}
static inline void kasan_poison_slab(struct page *page) {}
static inline void kasan_unpoison_object_data(struct kmem_cache *cache,
void *object) {}
static inline void kasan_poison_object_data(struct kmem_cache *cache,
void *object) {}
static inline void kasan_kmalloc_large(void *ptr, size_t size) {}
static inline void kasan_kmalloc_large(void *ptr, size_t size, gfp_t flags) {}
static inline void kasan_kfree_large(const void *ptr) {}
static inline void kasan_kfree(void *ptr) {}
static inline void kasan_kmalloc(struct kmem_cache *s, const void *object,
size_t size) {}
static inline void kasan_krealloc(const void *object, size_t new_size) {}
size_t size, gfp_t flags) {}
static inline void kasan_krealloc(const void *object, size_t new_size,
gfp_t flags) {}
static inline void kasan_slab_alloc(struct kmem_cache *s, void *object) {}
static inline void kasan_slab_alloc(struct kmem_cache *s, void *object,
gfp_t flags) {}
static inline void kasan_slab_free(struct kmem_cache *s, void *object) {}
static inline int kasan_module_alloc(void *addr, size_t size) { return 0; }

View File

@ -1132,6 +1132,8 @@ struct zap_details {
struct address_space *check_mapping; /* Check page->mapping if set */
pgoff_t first_index; /* Lowest page->index to unmap */
pgoff_t last_index; /* Highest page->index to unmap */
bool ignore_dirty; /* Ignore dirty pages */
bool check_swap_entries; /* Check also swap entries */
};
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,

View File

@ -76,8 +76,6 @@ extern unsigned long oom_badness(struct task_struct *p,
struct mem_cgroup *memcg, const nodemask_t *nodemask,
unsigned long totalpages);
extern int oom_kills_count(void);
extern void note_oom_kill(void);
extern void oom_kill_process(struct oom_control *oc, struct task_struct *p,
unsigned int points, unsigned long totalpages,
struct mem_cgroup *memcg, const char *message);
@ -91,7 +89,7 @@ extern enum oom_scan_t oom_scan_process_thread(struct oom_control *oc,
extern bool out_of_memory(struct oom_control *oc);
extern void exit_oom_victim(void);
extern void exit_oom_victim(struct task_struct *tsk);
extern int register_oom_notifier(struct notifier_block *nb);
extern int unregister_oom_notifier(struct notifier_block *nb);

View File

@ -426,6 +426,7 @@ extern signed long schedule_timeout(signed long timeout);
extern signed long schedule_timeout_interruptible(signed long timeout);
extern signed long schedule_timeout_killable(signed long timeout);
extern signed long schedule_timeout_uninterruptible(signed long timeout);
extern signed long schedule_timeout_idle(signed long timeout);
asmlinkage void schedule(void);
extern void schedule_preempt_disabled(void);
@ -1848,6 +1849,9 @@ struct task_struct {
unsigned long task_state_change;
#endif
int pagefault_disabled;
#ifdef CONFIG_MMU
struct task_struct *oom_reaper_list;
#endif
/* CPU-specific state of this task */
struct thread_struct thread;
/*

View File

@ -92,6 +92,12 @@
# define SLAB_ACCOUNT 0x00000000UL
#endif
#ifdef CONFIG_KASAN
#define SLAB_KASAN 0x08000000UL
#else
#define SLAB_KASAN 0x00000000UL
#endif
/* The following flags affect the page allocator grouping pages by mobility */
#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
@ -370,7 +376,7 @@ static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
{
void *ret = kmem_cache_alloc(s, flags);
kasan_kmalloc(s, ret, size);
kasan_kmalloc(s, ret, size, flags);
return ret;
}
@ -381,7 +387,7 @@ kmem_cache_alloc_node_trace(struct kmem_cache *s,
{
void *ret = kmem_cache_alloc_node(s, gfpflags, node);
kasan_kmalloc(s, ret, size);
kasan_kmalloc(s, ret, size, gfpflags);
return ret;
}
#endif /* CONFIG_TRACING */

View File

@ -76,8 +76,22 @@ struct kmem_cache {
#ifdef CONFIG_MEMCG
struct memcg_cache_params memcg_params;
#endif
#ifdef CONFIG_KASAN
struct kasan_cache kasan_info;
#endif
struct kmem_cache_node *node[MAX_NUMNODES];
};
static inline void *nearest_obj(struct kmem_cache *cache, struct page *page,
void *x) {
void *object = x - (x - page->s_mem) % cache->size;
void *last_object = page->s_mem + (cache->num - 1) * cache->size;
if (unlikely(object > last_object))
return last_object;
else
return object;
}
#endif /* _LINUX_SLAB_DEF_H */

View File

@ -130,4 +130,15 @@ static inline void *virt_to_obj(struct kmem_cache *s,
void object_err(struct kmem_cache *s, struct page *page,
u8 *object, char *reason);
static inline void *nearest_obj(struct kmem_cache *cache, struct page *page,
void *x) {
void *object = x - (x - page_address(page)) % cache->size;
void *last_object = page_address(page) +
(page->objects - 1) * cache->size;
if (unlikely(object > last_object))
return last_object;
else
return object;
}
#endif /* _LINUX_SLUB_DEF_H */

View File

@ -0,0 +1,32 @@
/*
* A generic stack depot implementation
*
* Author: Alexander Potapenko <glider@google.com>
* Copyright (C) 2016 Google, Inc.
*
* Based on code by Dmitry Chernenkov.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef _LINUX_STACKDEPOT_H
#define _LINUX_STACKDEPOT_H
typedef u32 depot_stack_handle_t;
struct stack_trace;
depot_stack_handle_t depot_save_stack(struct stack_trace *trace, gfp_t flags);
void depot_fetch_stack(depot_stack_handle_t handle, struct stack_trace *trace);
#endif

View File

@ -435,7 +435,7 @@ static void exit_mm(struct task_struct *tsk)
mm_update_next_owner(mm);
mmput(mm);
if (test_thread_flag(TIF_MEMDIE))
exit_oom_victim();
exit_oom_victim(tsk);
}
static struct task_struct *find_alive_thread(struct task_struct *p)

View File

@ -227,7 +227,7 @@ static inline bool lockdep_softirq_start(void) { return false; }
static inline void lockdep_softirq_end(bool in_hardirq) { }
#endif
asmlinkage __visible void __do_softirq(void)
asmlinkage __visible void __softirq_entry __do_softirq(void)
{
unsigned long end = jiffies + MAX_SOFTIRQ_TIME;
unsigned long old_flags = current->flags;

View File

@ -1566,6 +1566,17 @@ signed long __sched schedule_timeout_uninterruptible(signed long timeout)
}
EXPORT_SYMBOL(schedule_timeout_uninterruptible);
/*
* Like schedule_timeout_uninterruptible(), except this task will not contribute
* to load average.
*/
signed long __sched schedule_timeout_idle(signed long timeout)
{
__set_current_state(TASK_IDLE);
return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_idle);
#ifdef CONFIG_HOTPLUG_CPU
static void migrate_timer_list(struct tvec_base *new_base, struct hlist_head *head)
{

View File

@ -8,6 +8,7 @@
*/
#include <linux/uaccess.h>
#include <linux/ftrace.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/fs.h>

View File

@ -536,4 +536,8 @@ config ARCH_HAS_PMEM_API
config ARCH_HAS_MMIO_FLUSH
bool
config STACKDEPOT
bool
select STACKTRACE
endmenu

View File

@ -5,8 +5,9 @@ if HAVE_ARCH_KASAN
config KASAN
bool "KASan: runtime memory debugger"
depends on SLUB_DEBUG
depends on SLUB_DEBUG || (SLAB && !DEBUG_SLAB)
select CONSTRUCTORS
select STACKDEPOT if SLAB
help
Enables kernel address sanitizer - runtime memory debugger,
designed to find out-of-bounds accesses and use-after-free bugs.
@ -16,6 +17,8 @@ config KASAN
This feature consumes about 1/8 of available memory and brings about
~x3 performance slowdown.
For better error detection enable CONFIG_STACKTRACE.
Currently CONFIG_KASAN doesn't work with CONFIG_DEBUG_SLAB
(the resulting kernel does not boot).
choice
prompt "Instrumentation type"

View File

@ -181,6 +181,9 @@ obj-$(CONFIG_SG_SPLIT) += sg_split.o
obj-$(CONFIG_STMP_DEVICE) += stmp_device.o
obj-$(CONFIG_IRQ_POLL) += irq_poll.o
obj-$(CONFIG_STACKDEPOT) += stackdepot.o
KASAN_SANITIZE_stackdepot.o := n
libfdt_files = fdt.o fdt_ro.o fdt_wip.o fdt_rw.o fdt_sw.o fdt_strerror.o \
fdt_empty_tree.o
$(foreach file, $(libfdt_files), \

284
lib/stackdepot.c Normal file
View File

@ -0,0 +1,284 @@
/*
* Generic stack depot for storing stack traces.
*
* Some debugging tools need to save stack traces of certain events which can
* be later presented to the user. For example, KASAN needs to safe alloc and
* free stacks for each object, but storing two stack traces per object
* requires too much memory (e.g. SLUB_DEBUG needs 256 bytes per object for
* that).
*
* Instead, stack depot maintains a hashtable of unique stacktraces. Since alloc
* and free stacks repeat a lot, we save about 100x space.
* Stacks are never removed from depot, so we store them contiguously one after
* another in a contiguos memory allocation.
*
* Author: Alexander Potapenko <glider@google.com>
* Copyright (C) 2016 Google, Inc.
*
* Based on code by Dmitry Chernenkov.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
*/
#include <linux/gfp.h>
#include <linux/jhash.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/percpu.h>
#include <linux/printk.h>
#include <linux/slab.h>
#include <linux/stacktrace.h>
#include <linux/stackdepot.h>
#include <linux/string.h>
#include <linux/types.h>
#define DEPOT_STACK_BITS (sizeof(depot_stack_handle_t) * 8)
#define STACK_ALLOC_ORDER 2 /* 'Slab' size order for stack depot, 4 pages */
#define STACK_ALLOC_SIZE (1LL << (PAGE_SHIFT + STACK_ALLOC_ORDER))
#define STACK_ALLOC_ALIGN 4
#define STACK_ALLOC_OFFSET_BITS (STACK_ALLOC_ORDER + PAGE_SHIFT - \
STACK_ALLOC_ALIGN)
#define STACK_ALLOC_INDEX_BITS (DEPOT_STACK_BITS - STACK_ALLOC_OFFSET_BITS)
#define STACK_ALLOC_SLABS_CAP 1024
#define STACK_ALLOC_MAX_SLABS \
(((1LL << (STACK_ALLOC_INDEX_BITS)) < STACK_ALLOC_SLABS_CAP) ? \
(1LL << (STACK_ALLOC_INDEX_BITS)) : STACK_ALLOC_SLABS_CAP)
/* The compact structure to store the reference to stacks. */
union handle_parts {
depot_stack_handle_t handle;
struct {
u32 slabindex : STACK_ALLOC_INDEX_BITS;
u32 offset : STACK_ALLOC_OFFSET_BITS;
};
};
struct stack_record {
struct stack_record *next; /* Link in the hashtable */
u32 hash; /* Hash in the hastable */
u32 size; /* Number of frames in the stack */
union handle_parts handle;
unsigned long entries[1]; /* Variable-sized array of entries. */
};
static void *stack_slabs[STACK_ALLOC_MAX_SLABS];
static int depot_index;
static int next_slab_inited;
static size_t depot_offset;
static DEFINE_SPINLOCK(depot_lock);
static bool init_stack_slab(void **prealloc)
{
if (!*prealloc)
return false;
/*
* This smp_load_acquire() pairs with smp_store_release() to
* |next_slab_inited| below and in depot_alloc_stack().
*/
if (smp_load_acquire(&next_slab_inited))
return true;
if (stack_slabs[depot_index] == NULL) {
stack_slabs[depot_index] = *prealloc;
} else {
stack_slabs[depot_index + 1] = *prealloc;
/*
* This smp_store_release pairs with smp_load_acquire() from
* |next_slab_inited| above and in depot_save_stack().
*/
smp_store_release(&next_slab_inited, 1);
}
*prealloc = NULL;
return true;
}
/* Allocation of a new stack in raw storage */
static struct stack_record *depot_alloc_stack(unsigned long *entries, int size,
u32 hash, void **prealloc, gfp_t alloc_flags)
{
int required_size = offsetof(struct stack_record, entries) +
sizeof(unsigned long) * size;
struct stack_record *stack;
required_size = ALIGN(required_size, 1 << STACK_ALLOC_ALIGN);
if (unlikely(depot_offset + required_size > STACK_ALLOC_SIZE)) {
if (unlikely(depot_index + 1 >= STACK_ALLOC_MAX_SLABS)) {
WARN_ONCE(1, "Stack depot reached limit capacity");
return NULL;
}
depot_index++;
depot_offset = 0;
/*
* smp_store_release() here pairs with smp_load_acquire() from
* |next_slab_inited| in depot_save_stack() and
* init_stack_slab().
*/
if (depot_index + 1 < STACK_ALLOC_MAX_SLABS)
smp_store_release(&next_slab_inited, 0);
}
init_stack_slab(prealloc);
if (stack_slabs[depot_index] == NULL)
return NULL;
stack = stack_slabs[depot_index] + depot_offset;
stack->hash = hash;
stack->size = size;
stack->handle.slabindex = depot_index;
stack->handle.offset = depot_offset >> STACK_ALLOC_ALIGN;
memcpy(stack->entries, entries, size * sizeof(unsigned long));
depot_offset += required_size;
return stack;
}
#define STACK_HASH_ORDER 20
#define STACK_HASH_SIZE (1L << STACK_HASH_ORDER)
#define STACK_HASH_MASK (STACK_HASH_SIZE - 1)
#define STACK_HASH_SEED 0x9747b28c
static struct stack_record *stack_table[STACK_HASH_SIZE] = {
[0 ... STACK_HASH_SIZE - 1] = NULL
};
/* Calculate hash for a stack */
static inline u32 hash_stack(unsigned long *entries, unsigned int size)
{
return jhash2((u32 *)entries,
size * sizeof(unsigned long) / sizeof(u32),
STACK_HASH_SEED);
}
/* Find a stack that is equal to the one stored in entries in the hash */
static inline struct stack_record *find_stack(struct stack_record *bucket,
unsigned long *entries, int size,
u32 hash)
{
struct stack_record *found;
for (found = bucket; found; found = found->next) {
if (found->hash == hash &&
found->size == size &&
!memcmp(entries, found->entries,
size * sizeof(unsigned long))) {
return found;
}
}
return NULL;
}
void depot_fetch_stack(depot_stack_handle_t handle, struct stack_trace *trace)
{
union handle_parts parts = { .handle = handle };
void *slab = stack_slabs[parts.slabindex];
size_t offset = parts.offset << STACK_ALLOC_ALIGN;
struct stack_record *stack = slab + offset;
trace->nr_entries = trace->max_entries = stack->size;
trace->entries = stack->entries;
trace->skip = 0;
}
/**
* depot_save_stack - save stack in a stack depot.
* @trace - the stacktrace to save.
* @alloc_flags - flags for allocating additional memory if required.
*
* Returns the handle of the stack struct stored in depot.
*/
depot_stack_handle_t depot_save_stack(struct stack_trace *trace,
gfp_t alloc_flags)
{
u32 hash;
depot_stack_handle_t retval = 0;
struct stack_record *found = NULL, **bucket;
unsigned long flags;
struct page *page = NULL;
void *prealloc = NULL;
if (unlikely(trace->nr_entries == 0))
goto fast_exit;
hash = hash_stack(trace->entries, trace->nr_entries);
/* Bad luck, we won't store this stack. */
if (hash == 0)
goto exit;
bucket = &stack_table[hash & STACK_HASH_MASK];
/*
* Fast path: look the stack trace up without locking.
* The smp_load_acquire() here pairs with smp_store_release() to
* |bucket| below.
*/
found = find_stack(smp_load_acquire(bucket), trace->entries,
trace->nr_entries, hash);
if (found)
goto exit;
/*
* Check if the current or the next stack slab need to be initialized.
* If so, allocate the memory - we won't be able to do that under the
* lock.
*
* The smp_load_acquire() here pairs with smp_store_release() to
* |next_slab_inited| in depot_alloc_stack() and init_stack_slab().
*/
if (unlikely(!smp_load_acquire(&next_slab_inited))) {
/*
* Zero out zone modifiers, as we don't have specific zone
* requirements. Keep the flags related to allocation in atomic
* contexts and I/O.
*/
alloc_flags &= ~GFP_ZONEMASK;
alloc_flags &= (GFP_ATOMIC | GFP_KERNEL);
page = alloc_pages(alloc_flags, STACK_ALLOC_ORDER);
if (page)
prealloc = page_address(page);
}
spin_lock_irqsave(&depot_lock, flags);
found = find_stack(*bucket, trace->entries, trace->nr_entries, hash);
if (!found) {
struct stack_record *new =
depot_alloc_stack(trace->entries, trace->nr_entries,
hash, &prealloc, alloc_flags);
if (new) {
new->next = *bucket;
/*
* This smp_store_release() pairs with
* smp_load_acquire() from |bucket| above.
*/
smp_store_release(bucket, new);
found = new;
}
} else if (prealloc) {
/*
* We didn't need to store this stack trace, but let's keep
* the preallocated memory for the future.
*/
WARN_ON(!init_stack_slab(&prealloc));
}
spin_unlock_irqrestore(&depot_lock, flags);
exit:
if (prealloc) {
/* Nobody used this memory, ok to free it. */
free_pages((unsigned long)prealloc, STACK_ALLOC_ORDER);
}
if (found)
retval = found->handle.handle;
fast_exit:
return retval;
}

View File

@ -65,11 +65,34 @@ static noinline void __init kmalloc_node_oob_right(void)
kfree(ptr);
}
static noinline void __init kmalloc_large_oob_right(void)
#ifdef CONFIG_SLUB
static noinline void __init kmalloc_pagealloc_oob_right(void)
{
char *ptr;
size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
/* Allocate a chunk that does not fit into a SLUB cache to trigger
* the page allocator fallback.
*/
pr_info("kmalloc pagealloc allocation: out-of-bounds to right\n");
ptr = kmalloc(size, GFP_KERNEL);
if (!ptr) {
pr_err("Allocation failed\n");
return;
}
ptr[size] = 0;
kfree(ptr);
}
#endif
static noinline void __init kmalloc_large_oob_right(void)
{
char *ptr;
size_t size = KMALLOC_MAX_CACHE_SIZE - 256;
/* Allocate a chunk that is large enough, but still fits into a slab
* and does not trigger the page allocator fallback in SLUB.
*/
pr_info("kmalloc large allocation: out-of-bounds to right\n");
ptr = kmalloc(size, GFP_KERNEL);
if (!ptr) {
@ -271,6 +294,8 @@ static noinline void __init kmalloc_uaf2(void)
}
ptr1[40] = 'x';
if (ptr1 == ptr2)
pr_err("Could not detect use-after-free: ptr1 == ptr2\n");
kfree(ptr2);
}
@ -324,6 +349,9 @@ static int __init kmalloc_tests_init(void)
kmalloc_oob_right();
kmalloc_oob_left();
kmalloc_node_oob_right();
#ifdef CONFIG_SLUB
kmalloc_pagealloc_oob_right();
#endif
kmalloc_large_oob_right();
kmalloc_oob_krealloc_more();
kmalloc_oob_krealloc_less();

View File

@ -3,6 +3,7 @@
#
KASAN_SANITIZE_slab_common.o := n
KASAN_SANITIZE_slab.o := n
KASAN_SANITIZE_slub.o := n
# These files are disabled because they produce non-interesting and/or

View File

@ -1840,15 +1840,16 @@ generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
ssize_t retval = 0;
loff_t *ppos = &iocb->ki_pos;
loff_t pos = *ppos;
size_t count = iov_iter_count(iter);
if (!count)
goto out; /* skip atime */
if (iocb->ki_flags & IOCB_DIRECT) {
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
size_t count = iov_iter_count(iter);
loff_t size;
if (!count)
goto out; /* skip atime */
size = i_size_read(inode);
retval = filemap_write_and_wait_range(mapping, pos,
pos + count - 1);

View File

@ -2578,7 +2578,7 @@ static int khugepaged_scan_pmd(struct mm_struct *mm,
}
khugepaged_node_load[node]++;
if (!PageLRU(page)) {
result = SCAN_SCAN_ABORT;
result = SCAN_PAGE_LRU;
goto out_unmap;
}
if (PageLocked(page)) {

View File

@ -38,6 +38,11 @@
void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
unsigned long floor, unsigned long ceiling);
void unmap_page_range(struct mmu_gather *tlb,
struct vm_area_struct *vma,
unsigned long addr, unsigned long end,
struct zap_details *details);
extern int __do_page_cache_readahead(struct address_space *mapping,
struct file *filp, pgoff_t offset, unsigned long nr_to_read,
unsigned long lookahead_size);

View File

@ -17,7 +17,9 @@
#define DISABLE_BRANCH_PROFILING
#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/kasan.h>
#include <linux/kernel.h>
#include <linux/kmemleak.h>
#include <linux/linkage.h>
@ -32,7 +34,6 @@
#include <linux/string.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#include <linux/kasan.h>
#include "kasan.h"
#include "../slab.h"
@ -334,6 +335,59 @@ void kasan_free_pages(struct page *page, unsigned int order)
KASAN_FREE_PAGE);
}
#ifdef CONFIG_SLAB
/*
* Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
* For larger allocations larger redzones are used.
*/
static size_t optimal_redzone(size_t object_size)
{
int rz =
object_size <= 64 - 16 ? 16 :
object_size <= 128 - 32 ? 32 :
object_size <= 512 - 64 ? 64 :
object_size <= 4096 - 128 ? 128 :
object_size <= (1 << 14) - 256 ? 256 :
object_size <= (1 << 15) - 512 ? 512 :
object_size <= (1 << 16) - 1024 ? 1024 : 2048;
return rz;
}
void kasan_cache_create(struct kmem_cache *cache, size_t *size,
unsigned long *flags)
{
int redzone_adjust;
/* Make sure the adjusted size is still less than
* KMALLOC_MAX_CACHE_SIZE.
* TODO: this check is only useful for SLAB, but not SLUB. We'll need
* to skip it for SLUB when it starts using kasan_cache_create().
*/
if (*size > KMALLOC_MAX_CACHE_SIZE -
sizeof(struct kasan_alloc_meta) -
sizeof(struct kasan_free_meta))
return;
*flags |= SLAB_KASAN;
/* Add alloc meta. */
cache->kasan_info.alloc_meta_offset = *size;
*size += sizeof(struct kasan_alloc_meta);
/* Add free meta. */
if (cache->flags & SLAB_DESTROY_BY_RCU || cache->ctor ||
cache->object_size < sizeof(struct kasan_free_meta)) {
cache->kasan_info.free_meta_offset = *size;
*size += sizeof(struct kasan_free_meta);
}
redzone_adjust = optimal_redzone(cache->object_size) -
(*size - cache->object_size);
if (redzone_adjust > 0)
*size += redzone_adjust;
*size = min(KMALLOC_MAX_CACHE_SIZE,
max(*size,
cache->object_size +
optimal_redzone(cache->object_size)));
}
#endif
void kasan_poison_slab(struct page *page)
{
kasan_poison_shadow(page_address(page),
@ -351,11 +405,81 @@ void kasan_poison_object_data(struct kmem_cache *cache, void *object)
kasan_poison_shadow(object,
round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
KASAN_KMALLOC_REDZONE);
#ifdef CONFIG_SLAB
if (cache->flags & SLAB_KASAN) {
struct kasan_alloc_meta *alloc_info =
get_alloc_info(cache, object);
alloc_info->state = KASAN_STATE_INIT;
}
#endif
}
void kasan_slab_alloc(struct kmem_cache *cache, void *object)
#ifdef CONFIG_SLAB
static inline int in_irqentry_text(unsigned long ptr)
{
kasan_kmalloc(cache, object, cache->object_size);
return (ptr >= (unsigned long)&__irqentry_text_start &&
ptr < (unsigned long)&__irqentry_text_end) ||
(ptr >= (unsigned long)&__softirqentry_text_start &&
ptr < (unsigned long)&__softirqentry_text_end);
}
static inline void filter_irq_stacks(struct stack_trace *trace)
{
int i;
if (!trace->nr_entries)
return;
for (i = 0; i < trace->nr_entries; i++)
if (in_irqentry_text(trace->entries[i])) {
/* Include the irqentry function into the stack. */
trace->nr_entries = i + 1;
break;
}
}
static inline depot_stack_handle_t save_stack(gfp_t flags)
{
unsigned long entries[KASAN_STACK_DEPTH];
struct stack_trace trace = {
.nr_entries = 0,
.entries = entries,
.max_entries = KASAN_STACK_DEPTH,
.skip = 0
};
save_stack_trace(&trace);
filter_irq_stacks(&trace);
if (trace.nr_entries != 0 &&
trace.entries[trace.nr_entries-1] == ULONG_MAX)
trace.nr_entries--;
return depot_save_stack(&trace, flags);
}
static inline void set_track(struct kasan_track *track, gfp_t flags)
{
track->pid = current->pid;
track->stack = save_stack(flags);
}
struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
const void *object)
{
BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
return (void *)object + cache->kasan_info.alloc_meta_offset;
}
struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
const void *object)
{
BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
return (void *)object + cache->kasan_info.free_meta_offset;
}
#endif
void kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags)
{
kasan_kmalloc(cache, object, cache->object_size, flags);
}
void kasan_slab_free(struct kmem_cache *cache, void *object)
@ -367,10 +491,22 @@ void kasan_slab_free(struct kmem_cache *cache, void *object)
if (unlikely(cache->flags & SLAB_DESTROY_BY_RCU))
return;
#ifdef CONFIG_SLAB
if (cache->flags & SLAB_KASAN) {
struct kasan_free_meta *free_info =
get_free_info(cache, object);
struct kasan_alloc_meta *alloc_info =
get_alloc_info(cache, object);
alloc_info->state = KASAN_STATE_FREE;
set_track(&free_info->track);
}
#endif
kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
}
void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size)
void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size,
gfp_t flags)
{
unsigned long redzone_start;
unsigned long redzone_end;
@ -386,10 +522,20 @@ void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size)
kasan_unpoison_shadow(object, size);
kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
KASAN_KMALLOC_REDZONE);
#ifdef CONFIG_SLAB
if (cache->flags & SLAB_KASAN) {
struct kasan_alloc_meta *alloc_info =
get_alloc_info(cache, object);
alloc_info->state = KASAN_STATE_ALLOC;
alloc_info->alloc_size = size;
set_track(&alloc_info->track, flags);
}
#endif
}
EXPORT_SYMBOL(kasan_kmalloc);
void kasan_kmalloc_large(const void *ptr, size_t size)
void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
{
struct page *page;
unsigned long redzone_start;
@ -408,7 +554,7 @@ void kasan_kmalloc_large(const void *ptr, size_t size)
KASAN_PAGE_REDZONE);
}
void kasan_krealloc(const void *object, size_t size)
void kasan_krealloc(const void *object, size_t size, gfp_t flags)
{
struct page *page;
@ -418,9 +564,9 @@ void kasan_krealloc(const void *object, size_t size)
page = virt_to_head_page(object);
if (unlikely(!PageSlab(page)))
kasan_kmalloc_large(object, size);
kasan_kmalloc_large(object, size, flags);
else
kasan_kmalloc(page->slab_cache, object, size);
kasan_kmalloc(page->slab_cache, object, size, flags);
}
void kasan_kfree(void *ptr)

View File

@ -2,6 +2,7 @@
#define __MM_KASAN_KASAN_H
#include <linux/kasan.h>
#include <linux/stackdepot.h>
#define KASAN_SHADOW_SCALE_SIZE (1UL << KASAN_SHADOW_SCALE_SHIFT)
#define KASAN_SHADOW_MASK (KASAN_SHADOW_SCALE_SIZE - 1)
@ -54,6 +55,42 @@ struct kasan_global {
#endif
};
/**
* Structures to keep alloc and free tracks *
*/
enum kasan_state {
KASAN_STATE_INIT,
KASAN_STATE_ALLOC,
KASAN_STATE_FREE
};
#define KASAN_STACK_DEPTH 64
struct kasan_track {
u32 pid;
depot_stack_handle_t stack;
};
struct kasan_alloc_meta {
struct kasan_track track;
u32 state : 2; /* enum kasan_state */
u32 alloc_size : 30;
u32 reserved;
};
struct kasan_free_meta {
/* Allocator freelist pointer, unused by KASAN. */
void **freelist;
struct kasan_track track;
};
struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
const void *object);
struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
const void *object);
static inline const void *kasan_shadow_to_mem(const void *shadow_addr)
{
return (void *)(((unsigned long)shadow_addr - KASAN_SHADOW_OFFSET)

View File

@ -18,6 +18,7 @@
#include <linux/printk.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/stackdepot.h>
#include <linux/stacktrace.h>
#include <linux/string.h>
#include <linux/types.h>
@ -115,6 +116,53 @@ static inline bool init_task_stack_addr(const void *addr)
sizeof(init_thread_union.stack));
}
#ifdef CONFIG_SLAB
static void print_track(struct kasan_track *track)
{
pr_err("PID = %u\n", track->pid);
if (track->stack) {
struct stack_trace trace;
depot_fetch_stack(track->stack, &trace);
print_stack_trace(&trace, 0);
} else {
pr_err("(stack is not available)\n");
}
}
static void object_err(struct kmem_cache *cache, struct page *page,
void *object, char *unused_reason)
{
struct kasan_alloc_meta *alloc_info = get_alloc_info(cache, object);
struct kasan_free_meta *free_info;
dump_stack();
pr_err("Object at %p, in cache %s\n", object, cache->name);
if (!(cache->flags & SLAB_KASAN))
return;
switch (alloc_info->state) {
case KASAN_STATE_INIT:
pr_err("Object not allocated yet\n");
break;
case KASAN_STATE_ALLOC:
pr_err("Object allocated with size %u bytes.\n",
alloc_info->alloc_size);
pr_err("Allocation:\n");
print_track(&alloc_info->track);
break;
case KASAN_STATE_FREE:
pr_err("Object freed, allocated with size %u bytes\n",
alloc_info->alloc_size);
free_info = get_free_info(cache, object);
pr_err("Allocation:\n");
print_track(&alloc_info->track);
pr_err("Deallocation:\n");
print_track(&free_info->track);
break;
}
}
#endif
static void print_address_description(struct kasan_access_info *info)
{
const void *addr = info->access_addr;
@ -126,17 +174,10 @@ static void print_address_description(struct kasan_access_info *info)
if (PageSlab(page)) {
void *object;
struct kmem_cache *cache = page->slab_cache;
void *last_object;
object = virt_to_obj(cache, page_address(page), addr);
last_object = page_address(page) +
page->objects * cache->size;
if (unlikely(object > last_object))
object = last_object; /* we hit into padding */
object = nearest_obj(cache, page,
(void *)info->access_addr);
object_err(cache, page, object,
"kasan: bad access detected");
"kasan: bad access detected");
return;
}
dump_page(page, "kasan: bad access detected");
@ -146,7 +187,6 @@ static void print_address_description(struct kasan_access_info *info)
if (!init_task_stack_addr(addr))
pr_err("Address belongs to variable %pS\n", addr);
}
dump_stack();
}

View File

@ -1102,6 +1102,12 @@ again:
if (!PageAnon(page)) {
if (pte_dirty(ptent)) {
/*
* oom_reaper cannot tear down dirty
* pages
*/
if (unlikely(details && details->ignore_dirty))
continue;
force_flush = 1;
set_page_dirty(page);
}
@ -1120,8 +1126,8 @@ again:
}
continue;
}
/* If details->check_mapping, we leave swap entries. */
if (unlikely(details))
/* only check swap_entries if explicitly asked for in details */
if (unlikely(details && !details->check_swap_entries))
continue;
entry = pte_to_swp_entry(ptent);
@ -1226,7 +1232,7 @@ static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
return addr;
}
static void unmap_page_range(struct mmu_gather *tlb,
void unmap_page_range(struct mmu_gather *tlb,
struct vm_area_struct *vma,
unsigned long addr, unsigned long end,
struct zap_details *details)
@ -1234,9 +1240,6 @@ static void unmap_page_range(struct mmu_gather *tlb,
pgd_t *pgd;
unsigned long next;
if (details && !details->check_mapping)
details = NULL;
BUG_ON(addr >= end);
tlb_start_vma(tlb, vma);
pgd = pgd_offset(vma->vm_mm, addr);
@ -2432,7 +2435,7 @@ static inline void unmap_mapping_range_tree(struct rb_root *root,
void unmap_mapping_range(struct address_space *mapping,
loff_t const holebegin, loff_t const holelen, int even_cows)
{
struct zap_details details;
struct zap_details details = { };
pgoff_t hba = holebegin >> PAGE_SHIFT;
pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;

View File

@ -112,12 +112,12 @@ static void kasan_poison_element(mempool_t *pool, void *element)
kasan_free_pages(element, (unsigned long)pool->pool_data);
}
static void kasan_unpoison_element(mempool_t *pool, void *element)
static void kasan_unpoison_element(mempool_t *pool, void *element, gfp_t flags)
{
if (pool->alloc == mempool_alloc_slab)
kasan_slab_alloc(pool->pool_data, element);
kasan_slab_alloc(pool->pool_data, element, flags);
if (pool->alloc == mempool_kmalloc)
kasan_krealloc(element, (size_t)pool->pool_data);
kasan_krealloc(element, (size_t)pool->pool_data, flags);
if (pool->alloc == mempool_alloc_pages)
kasan_alloc_pages(element, (unsigned long)pool->pool_data);
}
@ -130,12 +130,12 @@ static void add_element(mempool_t *pool, void *element)
pool->elements[pool->curr_nr++] = element;
}
static void *remove_element(mempool_t *pool)
static void *remove_element(mempool_t *pool, gfp_t flags)
{
void *element = pool->elements[--pool->curr_nr];
BUG_ON(pool->curr_nr < 0);
kasan_unpoison_element(pool, element);
kasan_unpoison_element(pool, element, flags);
check_element(pool, element);
return element;
}
@ -154,7 +154,7 @@ void mempool_destroy(mempool_t *pool)
return;
while (pool->curr_nr) {
void *element = remove_element(pool);
void *element = remove_element(pool, GFP_KERNEL);
pool->free(element, pool->pool_data);
}
kfree(pool->elements);
@ -250,7 +250,7 @@ int mempool_resize(mempool_t *pool, int new_min_nr)
spin_lock_irqsave(&pool->lock, flags);
if (new_min_nr <= pool->min_nr) {
while (new_min_nr < pool->curr_nr) {
element = remove_element(pool);
element = remove_element(pool, GFP_KERNEL);
spin_unlock_irqrestore(&pool->lock, flags);
pool->free(element, pool->pool_data);
spin_lock_irqsave(&pool->lock, flags);
@ -347,7 +347,7 @@ repeat_alloc:
spin_lock_irqsave(&pool->lock, flags);
if (likely(pool->curr_nr)) {
element = remove_element(pool);
element = remove_element(pool, gfp_temp);
spin_unlock_irqrestore(&pool->lock, flags);
/* paired with rmb in mempool_free(), read comment there */
smp_wmb();

View File

@ -35,6 +35,11 @@
#include <linux/freezer.h>
#include <linux/ftrace.h>
#include <linux/ratelimit.h>
#include <linux/kthread.h>
#include <linux/init.h>
#include <asm/tlb.h>
#include "internal.h"
#define CREATE_TRACE_POINTS
#include <trace/events/oom.h>
@ -405,6 +410,172 @@ static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
bool oom_killer_disabled __read_mostly;
#define K(x) ((x) << (PAGE_SHIFT-10))
#ifdef CONFIG_MMU
/*
* OOM Reaper kernel thread which tries to reap the memory used by the OOM
* victim (if that is possible) to help the OOM killer to move on.
*/
static struct task_struct *oom_reaper_th;
static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
static struct task_struct *oom_reaper_list;
static DEFINE_SPINLOCK(oom_reaper_lock);
static bool __oom_reap_task(struct task_struct *tsk)
{
struct mmu_gather tlb;
struct vm_area_struct *vma;
struct mm_struct *mm;
struct task_struct *p;
struct zap_details details = {.check_swap_entries = true,
.ignore_dirty = true};
bool ret = true;
/*
* Make sure we find the associated mm_struct even when the particular
* thread has already terminated and cleared its mm.
* We might have race with exit path so consider our work done if there
* is no mm.
*/
p = find_lock_task_mm(tsk);
if (!p)
return true;
mm = p->mm;
if (!atomic_inc_not_zero(&mm->mm_users)) {
task_unlock(p);
return true;
}
task_unlock(p);
if (!down_read_trylock(&mm->mmap_sem)) {
ret = false;
goto out;
}
tlb_gather_mmu(&tlb, mm, 0, -1);
for (vma = mm->mmap ; vma; vma = vma->vm_next) {
if (is_vm_hugetlb_page(vma))
continue;
/*
* mlocked VMAs require explicit munlocking before unmap.
* Let's keep it simple here and skip such VMAs.
*/
if (vma->vm_flags & VM_LOCKED)
continue;
/*
* Only anonymous pages have a good chance to be dropped
* without additional steps which we cannot afford as we
* are OOM already.
*
* We do not even care about fs backed pages because all
* which are reclaimable have already been reclaimed and
* we do not want to block exit_mmap by keeping mm ref
* count elevated without a good reason.
*/
if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
&details);
}
tlb_finish_mmu(&tlb, 0, -1);
pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
task_pid_nr(tsk), tsk->comm,
K(get_mm_counter(mm, MM_ANONPAGES)),
K(get_mm_counter(mm, MM_FILEPAGES)),
K(get_mm_counter(mm, MM_SHMEMPAGES)));
up_read(&mm->mmap_sem);
/*
* Clear TIF_MEMDIE because the task shouldn't be sitting on a
* reasonably reclaimable memory anymore. OOM killer can continue
* by selecting other victim if unmapping hasn't led to any
* improvements. This also means that selecting this task doesn't
* make any sense.
*/
tsk->signal->oom_score_adj = OOM_SCORE_ADJ_MIN;
exit_oom_victim(tsk);
out:
mmput(mm);
return ret;
}
#define MAX_OOM_REAP_RETRIES 10
static void oom_reap_task(struct task_struct *tsk)
{
int attempts = 0;
/* Retry the down_read_trylock(mmap_sem) a few times */
while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task(tsk))
schedule_timeout_idle(HZ/10);
if (attempts > MAX_OOM_REAP_RETRIES) {
pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
task_pid_nr(tsk), tsk->comm);
debug_show_all_locks();
}
/* Drop a reference taken by wake_oom_reaper */
put_task_struct(tsk);
}
static int oom_reaper(void *unused)
{
set_freezable();
while (true) {
struct task_struct *tsk = NULL;
wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
spin_lock(&oom_reaper_lock);
if (oom_reaper_list != NULL) {
tsk = oom_reaper_list;
oom_reaper_list = tsk->oom_reaper_list;
}
spin_unlock(&oom_reaper_lock);
if (tsk)
oom_reap_task(tsk);
}
return 0;
}
static void wake_oom_reaper(struct task_struct *tsk)
{
if (!oom_reaper_th || tsk->oom_reaper_list)
return;
get_task_struct(tsk);
spin_lock(&oom_reaper_lock);
tsk->oom_reaper_list = oom_reaper_list;
oom_reaper_list = tsk;
spin_unlock(&oom_reaper_lock);
wake_up(&oom_reaper_wait);
}
static int __init oom_init(void)
{
oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
if (IS_ERR(oom_reaper_th)) {
pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
PTR_ERR(oom_reaper_th));
oom_reaper_th = NULL;
}
return 0;
}
subsys_initcall(oom_init)
#else
static void wake_oom_reaper(struct task_struct *tsk)
{
}
#endif
/**
* mark_oom_victim - mark the given task as OOM victim
* @tsk: task to mark
@ -431,9 +602,10 @@ void mark_oom_victim(struct task_struct *tsk)
/**
* exit_oom_victim - note the exit of an OOM victim
*/
void exit_oom_victim(void)
void exit_oom_victim(struct task_struct *tsk)
{
clear_thread_flag(TIF_MEMDIE);
if (!test_and_clear_tsk_thread_flag(tsk, TIF_MEMDIE))
return;
if (!atomic_dec_return(&oom_victims))
wake_up_all(&oom_victims_wait);
@ -494,7 +666,6 @@ static bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
return false;
}
#define K(x) ((x) << (PAGE_SHIFT-10))
/*
* Must be called while holding a reference to p, which will be released upon
* returning.
@ -510,6 +681,7 @@ void oom_kill_process(struct oom_control *oc, struct task_struct *p,
unsigned int victim_points = 0;
static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
bool can_oom_reap = true;
/*
* If the task is already exiting, don't alarm the sysadmin or kill
@ -600,17 +772,23 @@ void oom_kill_process(struct oom_control *oc, struct task_struct *p,
continue;
if (same_thread_group(p, victim))
continue;
if (unlikely(p->flags & PF_KTHREAD))
if (unlikely(p->flags & PF_KTHREAD) || is_global_init(p) ||
p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
/*
* We cannot use oom_reaper for the mm shared by this
* process because it wouldn't get killed and so the
* memory might be still used.
*/
can_oom_reap = false;
continue;
if (is_global_init(p))
continue;
if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
continue;
}
do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
}
rcu_read_unlock();
if (can_oom_reap)
wake_oom_reaper(victim);
mmdrop(mm);
put_task_struct(victim);
}

View File

@ -692,34 +692,28 @@ static inline void __free_one_page(struct page *page,
unsigned long combined_idx;
unsigned long uninitialized_var(buddy_idx);
struct page *buddy;
unsigned int max_order = MAX_ORDER;
unsigned int max_order;
max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
VM_BUG_ON(!zone_is_initialized(zone));
VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
VM_BUG_ON(migratetype == -1);
if (is_migrate_isolate(migratetype)) {
/*
* We restrict max order of merging to prevent merge
* between freepages on isolate pageblock and normal
* pageblock. Without this, pageblock isolation
* could cause incorrect freepage accounting.
*/
max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
} else {
if (likely(!is_migrate_isolate(migratetype)))
__mod_zone_freepage_state(zone, 1 << order, migratetype);
}
page_idx = pfn & ((1 << max_order) - 1);
page_idx = pfn & ((1 << MAX_ORDER) - 1);
VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
VM_BUG_ON_PAGE(bad_range(zone, page), page);
continue_merging:
while (order < max_order - 1) {
buddy_idx = __find_buddy_index(page_idx, order);
buddy = page + (buddy_idx - page_idx);
if (!page_is_buddy(page, buddy, order))
break;
goto done_merging;
/*
* Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
* merge with it and move up one order.
@ -736,6 +730,32 @@ static inline void __free_one_page(struct page *page,
page_idx = combined_idx;
order++;
}
if (max_order < MAX_ORDER) {
/* If we are here, it means order is >= pageblock_order.
* We want to prevent merge between freepages on isolate
* pageblock and normal pageblock. Without this, pageblock
* isolation could cause incorrect freepage or CMA accounting.
*
* We don't want to hit this code for the more frequent
* low-order merging.
*/
if (unlikely(has_isolate_pageblock(zone))) {
int buddy_mt;
buddy_idx = __find_buddy_index(page_idx, order);
buddy = page + (buddy_idx - page_idx);
buddy_mt = get_pageblock_migratetype(buddy);
if (migratetype != buddy_mt
&& (is_migrate_isolate(migratetype) ||
is_migrate_isolate(buddy_mt)))
goto done_merging;
}
max_order++;
goto continue_merging;
}
done_merging:
set_page_order(page, order);
/*

View File

@ -2086,6 +2086,8 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
}
#endif
kasan_cache_create(cachep, &size, &flags);
size = ALIGN(size, cachep->align);
/*
* We should restrict the number of objects in a slab to implement
@ -2387,8 +2389,13 @@ static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
* cache which they are a constructor for. Otherwise, deadlock.
* They must also be threaded.
*/
if (cachep->ctor && !(cachep->flags & SLAB_POISON))
if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
kasan_unpoison_object_data(cachep,
objp + obj_offset(cachep));
cachep->ctor(objp + obj_offset(cachep));
kasan_poison_object_data(
cachep, objp + obj_offset(cachep));
}
if (cachep->flags & SLAB_RED_ZONE) {
if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
@ -2409,6 +2416,7 @@ static void cache_init_objs(struct kmem_cache *cachep,
struct page *page)
{
int i;
void *objp;
cache_init_objs_debug(cachep, page);
@ -2419,8 +2427,12 @@ static void cache_init_objs(struct kmem_cache *cachep,
for (i = 0; i < cachep->num; i++) {
/* constructor could break poison info */
if (DEBUG == 0 && cachep->ctor)
cachep->ctor(index_to_obj(cachep, page, i));
if (DEBUG == 0 && cachep->ctor) {
objp = index_to_obj(cachep, page, i);
kasan_unpoison_object_data(cachep, objp);
cachep->ctor(objp);
kasan_poison_object_data(cachep, objp);
}
set_free_obj(page, i, i);
}
@ -2550,6 +2562,7 @@ static int cache_grow(struct kmem_cache *cachep,
slab_map_pages(cachep, page, freelist);
kasan_poison_slab(page);
cache_init_objs(cachep, page);
if (gfpflags_allow_blocking(local_flags))
@ -3316,6 +3329,8 @@ static inline void __cache_free(struct kmem_cache *cachep, void *objp,
{
struct array_cache *ac = cpu_cache_get(cachep);
kasan_slab_free(cachep, objp);
check_irq_off();
kmemleak_free_recursive(objp, cachep->flags);
objp = cache_free_debugcheck(cachep, objp, caller);
@ -3363,6 +3378,7 @@ void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
void *ret = slab_alloc(cachep, flags, _RET_IP_);
kasan_slab_alloc(cachep, ret, flags);
trace_kmem_cache_alloc(_RET_IP_, ret,
cachep->object_size, cachep->size, flags);
@ -3428,6 +3444,7 @@ kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
ret = slab_alloc(cachep, flags, _RET_IP_);
kasan_kmalloc(cachep, ret, size, flags);
trace_kmalloc(_RET_IP_, ret,
size, cachep->size, flags);
return ret;
@ -3451,6 +3468,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
kasan_slab_alloc(cachep, ret, flags);
trace_kmem_cache_alloc_node(_RET_IP_, ret,
cachep->object_size, cachep->size,
flags, nodeid);
@ -3469,6 +3487,7 @@ void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
kasan_kmalloc(cachep, ret, size, flags);
trace_kmalloc_node(_RET_IP_, ret,
size, cachep->size,
flags, nodeid);
@ -3481,11 +3500,15 @@ static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
{
struct kmem_cache *cachep;
void *ret;
cachep = kmalloc_slab(size, flags);
if (unlikely(ZERO_OR_NULL_PTR(cachep)))
return cachep;
return kmem_cache_alloc_node_trace(cachep, flags, node, size);
ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
kasan_kmalloc(cachep, ret, size, flags);
return ret;
}
void *__kmalloc_node(size_t size, gfp_t flags, int node)
@ -3519,6 +3542,7 @@ static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
return cachep;
ret = slab_alloc(cachep, flags, caller);
kasan_kmalloc(cachep, ret, size, flags);
trace_kmalloc(caller, ret,
size, cachep->size, flags);
@ -4290,10 +4314,18 @@ module_init(slab_proc_init);
*/
size_t ksize(const void *objp)
{
size_t size;
BUG_ON(!objp);
if (unlikely(objp == ZERO_SIZE_PTR))
return 0;
return virt_to_cache(objp)->object_size;
size = virt_to_cache(objp)->object_size;
/* We assume that ksize callers could use the whole allocated area,
* so we need to unpoison this area.
*/
kasan_krealloc(objp, size, GFP_NOWAIT);
return size;
}
EXPORT_SYMBOL(ksize);

View File

@ -405,7 +405,7 @@ static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
kmemleak_alloc_recursive(object, s->object_size, 1,
s->flags, flags);
kasan_slab_alloc(s, object);
kasan_slab_alloc(s, object, flags);
}
memcg_kmem_put_cache(s);
}

View File

@ -35,7 +35,7 @@ struct kmem_cache *kmem_cache;
*/
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
SLAB_FAILSLAB)
SLAB_FAILSLAB | SLAB_KASAN)
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
SLAB_NOTRACK | SLAB_ACCOUNT)
@ -1013,7 +1013,7 @@ void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
page = alloc_kmem_pages(flags, order);
ret = page ? page_address(page) : NULL;
kmemleak_alloc(ret, size, 1, flags);
kasan_kmalloc_large(ret, size);
kasan_kmalloc_large(ret, size, flags);
return ret;
}
EXPORT_SYMBOL(kmalloc_order);
@ -1192,7 +1192,7 @@ static __always_inline void *__do_krealloc(const void *p, size_t new_size,
ks = ksize(p);
if (ks >= new_size) {
kasan_krealloc((void *)p, new_size);
kasan_krealloc((void *)p, new_size, flags);
return (void *)p;
}

View File

@ -1313,7 +1313,7 @@ static inline void dec_slabs_node(struct kmem_cache *s, int node,
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
kmemleak_alloc(ptr, size, 1, flags);
kasan_kmalloc_large(ptr, size);
kasan_kmalloc_large(ptr, size, flags);
}
static inline void kfree_hook(const void *x)
@ -2596,7 +2596,7 @@ void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
void *ret = slab_alloc(s, gfpflags, _RET_IP_);
trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
kasan_kmalloc(s, ret, size);
kasan_kmalloc(s, ret, size, gfpflags);
return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
@ -2624,7 +2624,7 @@ void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
trace_kmalloc_node(_RET_IP_, ret,
size, s->size, gfpflags, node);
kasan_kmalloc(s, ret, size);
kasan_kmalloc(s, ret, size, gfpflags);
return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
@ -3182,7 +3182,8 @@ static void early_kmem_cache_node_alloc(int node)
init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
init_tracking(kmem_cache_node, n);
#endif
kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
GFP_KERNEL);
init_kmem_cache_node(n);
inc_slabs_node(kmem_cache_node, node, page->objects);
@ -3561,7 +3562,7 @@ void *__kmalloc(size_t size, gfp_t flags)
trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
kasan_kmalloc(s, ret, size);
kasan_kmalloc(s, ret, size, flags);
return ret;
}
@ -3606,7 +3607,7 @@ void *__kmalloc_node(size_t size, gfp_t flags, int node)
trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
kasan_kmalloc(s, ret, size);
kasan_kmalloc(s, ret, size, flags);
return ret;
}
@ -3635,7 +3636,7 @@ size_t ksize(const void *object)
size_t size = __ksize(object);
/* We assume that ksize callers could use whole allocated area,
so we need unpoison this area. */
kasan_krealloc(object, size);
kasan_krealloc(object, size, GFP_NOWAIT);
return size;
}
EXPORT_SYMBOL(ksize);